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Abstract 

To help amateur recreationists to make better informed decisions about when and where 

to travel in the backcountry, Canadian avalanche bulletins include structured information 

on the nature of avalanche problems of concern.  Using conditional inference trees, this 

study explores the relationships between modelled weather and snowpack conditions 

and avalanche problems identified by forecasters in Glacier Nation Park, British 

Columbia, during the 2013 to 2018 winter seasons to better understand what makes 

avalanche forecasters identify individual avalanche problem types and explore 

possibilities for predicting avalanche problems in data-spare regions using numerical 

models.  The results confirm the influence of the expected weather and snowpack 

variables and provide useful additional insight into forecaster practices when making 

decisions about avalanche problems.  This study provides an important step for 

integrating avalanche problems and the Conceptual Model of Avalanche Hazard into 

existing weather and snowpack model chains and making avalanche bulletins in Canada 

more consistent. 

Keywords:  numeric weather prediction models; snow cover models; avalanche 

problem types; avalanche forecasting; SNOWPACK model; conditional 

inference trees; 
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Chapter 1. Introduction 

Every winter, snow avalanches pose a serious threat to human life and are 

responsible for large amounts of economic loss in mountainous regions around the 

world.  In Canada, there has been an average of 11 avalanche fatalities per year over 

the last decade, and the vast majority of these victims are amateur recreationists making 

their own decisions about when and where to expose themselves to avalanche hazard 

(Avalanche Canada, 2019).  In addition, avalanches can destroy resources (e.g., 

timber), damage critical infrastructure (e.g., transmission lines) and affect traffic flow 

across mountain passes.  In Canada, the economic loss due to avalanches affecting 

transportation routes has been estimated to be greater than $125M per year.  These 

costs can be broken down into three major sources: 1) delays to vital transportation 

routes estimated at $7.5M, 2) losses for downstream operations estimated to be more 

than $100M, and 3) costs of avalanche control and defense structures estimated at 

$18M (Sinickas, Jamieson, & Maes, 2016). 

The risk from avalanches to an object of value or a person emerges from a 

combination of a) the severity of the avalanche hazard at the time, b) the exposure of the 

objective or person to that hazard, and c) the vulnerability of the object or person, which 

describes its susceptibility to getting damaged, injured or killed should an avalanche 

occur (CAA, 2016; Statham, 2008).  The goal of avalanche risk mitigation is to reduce 

the risk from avalanches to an acceptable level given the operational objective by 

modifying one or several of these components (CAA, 2016).  Avalanche hazard can be 

mitigated by artificially releasing avalanches using explosives, installing snow fences to 

prevent potential avalanches from releasing, and a variety of other methods.  The 

exposure to avalanche hazard can be reduced by avoiding avalanche prone areas when 

conditions are hazardous and/or building defense structures such as avalanche sheds 

that allow avalanches to cross over roads or railway lines without affecting traffic.  The 

vulnerability of a person to avalanches can be reduced by using safety equipment (e.g., 

avalanche transceiver, avalanche airbag), and buildings and infrastructure can be 

structurally reinforced to strengthen their ability to withstand avalanches.  Depending on 

the avalanche safety context, avalanche risk is managed through long-term planning 

which focuses on site selection and engineering solutions (e.g., land use planning, 
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transportation infrastructure), short-term operational programs that include avalanche 

forecasting program (e.g. ski areas, backcountry recreation), or a combination of the two 

approaches (Haegeli, 2018). 

When travelling in the backcountry, the possible approaches for mitigating the 

risk from avalanche are somewhat limited as it is not possible to modify the hazard 

conditions over large areas.  Hence, the avalanche risk in the backcountry is primarily 

managed by continuously monitoring the hazard conditions and choosing terrain that is 

considered appropriate under the given conditions.  To do this effectively, a functional 

understanding of the underlying processes of avalanche formation, how they contribute 

to the likelihood and the destructive size of expected avalanche, and how far potential 

avalanches might be running is critical (Statham, 2008).  

