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Abstract 

There are numerous indicators that can be used to categorize populations as being a 

conservation concern, but these alternatives may vary in their reliability.  To determine 

which of 18 quantitative decline indicators most reliably categorize the conservation 

status of a population, we used a stochastic model to simulate time series representing 

populations of sockeye salmon (Oncorhynchus nerka), allowing us to examine the 

effects of different levels of process variation and observation error.  We examined 

whether each indicator’s assessed status accurately predicted the subsequent trend of 

the population using a Receiver Operating Characteristic analysis as an integrated 

measure of reliability.  Indicators that measured decline from a historical baseline were 

the most reliable.  Indicators that measure decline over the most recent 3 generations, 

which are widely used, were sensitive to process variation and observation error.  Our 

results suggest that, when available, longer time-series of abundance should be used to 

evaluate population decline.  

Keywords:  Decline indicators; sockeye salmon; IUCN; stochastic population 
dynamics model; Receiver Operating Characteristic; error trade-offs 



 

v 

Acknowledgements 

 I am grateful for funding to support this research, which was provided by Simon 

Fraser University and by grants to Randall M. Peterman from the Natural Sciences and 

Engineering Research Council of Canada and the Canada Research Chairs Program, 

Ottawa. 

 I would like to thank Randall Peterman for his support, guidance, thorough 

feedback, and enthusiasm.  I would also like to thank Nick Dulvy for his expertise, and 

the Fisheries Science and Management Research Group, as well as the other students 

and staff in the School of Resource and Environmental Management for their support 

and camaraderie. 



 

vi 

Table of Contents 

Approval .......................................................................................................................... ii 
Partial Copyright Licence ............................................................................................... iii 
Abstract .......................................................................................................................... iv 
Acknowledgements ......................................................................................................... v 
Table of Contents ........................................................................................................... vi 
List of Tables ................................................................................................................. vii 
List of Figures................................................................................................................ viii 

1. Introduction .......................................................................................................... 1 

2. Methods................................................................................................................. 7 
2.1. Stochastic population dynamics model ................................................................... 7 

2.1.1. Model .......................................................................................................... 7 
2.1.2. Productivity ................................................................................................. 8 
2.1.3. Process variation ........................................................................................ 9 
2.1.4. Observation error ........................................................................................ 9 

2.2. Threat indicators to estimate status during the “evaluation period” ....................... 12 
2.3. Subsequent status ................................................................................................ 14 
2.4. Measuring reliability .............................................................................................. 15 

2.4.1. Receiver Operating Characteristic analysis ............................................... 15 
2.4.2. Different error weightings and error tolerances .......................................... 16 

2.5. Sensitivity analyses .............................................................................................. 17 

3. Results ................................................................................................................ 19 
3.1. Error weightings ................................................................................................... 22 
3.2. Error tolerance ...................................................................................................... 24 

4. Discussion .......................................................................................................... 28 

References ................................................................................................................... 32 

Appendices .................................................................................................................. 36 
Appendix A.   Data on the a parameter.................................................................... 37 
Appendix B.   Decline indicators .............................................................................. 38 
Appendix C.   Additional results ............................................................................... 39 
 



 

vii 

List of Tables 

Table 1. Possible outcomes when the indicator’s assessed status of a 
population is compared to the estimated subsequent status of the 
same population. ........................................................................................... 3 

Table 2. A summary of the 18 decline indicators used to assess population 
status. .......................................................................................................... 13 

Table 3. The decline indicator number with the specified ratio of error rates of 
false positives (FP) to false negatives (FN) for different levels of (a) 
process variation and (b) observation error.  Indicator numbers are 
defined in Table 2 and Appendix 2. .............................................................. 24 

 



 

viii 

List of Figures 

Figure 1. An example of periods in the time series output produced by the 
model. ............................................................................................................ 8 

Figure 2: Examples of simulated population abundance produced by the model, 
with (dotted) and without (solid) observation error at levels of variance 
of the error term (σv

2) of 0.05 (a) and 0.5 (b). ............................................... 11 

Figure 3. Two sample ROC curves for hypothetical indicators across threshold 
values of 0-100%.  The ROC curves have an area under the curve 
(AUC) of 0.98 (dotted line) and 0.52 (solid line). .......................................... 16 

Figure 4. Ranking of indicators by area under the ROC curve (AUC), for (a) low 
process variation (σu

2=0.01) and no observation error (σv
2=0), (b) high 

process variation (σu
2=0.5) and no observation error (σv

2=0), (c) low 
process variation (σu

2=0.01) and high observation error (σv
2=0.5), and 

(d) high process variation (σu
2=0.5) and high observation error 

(σv
2=0.5).  Indicators based on the decline in the last three 

generations are white, indicators based on decline from a historical 
baseline are black and indicators based on decline from maximum 
abundance are grey. .................................................................................... 20 

Figure 5. The area under the curve (AUC) values for selected indicators across 
increasing levels of (a) process variation and (b) observation error.  
The indicators are a high-reliability indicator based on a historical 
baseline at the beginning of the time series (indicator 4 [solid line]), a 
medium-reliability indicator based on a maximum abundance baseline 
(indicator 16 [dashed line]), and the commonly used IUCN indicator 
based on decline over the most recent three generations (indicator 2 
[dotted line]). ................................................................................................ 21 

Figure 6. An example of the false positive rate (solid) and false negative rate 
(dot-dash) across threshold levels for classifying a population as 
declining ranging from 0-100% for indicator #16 for the base-case 
scenario with low process variation and no observation error 
(σu

2=0.01, σv
2=0).  The black dashed vertical line indicates the 

threshold where both error rates are equal (i.e., the lowest rate of both 
error types if they are considered equally important).  The dotted 
vertical lines indicate the lowest error rates if a false negative is 
considered twice as important as a false positive (left vertical dotted 
line, i.e., that the false negative rate must be half the false positive 
rate), and vice-versa (right vertical dotted line). ........................................... 23 



 

ix 

Figure 7. The lowest rate of false negative (FN) errors (contour values) that can 
be obtained if the false positive (FP) rate is constrained to be below a 
certain value, as indicated on the y axis.  False negative rates are 
shown for different levels of observation error (at σu

2=0.01) for the 
top-performing indicator in this study #4 (a) and commonly used IUCN 
decline indicator #2 (b).  False negative rates are shown for different 
levels of process variation (at σv

2=0) for indicator #4 (c) and indicator 
#2 (d). .......................................................................................................... 27 

 

  

 



 

1 

1. Introduction 

 It is important to accurately rank which populations are most in need of 

protection, given the limited resources available to protect species and populations from 

going extinct.  One of the most commonly-used worldwide classification systems for 

assigning species to categories of extinction risk was developed by the International 

Union for the Conservation of Nature (IUCN 2001).  To date more than 60,000 animals, 

plants and fungi have been assessed using this approach.  This classification system 

has been adapted by other agencies, for example, the Canadian Committee on the 

Status of Endangered Wildlife in Canada (COSEWIC 2011).  These IUCN-like 

classification systems use various metrics, such as a high rate of decline in population 

size, a small geographic area, or small absolute numbers of organisms, to assess the 

level of extinction risk that a species is facing.  In these cases, relative change in, or 

absolute sizes of, adult populations or geographic area is used to assign taxa to a threat 

category (IUCN 2001, IUCN 2010, COSEWIC 2011).  These metrics can be viewed as 

measuring the symptoms of extinction (Mace et al. 2008), or at least serious problems, 

and can be used to provide information to managers about whether conservation action 

should be taken.  Indicators that measure decreases in population abundance are 

especially widely used, in part because of available data, and are generally the preferred 

metric (Powles 2011, Wilson et al. 2011, Porszt et al. 2012). 

 However, declines in abundance can be challenging to measure, particularly in 

widely fluctuating populations such as Fraser River sockeye salmon (Oncorhynchus 

nerka) in British Columbia, Canada (Paulsen et al. 2007), where it can even be difficult 

to tell whether the underlying trend in abundance is a decline.  The commonly used 

IUCN indicator of decline (criterion A) examines the reduction in population size over the 

longer of the most recent 10 years or three generations (where generation span is 

defined as the average age of adults) (IUCN 2001, COSEWIC 2011).  If the decline is 

greater than a specified boundary, then the population is assigned to a conservation risk 

category.  The reliability of this decline indicator (the likelihood of it correctly classifying a 
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population’s status in various situations) remains largely uncertain and untested, 

although it is widely used to inform decisions regarding population conservation and 

management (Porszt et al. 2012).  Decreases in population abundance could be 

measured using any of several metrics (e.g., decrease from some historical starting 

point, from some maximum abundance, or over some recent period), but these potential 

alternatives may vary substantially in their reliability.  Unfortunately, a full analysis of 

reliability of such a wide range of indicators (or metrics) of abundance has not been 

conducted, although an initial analysis by Porszt et al. (2012) shows that certain 

indicators differ in their reliability.  Obviously, in order to correctly assign a population to 

a conservation status, it is important to use the most reliable measures of decline 

(DeMaster et al. 2004, Keith et al. 2004, Regan et al. 2005, Wilson et al. 2011, Porszt et 

al. 2012).  In this study, we sought to evaluate the reliability of a wide variety of 

indicators of decline in abundance (all of which could be viewed as potential alternatives 

to IUCN criterion A).  Such evaluations of reliability are typically done to evaluate various 

proposed diagnostic tests in medicine. 

 Reliability of an indicator in the field of biological conservation reflects the 

probability of correctly and incorrectly categorizing a population as being at risk.  If an 

indicator falsely suggests that a population is declining when it actually is not, then this is 

a false positive error.  If an indicator falsely suggests that a population is not declining 

when it is, then this is a false negative error (Table 1).  The costs and consequences of 

incorrectly classifying a population depend on the type of classification error.  Scientific 

literature usually emphasizes the importance of avoiding false positive errors without 

examining the costs of making a false negative error, thus implicitly placing more weight 

on avoiding false positive errors than false negatives (Peterman 1990, Mapstone 1995, 

Field et al. 2004).  However, in fisheries management, the costs associated with false 

negatives can often be at least as serious as false positives (Peterman 1990, Mapstone 

1995, Field et al. 2004, Dulvy et al. 2006).  For example, if a population is incorrectly 

classified as not being of conservation concern when it should be (false negative), then 

insufficient actions may be taken to protect this population from collapse or extinction.  In 

the longer term, these false negative costs would also include the economic and social 

costs resulting from this reduction in population size (Peterman 1990).  In contrast, if a 

population is incorrectly classified as being a conservation concern (false positive), this 
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may result in unnecessary action being taken to protect the population, such as fishing 

restrictions or remedial actions, which could result in a loss of revenue and employment, 

and a misdirection of funds away from populations that are in more dire need.  Whether 

a false positive or a false negative is the more serious error depends on a manager’s 

priorities and error tolerances.  Different stakeholders will often have different error 

weighting preferences, because the costs of these errors might be borne by different 

groups (Peterman 1990).  Classification errors may be impossible to eliminate, so there 

are often inherent trade-offs between the rates of false positive and false negative errors 

(Rice & Legacé 2007, Mace et al. 2008, Wilson et al. 2011), which we examine explicitly 

here. 

Table 1. Possible outcomes when the indicator’s assessed status of a 
population is compared to the estimated subsequent status of the 
same population. 

 Indicator’s assessed status 

Non-declining Declining 

Subsequent 
status 

Non-declining True negative False positive 

(Type I error) 

Declining False negative 

(Type II error) 

True positive 

 

 Previous analyses have evaluated decline criteria in terms of risk of extinction 

(e.g. Punt 2000).  There is debate in the literature about the suitability of indicators of 

decline to correctly indicate extinction risk in marine fishes (e.g., Powles et al. 2000, 

Reynolds et al. 2005, Powles et al. 2011), and about the ability of fish populations to 

recover after a large reduction (Hutchings 2000, Hutchings 2001, Dulvy et al. 2003, 

Hutchings & Reynolds 2004).  We chose not to focus on the extinction risk per se, but 

instead to examine whether status assessment diagnoses appropriately forewarn of 

subsequent population declines.  In addition, major decreases in some sockeye salmon 

populations are economically, socially, and ecologically important (DFO 2005), even if 

the extinction risk is low.  

 To evaluate the performance of indicators of significant population decline, 

Porszt et al. (2012) conducted a retrospective analysis using historical data of Fraser 
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River sockeye salmon to determine which of a wide range of quantitative indicators of 

time trends in abundance were most reliable at indicating future trends in abundance 

that subsequently occurred.  They found that indicators that measured the extent of 

decline from a historical baseline tended to better reflect a population’s status in 

subsequent years than the commonly used IUCN indicator that measures the rate of 

decline over the previous 3 generations.  A key limitation of the Porszt et al. (2012) 

retrospective analysis is that it only evaluates the criteria over one set of historical 

events or situations, that is, the actual environmental conditions that occurred, the state 

of other ecosystem components over that period, and management decisions that were 

made.  One way around these caveats is to use simulation analysis for reliability testing.  

In a different and more generalizable approach, Wilson et al. (2011) used stochastic 

simulation modeling to assess three methods for detecting population decreases: 

measuring decline between two point estimates of abundance, use of linear regression 

on a time series of abundance, and state-space models.  Their stochastic model 

estimated the error rates that would be generated by those methods.  They found that 

linear regression and state-space models both had a low proportion of falsely detected 

declines, i.e., false positives (3-14%); however, a high percentage (33-75%) of small-

magnitude declines in abundance were not detected (false negatives).  They found that 

using two point estimates of abundance generated higher power (95%) to detect small 

declines than the other methods, but there was a high percentage (50%) of false 

detections.  These studies illustrate the need to empirically and quantitatively assess the 

reliability of threat indicators before using them to inform managerial or policy decisions 

(Porszt et al. 2012). 