To allow amateur recreationists—backcountry skiers, mountain snowmobile 

riders, snowshoers, alpinists and ice-climbers—to make informed decisions about when 

and where to travel in the backcountry, avalanche warning services have been 

established in many western countries with mountainous areas.  During the wintertime, 

these warning services regularly publish avalanche conditions reports that include 

information on the short term likelihood and severity of avalanches, and succinctly 

communicate any relevant mitigation measures to help backcountry recreationists 

reduce the associated risk (McClung & Schaerer, 2006; Statham, 2008).  In western 

Canada, Avalanche Canada, Parks Canada and Alberta Parks publish daily avalanche 

bulletins for 18 different forecast regions that cover popular backcountry recreation areas 

in the Coast Mountains, the Columbia Mountains, and the Rocky Mountains.  Information 

included in Canadian avalanche bulletin is presented according to an information 

pyramid, which starts with a general overview of the severity of the conditions before 

progressively providing more details about the nature of the avalanche hazard 

conditions.  Canadian avalanche bulletins use the North American Avalanche Danger 

Scale (Statham et al., 2010b), a five-level ordinal scale with keywords and signal colors 

to provide a concise overview of the conditions at the top of the information pyramid.  At 

the second level of the pyramid, the nature of avalanche problems is described in detail 

according to the Conceptual Model of Avalanche Hazard (CMAH; Statham, Haegeli, et 

al., 2018).  This information allows recreationists with a higher level of understanding to 

make better informed choices about when and where to travel in the backcountry.  At the 

bottom of the information pyramid are even more detailed descriptions of the conditions 
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that include a summary of the original weather, snowpack and avalanche conditions that 

were the foundation for the hazard assessment. 

Assessing avalanche hazard is an iterative process that uses weather, 

snowpack, and avalanche observational data to develop a comprehensive picture of the 

existing avalanche conditions primarily relying on inductive reasoning and human 

judgment (LaChappelle, 1980).  Avalanche forecasters use field observations to help 

develop this picture, and methods for collecting data include: a) digging snow pits to 

observe snowpack structure such as weak layers and their associated depths, b) 

performing snow stability tests to measure the strength of snow layers, and c) analyzing 

recent and current meteorological observations to understand how the weather patterns 

could affect the existing snowpack instabilities (Haegeli, Atkins, & Klassen, 2010; 

LaChappelle, 1965; McClung & Schaerer, 2006).  For most forecast regions, the original 

weather data, snowpack information, avalanche observations and local hazard 

assessments that are used to produce the public avalanche bulletin either come from 

independent professional avalanche safety operations (e.g., commercial backcountry 

recreation, transportation or worksite avalanche safety programs) or dedicated field 

teams whose mandate it is to collect observations for the public avalanche forecasters.  

However, there are forecast regions (e.g., North Rockies) that do not have a steady 

stream of observations from professional avalanche safety operations and are too 

remote to have permanent dedicated field teams.  At the same time, there are 

substantial numbers of backcountry recreationists in these areas who need an 

avalanche forecast for their trip planning. 

To address the issue of data-spare forecast regions, avalanche researchers in 

Canada have combined physical snowpack models with numerical weather prediction 

models to simulate the evolution of the seasonal snowpack in regions that would 

otherwise not have any observations.  Current Canadian numeric weather prediction 

(NWP) models can forecast the weather over grids with 2.5 km horizontal spacing 

(Milbrandt et al., 2016).  Research completed by the Applied Snow and Avalanche 

Research group at the University of Calgary (ASARC) under the supervision of Dr. Bruce 

Jamieson successfully forced the Swiss snow cover model SNOWPACK with NWP 

model outputs (Bartelt & Lehning, 2002; Lehning, Bartelt, Brown, Fierz, & Satyawali, 

2002) with Canadian NWP models to simulate the evolution of the seasonal snowpack 

on the same 2.5 km grid spacing (Bellaire & Jamieson, 2013; Horton, 2015).  Incredibly, 
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this can allow for a glimpse at the snowpack conditions at any desired location within the 

mountains.  As this research is refined, useful computer model tools will become 

available for avalanche forecasters to assist in their daily hazard assessments of data-

sparse regions.  Since 2017, the Avalanche Research Program at Simon Fraser 

University (SARP) is working on upscaling the use of snowpack modelling in Canada 

and making the simulated observations more accessible to avalanche professionals.  