 To quantify the relative reliability of decline indicators, i.e., identify those with the 

highest probability of correctly classifying a population’s status as decreasing or not, we 

used a simulation modelling approach, as has been done in similar situations by other 

researchers (Punt 2000, Holt et al. 2009, Regan et al. 2009, Wilson et al. 2011).  Our 

approach extends the Wilson et al. (2011) method by examining a larger number of 

indicators and conducting a full analysis of false negative and positive rates across a 

large range of conditions (different levels of process variation and observation error) and 

thresholds for classifying a population as being a conservation concern.  Evaluating the 

reliability of decline indicators is relevant for all taxa, but we based our model in part on 
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Fraser River sockeye salmon as a representative case study for which identifying and 

using the most reliable indicators is particularly important.  Sockeye salmon are 

commercially-valuable, and many stakeholders are highly invested in ensuring the best 

decisions are made, which makes them a relevant case study not only for the purposes 

of species-at-risk listings, but also for maintaining their economic and social value (DFO 

2005).  Pacific salmon exhibit high variability in abundance over time due to inherent 

stochasticity in the system (process variation), and high variability can increase the 

probability of extinction of a population (Paulsen et al. 2007).  Another problem with 

evaluating whether a population is decreasing is that estimates of spawner abundance 

are often inaccurate, due to imprecision and inadvertent bias in estimates of population 

size (observation error) (Rand 2011).  Our simulation modelling approach allowed us to 

explore how a range of alternative indicators of population decrease perform across a 

wide range of process variation and observation error that might exist in the future, 

which is not possible to examine with a retrospective analysis of historical data.  

 In medicine, a Receiver Operating Characteristic (ROC) analysis is often used to 

evaluate the performance of diagnostic tests (Hibberd & Cooper 2008).  ROC analyses 

combine the error rates produced by a test or indicator over different thresholds into a 

single measure.  This type of analysis has recently been used in extinction-risk studies 

(e.g. Porszt et al. 2012), and can be used as an integrated measure of reliability to 

evaluate the indicators of symptoms of extinction risk.  We used an ROC analysis to 

evaluate the reliability of decline indicators, but, because ROC analyses inherently 

weight false positives and false negatives as equally important, we also examined which 

indicators were the most reliable across different levels of weightings on those two types 

of errors. 

 Thus, the purpose of our study was to determine which quantitative indicators of 

time trends in abundance can be used to most reliably categorize the conservation 

status of a population.  We also sought to examine how robust these indicators were to 

different magnitudes of process variation, observation error, and boundaries of 

conservation concern (the percentage decline in abundance beyond which a population 

is considered a conservation concern).  We explored how different management error 

weightings would affect the ranking of alternative decline indicators, while explicitly 

examining the trade-offs between the error types.  Our goal was to find the best way to 
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use the available data in order to correctly assign a conservation status to a population, 

and to illustrate the importance of evaluating indicators using simulation models for 

testing their relative reliability.   
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2. Methods 

2.1. Stochastic population dynamics model 

2.1.1. Model 

 We used a stochastic simulation model to simulate sockeye salmon time series.  

We used a spawner-to-spawner model rather than a spawner-to-recruit model because 

we were interested in how many fish made it back to spawn, representing a full life cycle, 

rather than how many were available for recruitment into the fishery.  In this spawner-to-

spawner model, the abundance in any given year was determined by the abundance of 

spawners four years prior, which was then input to a Ricker stock-recruitment function 

that included a stochastic productivity parameter, process variation term, and 

observation error term.  This model is consistent with the reproductive life history of the 

semelparous sockeye salmon in the Fraser River, which has four distinct cycle lines 

arising from over 92% of the salmon reproducing and dying at four years of age with little 

gene exchange among the lines (Ricker 1997, Porszt et al. 2012).  We set the 

equilibrium population size as 100,000 fish.  The initial spawning population abundances 

were drawn randomly from a uniform distribution between 20,000 and 80,000 fish for 

each of the four cycle lines (as in Dorner et al. 2009).  The model had an initialization 

period of 12 years, including the initial four years.  We then analyzed each time series 

during a 52-year “evaluation period” after that initialization period.  Following the 

evaluation period was a “subsequent period” of 12 years (Figure 1).  The 52-year 

evaluation period is comparable to the length of historical time series available for Fraser 

River sockeye salmon (Porszt et al. 2012).  We ran 500 stochastic simulations for each 

scenario (i.e., for each level of process variation, observation error, etc.); scenarios 

represented a range of different population productivities, environmental conditions, and 

harvest rates. 
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Figure 1. An example of periods in the time series output produced by the 
model. 

2.1.2. Productivity 

 Our model used a Ricker recruitment function of the form 1

1
tbS

t tS aS e 

 , where t 

is the brood year.  The productivity parameter (a) represents the slope at the origin, 

which is the maximum number of adults that return to spawn as a ratio to the spawners 

in the previous generation, in the absence of density dependence at low stock sizes.  In 

this spawner-to-spawner model, this productivity parameter encompasses productivity 

from spawner-to-adult recruits prior to the onset of fishing, as well as the harvesting 

process and in-river pre-spawning mortality (Appendix 1).  Each population (i.e., each 

Monte Carlo trial) was randomly assigned a productivity parameter value, representing 

differences in productivity among different populations due to local variables such as 
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harvest rate, habitat quality, and environmental conditions.  Based on a realistic range 

observed for Fraser River sockeye salmon, we used a normally distributed productivity 

parameter, with a mean of 1 and a standard deviation of 0.3 (but constrained to not drop 

below zero) to ensure that some of the populations were declining and some were non-

declining (Appendix 1).  The density-dependent parameter (b) describes how quickly the 

number of returning spawners decreases as the number of spawners in the previous 

generation increases.  We scaled b to 1 divided by equilibrium abundance, so in this 

case, 1/100,000 (Dorner et al. 2009). 

2.1.3. Process variation 

 Process variation is the random interannual variability in productivity due to 

inherent stochasticity in salmon biology and environmental conditions (Hilborn & Walters 

1992, Wilson et al. 2011).  Process variation was added to the model with a 

multiplicative error term eu (Walters & Ludwig 1981), where u was normally distributed 

with mean zero and a variance σu
2, and it varied for every year of each trial.  Process 

variation can be quite high in Fraser River sockeye salmon (Paulsen et al. 2007), and we 

examined levels of σu
2 of 0.01, 0.05, 0.1, 0.3 and 0.5.  With process variation included, 

the model becomes: 1

1
tbS u

t tS aS e  

 .  Because the abundance with the inclusion of 

process variation still represents the “true” number of spawners (Wilson et al. 2011), this 

error is propagated through the model (i.e., the abundance of spawners in time t is 

based on the abundance of spawners in time t-1 with process variation included), and is 

reflected in all periods of the time series.  

2.1.4. Observation error 

 Observation error is the apparent interannual variability in abundance due to 

imprecision and inadvertent bias in estimates of population size, such as counting error 

and sampling error (Paulsen et al. 2007, Rand 2011, Wilson et al. 2011).  Observation 

error was added to the model with a multiplicative error term ev, where v was normally 

distributed with mean zero and a variance of σv
2 (Walters & Ludwig 1981).  With 

observation error included, the full model was: 1

1
tbS u v

t tS aS e   

 .  The level of 

observation error varied stochastically for each year in each Monte Carlo trial, but was 
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added independently at each simulation step and thus did not propagate through the 

model, i.e., the abundance of spawners in time t was based on the “true” abundance of 

spawners in time t-1 with process variation included but without observation error 

(Wilson et al. 2011).  In actual stock assessments, levels of observation error can be 

quite high: “occasional errors of [a factor of 2 to 4] magnitude would not be considered 

unusual in most fisheries stock assessments” (Walters & Ludwig 1981).  In sockeye 

salmon, there is “an unknown but high degree of random observer error” (Rand 2011).  

We thus examined variances of the observation error term (σv
2) of 0, 0.05, 0.1, 0.3 and 

0.5 in different scenarios, which encompass the observed range of variability (e.g., 

Figure 2).  
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Figure 2: Examples of simulated population abundance produced by the 
model, with (dotted) and without (solid) observation error at levels of 
variance of the error term (σv

2) of 0.05 (a) and 0.5 (b). 
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2.2. Threat indicators to estimate status during the 
“evaluation period” 

 We used 18 threat indicators of time trends in adult abundance to assess 

whether our populations were declining or non-declining.  These indicators used different 

combinations of periods evaluated (either the most recent three generations, or from the 

beginning of the time series, or from the maximum abundance anywhere in the time 

series), smoothed vs. unsmoothed data, and transformed data (raw, loge-transformed, or 

generational means).  Changes in abundance were measured using either regression or 

a percent decline from the baseline.  Our indicators are similar to those used in Porszt et 

al.’s (2012) retrospective analysis; they are summarized in Table 2 and described in 

detail in Appendix 2. 

Periods – Changes in abundance were measured either over the most recent three 

generations (12 years), as is done for criterion A by COSEWIC (2011) and IUCN (2001), 

or as a long-term change in abundance from some historical baseline level (as 

suggested by Mace et al. [2002] and Holt et al. [2009]).  The historical baselines we 

used consisted of abundances occurring early in the time series (i.e., either the first year 

in the evaluation period, or the first year in the cycle line by examining each cycle line 

separately as opposed to all cycle lines together, or the geometric mean abundance of 

the first 4-year generation), or the maximum abundance anywhere in the evaluation 

period (i.e., maximum abundance in a single year or maximum geometric mean 

abundance of any 12-year or 3-generation period). 

Smoothing – Abundance estimates were either smoothed with a 4-year (1-generation) 

running mean or were left unsmoothed. 

Data transformations – Abundance estimates were taken from either raw values, loge-

transformed values, or the geometric mean abundance of 4-year generations where the 

generations either moved one year at a time in sliding windows or in 4-year blocks with 

no overlapping of years. 

Changes in abundance – Changes in abundance were measured using either robust 

linear regression over the designated period to minimize the influence of outliers 



 

13 

(Venables & Ripley 2002), or as a percent decline from a baseline to the current year or 

generation being evaluated. 

Table 2. A summary of the 18 decline indicators used to assess population 
status. 

Indicator  Periods1 Smoothed? Transformation2 
Change in 

abundance3 

1 Recent 3 gen No  Loge Regression 

2 Recent 3 gen Yes Loge Regression 

3 Hist: first year No  Loge Regression 

4 Hist: first year Yes Loge Regression 

5 Hist: cycle year No  Loge Regression 

6 Hist: cycle year Yes Loge Regression 

7 Max: single year No  Loge Regression 

8 Max: single year Yes Loge Regression 

9 Hist: first gen No  Mean: SW % decline 

10 Hist: first gen Yes Mean: SW % decline 

11 Hist: first gen No  Mean: GB % decline 

12 Hist: first gen Yes Mean: GB % decline 

13 Max: 3 gen No  Mean: SW % decline 

14 Max: 3 gen Yes Mean: SW % decline 

15 Max: 3 gen No  Mean: GB % decline 

16 Max: 3 gen Yes Mean: GB % decline 

17 Hist: first gen No Raw % decline 

18 Max: 3 gen No Raw % decline 

1Recent 3 gen: Percent decline over the most recent 3 generations.  Hist: Percent decline from the 
beginning of the time series (either the first year, mean of the first generation, or the first corresponding 
cycle year in the time series).  Max: percent decline from maximum abundance in the time series (either 
single year or 3-generation period). 

2SW: Generations moved one year at a time in sliding windows.  GB: Generations moved in 4-year blocks 
with no overlap of years (i.e., status only assessed every four years). 

3Regression: Changes in abundance were measured using robust linear regression over the designated 
period.  % decline: Changes in abundance were measured as a percent decline from the baseline to the 
current year or generation being evaluated. 
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 We evaluated these 18 indicators in each applicable year of the evaluation period 

of the time series.  For each year, we determined whether the indicator categorized the 

population as “declining” or “non-declining” for each of 101 different threshold levels, 

ranging from 0-100% decline in increments of 1%.  These threshold levels were used to 

classify status during the 13-generation (52-year) evaluation period (Figure 1).  The 

assessed status during the evaluation period was then compared to the status in the 

subsequent period (Figure 1), as defined in the next section.  Specifically, we compared 

whether the decline from the initialization to the subsequent period was greater than the 

boundary condition for subsequent status that indicated that the population was a 

conservation concern. 

2.3. Subsequent status 

 For our analysis, we were concerned with how well our indicators predicted the 

longer-term trajectory of the population.  We assumed that if populations declined in the 

past and continued to decline, they had a greater chance of extinction than populations 

that did not continue to decline (Mace et al. 2008, Porszt et al. 2012).  To determine 

whether the population had declined and was going to continue to decline, we evaluated 

the “subsequent status” of the population, which we estimated as the decline from the 

initialization period through the subsequent period.  We took a robust linear regression of 

the final 12 years in the time series (i.e., years 65-76, called the “subsequent period” – 

see Figure 1) and found the mean spawner abundance of the last generation (i.e., 

across the last 4 years, 73-76), as estimated from this regression.  We found the mean 

spawner abundance at the end of the initialization period in the same way (i.e., the mean 

of years 9-12, calculated by robust linear regression of the first 12 years), and used the 

percent decline from the end of the initialization period to that last generation in the 

“subsequent period” as the estimate of subsequent decline in the population.  If this 

reduction was greater than the boundary condition that indicated that the population was 

a conservation concern, the estimate of subsequent status was classified as “declining”, 

otherwise it was classified as “non-declining”.  We examined the effects of different 

boundaries of estimated subsequent status which indicate that a population is a 

conservation concern.  We used subsequent status boundaries of 90%, 70% and 50% 

decline.  These are the levels of decrease that are used by COSEWIC and IUCN to 
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assign populations to a conservation status.  A population that declines by ≥90% would 

be classified as “critically endangered”, by ≥70% would be “endangered”, and by ≥50% 

would be “threatened” or “vulnerable” (IUCN 2001, IUCN 2010, COSEWIC 2011). 