Using the research computing resources of Compute Canada, the SARP research team 

can simulate the evolution of the seasonal snowpack at thousands of locations across 

western Canada at a resolution of 2.5 km. 

However, having large amounts of simulated weather and snowpack 

observations creates new challenges for avalanche forecasters.  Since it is impossible 

for forecasters to read, analyze and synthesize all of the simulated information, current 

research at SARP is focusing on how to make the available information more accessible 

to forecasters and allow them to interact with it efficiently.  Some of the key approaches 

for addressing this challenge are the development of insightful visualizations (Horton, 

Novak, & Haegeli, 2019) or the development of computer algorithms that can cluster and 

aggregate simulated observations (Herla, Horton, & Haegeli, In Preparation) to highlight 

large scale patterns and deviations from them.  Another possible approach for 

addressing the information overload challenge is to develop algorithms that can interpret 

the simulated observations and summarize it in a way that links it more closely to 

avalanche risk management. 

Another challenge in public avalanche forecasting that has emerged in recent 

years are inconsistencies in the interpretation of conditions among avalanche warning 

services and within forecaster teams.  Key studies in this research area include the 

study of Lazar, Trautman, Cooperstein, Greene, and Birkeland (2016) who showed that 

avalanche forecasters presented with the same observations did not assign the same 

avalanche danger rating, or the study of Techel et al. (2018) who examined spatial 

consistency and biases in avalanche forecasts in the European Alps.  In an effort to 

structure and standardize the avalanche forecasting process in Canada, Statham, 

Haegeli, et al. (2018) created the CMAH to help describe the expert reasoning 

processes used by industry professionals across all types of avalanche forecasting 

operations.  Since its inception, the CMAH has become the foundation for Canadian 

avalanche bulletins to help avalanche terrain users mitigate their risk and the risk to 
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others (Statham, Haegeli, et al., 2018).  The CMAH decomposes avalanche hazard into 

its components, reassembling them into a probability-consequence framework in an 

effort to reproduce the reasoning process that professionals use to explicitly describe the 

pathway between the raw observations and the predicted avalanche hazard (Statham et 

al., 2010a; Statham, Haegeli, et al., 2018).  However, recent research by Statham, 

Holeczi, and Shandro (2018) and Clark (2019) highlighted that inconsistencies in public 

avalanche bulletins have prevailed in western Canada despite the introduction of the 

CMAH.  Hence, having a better understanding of how the CMAH is applied by public 

avalanche forecasters and how other factors affect the hazard assessment process is 

critical for improving the consistency and quality of public avalanche forecasting in the 

future. 

The challenges of creating a meaningful forecasting product from simulated 

observations for data-sparse regions and developing a better understanding of 

forecaster practices set the stage for my research.  Using Glacier National Park as a 

pilot study area, the goal of my research is to explore the link between modelled weather 

and snowpack data and the presence or absence of avalanche problem types published 

in the public avalanche bulletin.  On one side, this research offers a new quantitative 

perspective on forecaster habits that can potentially be used to develop approaches to 

improve forecaster consistency.  On the other side, the research aims to contribute to 

the foundation for integrating avalanche problem types into snowpack simulations.  