 We wanted to identify which indicators most reliably reflected the “true” 

subsequent outcome, therefore the “true” future time trend in abundance that we used to 

compare to an indicator’s assessed trend only reflected process variation and not 

observation error.  Observation error was not included in the initialization and 

subsequent periods of the time series because for these periods, the “true” population 

abundance was considered as being known for the purposes of out simulations. 

2.4. Measuring reliability 

2.4.1. Receiver Operating Characteristic analysis 

 We used a Receiver Operating Characteristic (ROC) analysis to compare the 

reliability of the 18 different indicators.  For our purposes, reliability was the ability of the 

indicator to correctly distinguish between a declining and non-declining population, as 

determined by the subsequent status.  An ROC analysis provides an integrated measure 

of reliability, by combining into a single metric the true and false positive rates produced 

by a threat indicator across a wide range of thresholds for classifying status of a 

population (Hibberd & Cooper 2008, Porszt et al. 2012).  For a given threat indicator 

under a given scenario, we compared the indicators’ assessed status in each applicable 

year in the evaluation period of the time series to the estimated subsequent status of the 

population, resulting in either a true negative (TN), true positive (TP), false negative (FN) 

or false positive (FP) outcome (see Table 1).  For each indicator, these different 

categories of outcomes were tallied over all applicable years and over all 500 trials.  For 

each threshold level (0-100%), the true positive rate (TP/(TP+FN)) was plotted against 

the false positive rate (FP/(FP+TN)).  In this way, the true positive rate and the false 

positive rate for each threshold level generated a point on the ROC curve.  The area 

under this resulting curve (AUC) can then be calculated, which reflects the ability of a 

threat indicator to correctly distinguish between two states (Hibberd & Cooper 2008), 

and can be used as a measure of overall reliability, allowing us to rank our threat 
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indicators.  An AUC value of 1 indicates that the indicator has a perfect ability to 

distinguish a declining from a non-declining population, whereas an AUC value of 0.5 

(falling near the 1:1 line) indicates a 50/50 chance level of distinguishing a declining from 

a non-declining population (Figure 3).  The higher the AUC value is, the more reliable 

the indicator.  ROC analyses are commonly used in medicine to determine the reliability 

with which test correctly diagnose a condition (e.g. Hibberd & Cooper 2008).  Similarly, 

this analysis is used here to evaluate the reliability of threat indicators at identifying 

reduced population size, which can be viewed as a symptom of extinction for a 

population.  Such analyses rank indicators relative to each other (Porszt et al. 2012).  

 

Figure 3. Two sample ROC curves for hypothetical indicators across 
threshold values of 0-100%.  The ROC curves have an area under the 
curve (AUC) of 0.98 (dotted line) and 0.52 (solid line). 

2.4.2. Different error weightings and error tolerances 

 One limitation of an ROC analysis is that it inherently attributes equal weighting 

(i.e., relative importance to a decision) to the different types of errors (false positives and 
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false negatives), which is unrealistic in many situations in resource management 

(Peterman 1990, Mapstone 1995, Field et al. 2004, Dulvy et al. 2006, Porszt et al. 2012).  

In any given situation, managers could evaluate the costs of these two types of errors 

and then decide on an acceptable weighting for each (Peterman 1990, Mapstone 1995).  

Therefore, we also examined the reliability of the different threat indicators for each of 

several different error weightings.  To do this, we examined, across different thresholds, 

the error rates for each of the two types of classification errors.  The results showed 

which threat indicators gave the lowest error rates if one type of error was considered 

more important than the other.  

 Alternatively, rather than thinking in terms of a relative weighting of the error 

types, managers might have a maximum tolerable rate for a certain type of error.  For 

example, a manager might say that any indicator with a greater-than-10% chance of a 

false positive is unacceptable due to the costs that would be incurred by that error.  We 

therefore also examined the lowest error rate of a particular type that could be obtained 

if the other error rate was constrained to be below a certain value. 

2.5. Sensitivity analyses 

 We performed sensitivity analyses in order to evaluate the degree to which our 

main findings were affected by changing levels of process variation (σu
2=0.01, 0.05, 0.1, 

0.3, 0.5) and observation error (σv
2=0, 0.05, 0.1, 0.3, 0.5).  This range of values 

encompasses low to high levels of each type of error, which are relevant because it can 

be difficult to know how much of the high apparent variability in Pacific salmon is due to 

either observation error or process variation (Paulsen et al. 2007, Rand 2011).  Dorner 

et al. (2009) used a combined error variance (process variation and observation error) of 

0.55 so that their data approximated the overall interannual variability observed in the 37 

North American sockeye stocks that they used.  Our range of values for process 

variation and observation error that we explored encompasses this level of variance.  

Our sensitivity analyses thus evaluated how robust the different threat indicators were to 

various situations that reflect potential real-world conditions.  
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 We also examined different boundaries that were used to indicate a declining 

subsequent status for the population (90%, 70%, 50%), which are representative of 

thresholds of endangerment used to classify populations as at-risk.  As well, we explored 

different values of the a (1, 1.4, 1.8) and b (1/100000, 1/200000, 1/400000) parameters 

to see whether our results were sensitive to these variables. 
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3. Results 

 At low levels of both process variation and observation error, all 18 indicators 

were almost equally reliable at discriminating between declining and non-declining 

populations (AUC values >0.9) (Figure 4a).  Across all analyses of different levels of 

process variation and observation error, indicators that used a historical baseline based 

at the beginning of the time series (indicators #4, 6 and 9) consistently outperformed the 

other indicators, and ranked in the top 5 indicators across all scenarios (Figures 4, 5, 

and Appendix 3).  In general, indicators calculated from a historical baseline were more 

reliable than either indicators with a baseline based on the maximum abundance 

anywhere in the time series or indicators based on decline over the most recent 3 

generations, including the commonly used IUCN criterion A (which corresponds to 

indicator #2 in our study).  

 The indicators varied in how robust they were to increases in process variation 

and observation error.  All of the indicators were somewhat sensitive to process 

variation.  The AUC of the majority of the indicators decreased by ~0.1 when σu
2 

(process variation) was increased from 0.01 to 0.5 (Figures 4a, b, 5a).  The AUC of 

indicators #1, 2, 5, 17, and 18 were the most reduced by increases in process variation, 

with around twice the decrease in reliability exhibited by the other indicators (drop in 

AUC of ~0.2 when σu
2 was increased from 0 to 0.5) (Figures 4a, b, 5a, and Appendix 3).  