Together, the results of this study aim to contribute to helping forecasters identify 

avalanche conditions more accurately and increase the reliability of daily avalanche 

bulletins for backcountry recreationists. 
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Chapter 2. Background 

2.1. Conceptual Model of Avalanche Hazard 

The CMAH was introduced in Canada in 2010 to provide a streamlined and 

consistent workflow for assessing avalanche hazard (Statham et al., 2010a; Statham, 

Haegeli, et al., 2018).  The CMAH provides a foundation for forecasters to structure and 

focus their hazard assessment process which relies on integrating large amounts of 

weather, snowpack and avalanche observations combined with terrain information.  

Furthermore, the CMAH provides forecasters with a consistent language to express their 

assessments both to other avalanche professionals and to the public. 

The CMAH breaks the hazard assessment process down into four sequential 

questions that address key components of avalanche hazard (Figure 2.1): 

1. What type of avalanche problem(s) exist?  

2. Where are these problems located in the terrain? 

3. How likely is it that an avalanche will occur? 

4. How big will the avalanche be? 

 

 
Figure 2.1 Workflow process of the CMAH, defining an avalanche problem by 

its type, likelihood and size (Statham, Haegeli, et al., 2018). 

 

The concept of avalanche problems and avalanche problem types plays a critical 

role in the CMAH.  The CMAH defines nine separate types of avalanche problems that 
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are created by different weather and terrain factors and snowpack characteristics (Table 

2.1).  Each avalanche problem is considered a repeatable pattern that requires distinct 

risk management techniques (Statham, Haegeli, et al., 2018).  The CMAH’s avalanche 

problem types break down the complexity of avalanche prediction into more manageable 

pieces and allow for prioritizing each avalanche problem individually through the 

workflow process. 

Table 2.1 Types of avalanche problems.  Edited from Statham, Haegeli, et al. 
(2018). 

Name Description Typical physical characteristics 
Dry Loose Avalanche 
Problem (LDRY) 

Cohesionless dry snow starting from a 
point. Also called a sluff or point 
release. 

 

Wet Loose Avalanche 
Problem (LWET) 

Cohesionless wet snow starting from a 
point. Also called a sluff or point 
release. 

 

Storm Slab Avalanche 
Problem (SS) 

Cohesive slab of soft new snow. Also 
called a direct-action avalanche. 

Weak layers of DF or PP in new 
snow or at new/old snow interface. 

Wind Slab Avalanche 
Problem (WS) 

Cohesive slab of locally deep, wind 
deposited snow 

Weak layers of DF or PP in upper 
snowpack. 

Persistent Slab 
Avalanche Problem 
(PS) 

Cohesive slab of old and/or new snow 
that is poorly bonded to a persistent 
weak layer and does not strengthen or 
strengthens slowly over time.  Structure 
is conducive to failure initiation and 
crack propagation. 

Weak layers of SH, FC, or FC/CR 
combo in the mid- to upper 
snowpack. 

Deep Persistent Slab 
Avalanche Problem 
(DPS) 

Thick, hard cohesive slab of old snow 
overlying an early-season persistent 
weak layer located in the lower 
snowpack or near the ground.  Structure 
is conducive to failure initiation and 
crack propagation.  Typically 
characterized by low likelihood and 
large destructive size. 

Basal or near-basal weak layers of 
DH, FC, or FC/CR combo. 

Wet Slab Avalanche 
Problem (WET) 

Cohesive slab of moist to wet snow that 
results in dense debris with no powder 
cloud. 

Weak layers vary but often FC or 
DH at any level in the snowpack. 

Glide Slab Avalanche 
Problem 

Entire snowpack glides downslope then 
cracks, then continues to glide 
downslope until it releases a full-depth 
avalanche. 

Weak layer of WG or FC at or near 
the ground. 

Cornice Avalanche 
Problem (CORN) 

Overhanging mass of dense, wind-
deposited snow jutting out over a drop-
off in the terrain. 
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Based on their defining characteristics and required risk management 

approaches, avalanche problem types can by grouped into surface problems, such as 

Storm Slab (SS), Wind Slab (WS), Dry Loose (LDRY), Wet Loose (LWET), and Cornice 

(CORN) avalanche problem types, and persistent problems which include Persistent 

Slab (PS) and Deep Persistent Slab (DPS) avalanche problems types.  SS avalanches 

problems are characterized by a cohesive slab of new snow that creates a short-term 

instability either within the newly deposited snow or at an old interface where bonding 

has yet to occur (Haegeli et al., 2010; Statham, Haegeli, et al., 2018), and therefore 

mainly occur during and immediately after storms with heavy snowfall and periods of 

high and fluctuating snowfall intensities.  WS avalanche problems occur after sufficient 

wind has transported surface or falling snow into hard-packed pockets of broken snow 

crystals predominantly on lee (downwind) slopes and in cross-loaded areas (Haegeli et 

al., 2010).  LDRY and LWET avalanche problems contain loose, cohesionless snow 

(new snow or old facetted snow) and are confined to the upper surface layers, and the 

main difference between the two is the liquid water content of the snow.  LDRY 

avalanche problems predominantly occur in early to mid-winter either shortly after a 

storm when the new snow has settled and gained strength, or after prolonged periods of 

cold weather that has caused the surface snow to facet and lose cohesion.  LWET 

avalanche problems are most common in late-winter and spring conditions when periods 

of prolonged melt or rainfall has sufficiently increased the liquid water content of the 

upper snowpack.  CORN avalanche problems can occur at any time during the season 

but tend to occur more as the season progresses due to the amount of snow and wind 

needed to create sufficient sized cornices capable of breaking and collapsing.  For 

surface avalanche problems, the main observations that practitioners pay attention to in 

the field are (McClung & Schaerer, 2006): 

• Weather and temperature trends from the previous days 

• The height of storm snow (HST, accumulation of precipitation particles 

(PP) and decomposing fragments (DF) from the most recent storm cycle) 

• Weak layer instabilities (e.g. whumpfing, shooting cracks, pinwheeling, 

snowballing, etc.) 

• Natural avalanche activity in the area (distribution and type) 
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Practitioners will also perform targeted tests (e.g. snowpack tests, ski-cutting, or 

explosive tests) to check the stability of the storm snow layers and the interfaces 

between the storm snow and the old snow (Haegeli et al., 2010). 

Persistent avalanche problem types (PS and DPS) are considered more difficult 

to forecast than surface problems (Klassen, 2010).  PS avalanche problems are 

characterized by a cohesive slab losing its bond with an underlying persistent weak layer 

(PWL) in the mid-pack that can remain unstable for weeks or even months after burial 

(Haegeli et al., 2010; Statham, Haegeli, et al., 2018).  PS avalanches tend to release 

larger snow masses and are typically more destructive (Conlan, Tracz, & Jamieson, 

2014; Statham, Haegeli, et al., 2018).  Several types of PWLs can form under differing 

conditions, including: surface hoar (SH) which forms during long periods of cold, dry 

weather; and faceted crystals (FC) and depth hoar (DH) which form under strong 

temperature gradients in the snowpack; and although not a PWL, many PWLs often 

exist next to melt-freeze crusts (MFcr) which can contribute to PWL formation and 

avalanche release.  PWLs can be widely distributed or form on specific aspects and 

elevations depending on the weather conditions during formation.  They are considered 

PWLs after they are buried and remain unstable after storm or wind slab instabilities 

have subsided.  These PWLs have the capability of persisting for long periods of time 

and can reawaken with increasing loads and elevated snowpack temperatures (Conlan 

et al., 2014).  In the field, observations that practitioners typically look for are a cohesive 

slab (40-150 cm thick) overlying a PWL of SH, FC or FC/MFcr combo of varying 

thicknesses, and they perform stability tests (e.g. compression tests, extended column 

tests, propagation saw tests, and Rutschblock tests) to assess the stability of the PWL 

(Haegeli et al., 2010). 