The latter more sensitive indicators included the indicators that evaluate the recent rate 

of decline (#1 and 2), the indicators that use raw abundance (#17 and 18), and one 

indicator based on decline from the first corresponding cycle year (#5).  In contrast, most 

of the indicators were relatively insensitive to increases in observation error, exhibiting 

only slight decreases in reliability (drop in AUC of ~0.05 when σv
2 was increased from 0 

to 0.5) (Figures 4a, c, 5b).  The exceptions to this trend were indicators #1 and 2 (which 

are both based on a rate of decline over the most recent 3 generations), which were 

highly sensitive to observation error (drop in AUC of ~0.2 when σv
2 increased from 0 to 

0.5) (Figures 4a, c, 5b, and Appendix 3). 
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Figure 4. Ranking of indicators by area under the ROC curve (AUC), for (a) low 
process variation (σu

2=0.01) and no observation error (σv
2=0), (b) 

high process variation (σu
2=0.5) and no observation error (σv

2=0), (c) 
low process variation (σu

2=0.01) and high observation error (σv
2=0.5), 

and (d) high process variation (σu
2=0.5) and high observation error 

(σv
2=0.5).  Indicators based on the decline in the last three 

generations are white, indicators based on decline from a historical 
baseline are black and indicators based on decline from maximum 
abundance are grey. 
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Figure 5. The area under the curve (AUC) values for selected indicators 
across increasing levels of (a) process variation and (b) observation 
error.  The indicators are a high-reliability indicator based on a 
historical baseline at the beginning of the time series (indicator 4 
[solid line]), a medium-reliability indicator based on a maximum 
abundance baseline (indicator 16 [dashed line]), and the commonly 
used IUCN indicator based on decline over the most recent three 
generations (indicator 2 [dotted line]). 
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 The AUCs of all indicators were relatively insensitive to changes in the boundary 

used to define a declining population in the “subsequent period” (AUCs changed by 

<0.04).  However, the indicators that changed the most were #1 and 2 (Figure A4 of 

Appendix 3).  The AUCs of all indicators declined with increases in the a parameter, 

however, the relative rankings of our indicators were relatively insensitive to changes in 

the a and b parameters (Figure A5 of Appendix 3). 

3.1. Error weightings 

 There are inherent trade-offs between false positive and false negative error 

rates (as shown in Figure 6 for an example indicator #16), but there is a point (a 

threshold percentage decline for classifying a population as declining) at which the error 

rates are equal.  As well, if one type of error is considered more important than the other, 

managers can specify a desired weighting or ratio of the error rates (e.g., that the false 

negative rate must be half the false positive rate) (Figure 6).  We found that the rank 

order of an indicator’s reliability was fairly robust to different error weightings, with the 

top-ranked indicators #4, 6 and 9 (indicators that used some historical baseline) being 

the best indicators across the majority of error weightings that we explored, across 

different levels of observation error (Table 3).  The differences in the best-performing 

indicator across these error weightings are likely due to minor chance variations among 

closely ranked high-reliability indicators. 
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Figure 6. An example of the false positive rate (solid) and false negative rate 
(dot-dash) across threshold levels for classifying a population as 
declining ranging from 0-100% for indicator #16 for the base-case 
scenario with low process variation and no observation error 
(σu

2=0.01, σv
2=0).  The black dashed vertical line indicates the 

threshold where both error rates are equal (i.e., the lowest rate of 
both error types if they are considered equally important).  The 
dotted vertical lines indicate the lowest error rates if a false negative 
is considered twice as important as a false positive (left vertical 
dotted line, i.e., that the false negative rate must be half the false 
positive rate), and vice-versa (right vertical dotted line). 
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Table 3. The decline indicator number with the specified ratio of error rates of 
false positives (FP) to false negatives (FN) for different levels of (a) 
process variation and (b) observation error.  Indicator numbers are 
defined in Table 2 and Appendix 2. 

(a) Process 
variance (σu

2) 

"Best" indicator if FP is x times as important as FN.   

x: 
0.20 0.25 0.33 0.50 1.00 2.00 3.00 4.00 5.00 

0.01 4 4 4 4 4 4 4 4 4 

0.05 4 4 6 6 6 9 9 6 10 

0.1 4 6 4 4 6 11 11 6 6 

0.3 4 6 6 11 9 10 6 7 7 

0.5 11 10 10 9 4 6 10 8 8 

(b) Observation 
error variance 
(σv

2) 

"Best" indicator if FP is x times as important as FN.  

x: 
0.20 0.25 0.33 0.50 1.00 2.00 3.00 4.00 5.00 

0 4 4 4 4 4 4 4 4 4 

0.05 4 4 4 4 4 4 4 4 7 

0.1 4 4 4 4 4 3 3 4 4 

0.3 4 4 4 4 4 4 4 7 7 

0.5 4 4 4 4 4 4 4 4 4 

 

3.2. Error tolerance 

 Managers might have absolute values of rates for a certain type of error that they 

will not tolerate.  For any given indicator, these tolerance levels can be mapped out to 

show the trade-offs between the error rate of the constrained type of error and the 

resulting error rate of the other type of error.  For example, contours in Figure 7 show the 

resulting false negative rate if the false positive rate is constrained to values between 1 

and 15% across several magnitudes of process variation and observation error for the 

high-ranking indicator #4 (Figures 7a, c) and the commonly used IUCN decline indicator 

#2 (Figures 7b, d).  For example, if managers using that IUCN decline indicator #2 

decided that it would be unacceptable to have greater than a 10% chance of a false 

positive error (i.e., incorrectly concluding that a population was declining), and if the 
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stock they were managing had a high level of observation error (say σv
2=0.3), then they 

could expect a false negative rate of about 39% (Figure 7c).  This means that if the 

population is actually not declining, there will be less than a 10% chance of the indicator 

reporting that it is declining, but if the population is actually declining, there will be about 

a 39% chance of the indicator reporting that it is not declining.  If managers want a lower 

false negative rate than that, they would have to increase their tolerance for false 

positives, decrease observation error, or pick a different indicator.  For these same 

constraints, indicator #4 would give a much more desirable false negative rate of about 

6% (Figure 7a).  If someone wanted an even smaller chance of a false positive error 

(say 1%) under the same scenario, then they could expect around a 65% chance of a 

false negative error using indicator #2 or around a 21% chance of a false negative error 

using indicator #4.  We did this analysis on other selected indicators to inform managers 

about the implications of their often-unstated error tolerances and to allow for 

visualization of the trade-offs (Figure A6 of Appendix 3).  This type of analysis could be 

used to select the most desirable indicators, if managers had a maximum acceptable 

error rate for one type of error.  We found that the trade-off characteristics of the 18 

indicators were consistent with their overall performance.  In other words, the top-ranked 

indicators (i.e., those based on a decrease from some historical baseline) based on AUC 

values (Figures 4 and 5) also showed the lowest range of probability of false negative 

errors (contours in Figure 7 and A6) for a given acceptable rate of false positive errors. 