In western Canada, WS, SS and PS avalanche problems are the most common 

avalanche problem types observed (Shandro, Haegeli, Statham, & Floyer, 2016).  

Together with DPS, these four avalanche problem types are responsible for more than 

80% of the avalanche fatalities in North American (Jamieson, Haegeli, & Gauthier, 2010; 

Logan & Greene, 2014).  More detailed information on all nine avalanche problem types 

can be found on SARP’s website (www.avalancheresearch.ca/avalanche-problem-

types/). 
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Once the types of the existing avalanche problems have been identified, 

forecasters describe the terrain each avalanche problem might be found in by using 

common terminology to describe and identify avalanche terrain (Statham, Haegeli, et al., 

2018).  Public avalanche forecasters commonly describe avalanche terrain by specifying 

the elevation band and aspect ranges for each avalanche problem type. 

Avalanche forecasters then estimate the likelihood of an avalanche occurring by 

analyzing the spatial distribution of the avalanche problem and its sensitivity to natural or 

human triggers (Statham, Haegeli, et al., 2018).  The spatial distribution can be heavily 

influenced by the weather systems that create the instabilities (McClung & Schaerer, 

2006) and is described using a 3-level ordinal scale ranging from ‘isolated’ (spotty and 

found in only a few terrain features) to ‘widespread’ (found in many locations and terrain 

features).  The sensitivity to triggers gauges the load necessary to release avalanches, 

which is described by a 4-level ordinal scale ranging from ‘unreactive’ to ‘touchy’ 

(triggering is almost certain).  The resulting likelihood, which is described using an 

ordinal scale from ‘unlikely’ to ‘almost certain’ (Figure 2.2), is a forecaster’s best guess of 

the chance of avalanches occurring based on the spatial density of the particular 

avalanche problem’s defining characteristics and any evidence found within the terrain. 

 

Figure 2.2 Likelihood of avalanches as a function of its spatial distribution and 
its sensitivity to triggers (Statham, Haegeli, et al., 2018). 

 

The magnitude of avalanches is described in the CMAH by providing an estimate 

of the expected destructive size (CAA, 2014), which is a function of the density, mass 
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and speed of an avalanche and the length and cross section of avalanche path it could 

take (Table 2.2).  Sizes can range from 1 (relatively harmless to people) to 5 (largest 

known avalanches, could destroy a village) and requires an assessment of the estimated 

harm the potential avalanche could cause (CAA, 2014). 

Table 2.2 Canadian Avalanche Association size classification (CAA, 2014). 
Size Destructive Potential Typical mass Typical path 

length 
Typical impact 
pressure 

1 Relatively harmless to people. < 10 t 10 m 1 kPa 
2 Could bury, injure, or kill a person. 102 t 100 m 10 kPa 
3 Could bury and destroy a car, damage 

a truck, destroy a wood-frame house or 
break a few trees. 

103 t 1000 m 100 kPa 

4 Could destroy a railway car, large truck, 
building or a forest of approximately 
4 ha. 

104 t 2000 m 500 kPa 

5 Largest snow avalanche known.  Could 
destroy a village or a forest area of 
approximately 40 ha. 

105 t 3000 m 1000 kPa 

 

The final step for forecasters in the CMAH’s assessment process is to 

summarize the overall hazard assessment using a hazard chart (Statham, Haegeli, et 

al., 2018) (Figure 2.3).  In addition to providing the best possible estimate of likelihood 

and destructive size (i.e. typical value) for each avalanche problem, the hazard chart 

also allows forecasters to represent the uncertainty from the spatial and temporal 

variability by incorporating minimum, typical and maximum values. 