 

26 

 



 

27 

Figure 7. The lowest rate of false negative (FN) errors (contour values) that 
can be obtained if the false positive (FP) rate is constrained to be 
below a certain value, as indicated on the y axis.  False negative 
rates are shown for different levels of observation error (at σu

2=0.01) 
for the top-performing indicator in this study #4 (a) and commonly 
used IUCN decline indicator #2 (b).  False negative rates are shown 
for different levels of process variation (at σv

2=0) for indicator #4 (c) 
and indicator #2 (d). 
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4. Discussion 

 In order to make the best decisions regarding extinction risk classifications, it is 

important that the indicators being used to assess this risk be as reliable as possible and 

balance trade-offs between interest groups according to different levels of risk aversion.  

We found that the IUCN criterion A indicators of recent rate of decline were highly 

sensitive to process variation and observation error.  With increased amounts of either 

process variation or observation error included in the analysis, the reliability of these 

indicators dropped substantially more than the reliability of the other indicators.  This is 

because assessing status over a shorter time span (i.e., the most recent 12 years vs. as 

many as 50 years) would make it more difficult to identify longer-term trends in 

abundance, especially amid the noise of the process variation and observation error.  

Increasing the assessment window will increase the signal-to-noise (or decline-to-

variance) ratio.  This problem of the period of data used to assess status is a major 

concern for two compounding reasons: (1) indicators of recent rate of decline are the 

primary indicators currently being used to determine whether there has been a 

significant enough reduction in a population to consider it a conservation concern, and 

(2) there are often high levels of process variation and observation error inherent in data 

for wildlife and fisheries (Paulsen et al. 2007, Rand 2011, Wilson et al. 2011).  The 

highest levels of error we examined (variance of the error term of 0.5) are representative 

of actual error rates in Fraser River sockeye salmon (Walters & Ludwig 1981, Dorner et 

al. 2009). 

 These results suggest that longer time-series of abundance, when they are 

available, should be used to evaluate whether a population is decreasing, rather than 

limiting assessments to the most recent 3 generations of data.  When such lengthy 

series are not available, considerable effort should be made to secure and extend 

monitoring activities to minimize the chance of classification error and inadvertently 

incurring unexpected costs, such as the closure of a fishery due to an unpredicted 
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‘extinction’, e.g. collapse and non-recovery of Northern cod.  This recommendation is 

consistent with results from other studies (Mace et al. 2002, Porszt et al. 2012).  

 Based on an empirical retrospective analysis, Porszt et al. (2012) found that 

indicators that were a measure of extent of decline from the maximum abundance in the 

data series were the least reliable indicators, and that the commonly used 

IUCN/COSEWIC criterion A indicators (decline over most recent 3 generations) ranked 

in the middle of the group of 20 indicators examined, most of which were similar to our 

indicators.  Much like the empirical retrospective analysis of Porszt et al. (2012), we also 

found that indicators with a maximum abundance baseline tended to be less reliable 

than those based on decline in abundance from a historical baseline at the beginning of 

the time series.  We also found that indicators based on recent rate of decline performed 

in the middle of the group, but only when there were low levels of process variation and 

observation error.  When these sources of variance were larger, those indicators of 

recent rate of decline became much less reliable. 

 The area under the curve (AUC) values were often quite high (>0.8) across 

scenarios for the majority of the indicators.  This was because our populations exhibited 

a high level of variability in order to reflect a range of productivities representative of the 

natural variability in sockeye salmon populations.  Populations exhibiting an extremely 

large or extremely small amount of decline would be “easier” for indicators to classify 

than those that are close to the boundary rate of decline.  It is important to note that it is 

not the absolute AUC vales that are the important measure in this study, but the relative 

AUC values of different indicators.  As well, AUC reflects how well an indicator identifies 

populations that are more difficult to classify, rather than populations that are easy to 

classify. 

 Along with other recent studies (Wilson et al. 2011, Porszt et al. 2012), our work 

demonstrates the need to test indicators for reliability before using them to inform 

management and conservation decisions.  A Receiving Operating Characteristic 

analysis provides a useful integrated measure of reliability that can be used to evaluate 

indicators over a full range of thresholds.  However, when using ROC, it is important to 

be mindful that managers might not value both types of errors equally (which ROC does 

implicitly).  Our analysis illustrates how to explicitly take these weightings into account.  
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A manager’s weightings of the two types of errors might depend on the short- and long-

term social, economic, and ecological costs of making a certain type of error, as well as 

political and administrative realities.  While risk assessment is a scientific process, risk 

management and setting of priorities for conservation action is a societal process in 

fisheries and wildlife management (Irvine et al. 2005, Miller et al. 2006, Powles 2011).  

Managers could evaluate the costs of these errors and then decide what an acceptable 

level of each type of error is – either in absolute or relative terms (Mapstone 1995, 

Peterman 1990).  There are inherent trade-offs between the rates of false positive and 

false negative errors such that both types of errors cannot be simultaneously minimized 

(Rice & Legacé 2007, Mace et al. 2008, Wilson et al. 2011).  This paper demonstrates 

methods in which these error weightings and error tolerances could be incorporated 

explicitly into management decisions, allowing us to examine the trade-offs between the 

acceptable error rates and select for the best indicator(s) of population decline as a 

function of a manager’s preferences for those weightings and tolerances.  We also 

presented a method for managers to visualize the trade-offs between error types across 

different levels of process variation and observation error for their chosen indicator.  In 

this study, we found that the best indicators to use (those with comparisons to some 

historical baseline) were surprisingly insensitive to different error weightings, but this 

might not always be the case under different conditions than examined here.  Some 

indicators might be more predisposed to making certain types of errors (e.g., Wilson et 

al. 2011), and so might give more favourable results if a given error type is considered 

less important and weighted less heavily. 

 Our model was designed to simulate highly variable, semelparous fish 

populations with non-overlapping generations, such as sockeye salmon.  Further studies 

would be required to examine if our general results about preferred indicators hold true 

for populations with different life-history traits or population dynamics (Dulvy et al. 2004).  

The methods used in this study can be applied to other taxa and to other environmental 

contexts to determine the reliability of indicators used to inform conservation decisions.  

Here, we assessed the reliability of indicators of decline in abundance, which are but 

one of the sets of metrics used to assign species to a threat category (IUCN 2001, 

COSEWIC 2011) – a measure of only one of the “symptoms” of extinction (Mace et al. 

2008).  Other indicators, such as those related to geographic area, absolute numbers of 
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individuals, or spatial distribution (Holt et al. 2009), should also be evaluated to ensure 

that the best possible indicators of conservation concern are being used.  

 A limitation of our model is that it did not include management responses to 

population declines.  In reality, for a severely decreasing population, actions such as 

fisheries restrictions or habitat restoration would likely be taken (DFO 2005).  In addition, 

although weighting false positive vs. false negative errors is mathematically feasible, it 

may be difficult in practice.  Evaluating the costs of errors is complex, because they can 

be measured in different currencies (e.g. revenue vs. ecosystem health) and over 

various periods, and different groups may each incur the costs of different types of error 

(Peterman 1990).  

 Wherever possible, indicators should be evaluated both empirically and with 

simulation modelling (Punt 2000, DeMaster et al. 2004, Holt et al. 2009, Regan et al. 

2009, Wilson et al. 2011, Porszt et al. 2012).  That method allowed us to evaluate the 

relative reliability of a variety of indicators of decline, as well as to examine how robust 

they were to a range of relevant scenarios, such as changes in levels of process 

variation and observation error.  We found that both of the latter have a significant 

impact on the relative ranking of reliability of certain indicators.  Furthermore, evaluating 

indicators with simulation modelling is a relatively easy and inexpensive way to improve 

management decisions. 
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Appendix A.  
 
Data on the a parameter 

To estimate values of the Ricker a parameter in nature, we used data from Dorner et al. (2009), 
encompassing 37 stocks of wild North American sockeye salmon with spawning areas ranging 
from northern Washington to western Alaska and covering brood years (spawning years) from the 
1950s to the late 1990s.  The estimated parameter values from Dorner et al. (2009) were in the 

form 
bSR Se  (for a spawner-to-recruit model).  When substituting a=e

α
, we get the 

bSR aSe  form of the equation used here, and the spread of the a values ranged from 0.5 to 

14.6, with a mean value of 6.2 (Figure A1).  

 

Figure A1.  Frequency of ‘a’ parameter values derived from the α parameter 
values from Dorner et al. (2009) data. 

Because our model was a spawner-to-spawner model rather than a spawner-to-recruit model, we 
also took into account annual harvest rates.  The average annual harvest rate of Fraser River 
sockeye salmon from 1952-2006 was 69% (Porszt et al. 2012).  When this value was taken into 
account and incorporated into the a parameter, the resulting spread of the distribution shifted 
downward and ranged from 0.16 to 4.5 with a mean a value of 1.9 and a standard deviation of 
approximately 0.9. 

In addition to fishing mortality, pre-spawner in-river mortality rates can be substantial (e.g., Porszt 
et al. 2012), which would further decrease the a parameter value in a spawner-to-spawner model.  
Because we are concerned with how reliable decline indicators are at assessing populations that 
are truly declining, we further reduced the mean a value to 1.0 for our model, and reduced the 
standard deviation to 0.3.  Our a parameter values thus capture realistic a values for Fraser River 
sockeye salmon, albeit with more emphasis on the lower end of the productivity values that have 
been observed, which is the set of situations in which we are interested (i.e., when populations 
are declining). 
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Appendix B.  
 
Decline indicators 

1.  Percent decline in spawner abundance over the most recent three generations (i.e., rate of decline over 12 
years in the case of Fraser River Sockeye salmon), estimated by exponentiation of best-fit values from the 
robust regression of loge (unsmoothed abundance) on years.  

2.  Same as indicator #1 except we used smoothed (4-year running mean) abundances rather than unsmoothed 
abundances.  

3.  Percent decline between abundance in first year of the data series and abundance in a subsequent 
assessment year (at least 12 years later), using values estimated by exponentiation of best-fit values from the 
robust regression of loge(unsmoothed abundance) on years.  

4.  Same as indicator #3 except we used smoothed (4-year running mean) abundances rather than unsmoothed 
abundances.  

5.  Same as indicator #3 except we used data from the first corresponding cycle year up to the year of analysis 
(e.g., dominant compared with another dominant cycle year).  

6.  Same as indicator #4 except we used data from the first corresponding cycle year up to the year of analysis 
(e.g., dominant compared with another dominant cycle year).  

7.  Same as indicator #3 except we used the maximum unsmoothed annual abundance anywhere in the time 
series as the historical baseline, instead of abundance in the first year.  

8.  Same as indicator #7 except we used smoothed (4-year running mean) abundances rather than unsmoothed 
abundances.  

9.  Percent decline between geometric mean abundance (equivalent to the exponentiated arithmetic mean of 
loge(unsmoothed abundance)) of the first 4-year generation and the mean of a subsequent generation being 
assessed, where generations move one year at a time in sliding windows.  

10.  Same as indicator #9 except we used smoothed (4-year running mean) rather than unsmoothed abundances.  

11.  Same as indicator #9 except generations moved in 4-year blocks with no overlap of years (i.e., status only 
assessed every four years).  

12.  Same as indicator #10 except generations moved in 4-year blocks with no overlap of years.  

13.  Same as indicator #9 except for the historical baseline, we used the maximum geometric mean abundance of 
any three-generation (12-year) period in the time series.  

14.  Same as indicator #13 except we used smoothed (4-year running mean) rather than unsmoothed abundances.  

15.  Same as indicator #13 except generations moved in 4-year blocks with no overlap of years.  

16.  Same as indicator #15 except we used smoothed (4-year running mean) rather than unsmoothed abundances.  

17.  Percent decline between the geometric mean abundance (which is by definition described as raw number of 
fish) of the first 4-year generation and raw abundance in a subsequent assessment year (starting at least 12 
years later).  

18.  Same as indicator #17 except for the historical baseline, we used the maximum geometric mean abundance of 
a three-generation (12-year) period that occurred anywhere in the time series. 
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Appendix C.  
 
Additional results 

Here we present the full results for the 18 indicators in our study, as well as the results of our 
sensitivity analyses.  

Figure A2 shows the effects on AUC (probability that an indicator is able to differentiate between 
a declining and non-declining population) of increasing process variation at different levels of 
observation error (σv

2
=0, 0.05, 0.1, 0.3, 0.5) for all indicators. 
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Figure A2. 
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Figure A3 shows the effects on AUC of increasing observation error at different levels of process 
variation (σu

2
=0.01, 0.05, 0.1, 0.3, 0.5) for all indicators. 
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Figure A3. 
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Figure A4 shows the effect on AUC of the boundary used to define a subsequent status of a 
declining population for all indicators (σv

2
=0, σu

2
=0.01). 

 
Figure A4. 
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Figure A5 shows the effects on AUC of the a (a) and b (b) parameters for all indicators.  
Increasing a or decreasing b results in more productive populations, resulting in fewer 
populations being evaluated as declining using our initial boundaries.  Without both declining and 
non-declining populations, it is impossible to calculate an ROC curve.  To get around this 
problem, we used the mean percentage decline generated by each set of populations as the 
boundary which defines a declining population. 

 
Figure A5. 
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Figure A6 shows the contour plots of the lowest rate of false negative errors that can be obtained 
if the false positive rate is constrained to be below a certain value for all of the indicators (as in 
Figure 7). 
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Figure A6. 