Since its initial introduction in 2008, the CMAH has gained broad acceptance 

within the North American avalanche community and has been adopted by many 

avalanche safety operations.  In 2011, the CMAH was integrated into the production of 

the daily avalanche bulletins by the Avalanche Canada and Parks Canada through the 

public avalanche forecasting system AvalX (Statham, Campbell, & Klassen, 2012).  In 

2013, the CMAH was also integrated into the InfoEx, the avalanche hazard information 

exchange platform used by avalanche safety operations in Canada (Haegeli et al., 

2014). 
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Figure 2.3 Example of a daily hazard chart.  The yellow square represents a SS 

avalanche problem while the red square represents a PS avalanche 
problem.  The middle point represents the typical value while the 
outer edges represent the minimum and maximum values (Statham, 
Haegeli, et al., 2018). 

 

2.2. Numerical Weather Prediction Models 

NWP models describe the current and future behaviour of the atmosphere by 

solving a system of differential equations based on the laws of physics on a 3-D grid 

around the earth (Coiffier, 2011).  NWP models can predict future values of the 

atmosphere’s characteristic variables using current meteorological observations.  The 

fundamental variables calculated on the model grid include wind, temperature and 

humidity (Morin et al., 2019).  Derived variables such as cloud coverage, precipitation, 

and radiation transfer are calculated from the fundamental variables at each grid point 

through parameterizations (J. Côté et al., 1998; Stull, 2016).  Finally, near surface 

weather variables are statistically calculated including; 2 m air temperature, solar 

radiation, and 10 m wind speed and direction (Morin et al., 2019). 

The Meteorological Service of Canada developed a suit of NWP models called 

Global Environmental Multiscale (GEM) models to forecast weather systems at all scales 

in Canada (J. Côté et al., 1998; Erfani et al., 2005; Mailhot et al., 2010; Milbrandt et al., 

2016).  The High Resolution Deterministic Prediction System (HRDPS) is a GEM model 

that covers large portions of Canada (including all of BC) with a 2.5 km horizontal grid 

spacing (J. Côté et al., 1998; Milbrandt et al., 2016).  Initial and boundary conditions are 

provided by the larger scale Regional Deterministic Prediction Systems (RDPS) (Caron 
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et al., 2015; Milbrandt et al., 2016), with certain fields driven by a high-resolution land 

data assimilation system to capture small scale processes. 

Avalanche forecasters use NWP models extensively to understand future 

weather conditions in their regions and make predictions of the expected avalanche 

hazard (Horton, 2015).  Schirmer and Jamieson (2015) studied the reliability of NWP 

models (HRDPS & RDPS) to predict snowfall amounts in mountainous terrain during 

winter seasons where they compared modelled precipitation outputs to daily 

observations at more than 100 weather stations in western Canada.  They found that 

even with the finer resolution HRDPS, precipitation values are usually underestimated.  

To fix these biases, they applied elevation corrections to air temperature, relative 

humidity and precipitation to account for differences between station and grid elevations, 

which increased the performance of the models (Schirmer & Jamieson, 2015).  Milbrandt 

et al. (2016) also found that the 2.5 km resolution of the HRDPS provided an overall 

improvement in modelling of cloud cover and surface fields such as temperature, 

humidity and precipitations, making this newest NWP model more reliable for weather 

and avalanche forecasters in Canada. 

2.3. SNOWPACK Model 

One-dimensional physical snow cover models can simulate the evolution of the 

snowpack over entire winter seasons using input variables from weather stations or 

NWP models.  Once snow is deposited on the ground, there are many complex 

interrelated processes involved in the evolution of the snowpack which can be predicted 

using models (Morin et al., 2019).  Individual timeseries of meteorological variables drive 

the predicted evolution of vertical snow profiles using laws of physics to calculate new 

snow amounts, settling rates, surface hoar formation, temperature and density profiles, 

and metamorphic development of snow grains at point locations (Lehning et al., 1999; 

Morin et al., 2019). 

The two most advanced models currently being used are the French CROCUS 

(Brun, Martin, Simon, Gendre, & Coleou, 1989) and the Swiss SNOWPACK (Lehning et 

al., 1999).  CROCUS was developed to simulate the energy and mass evolution of the 

snow cover at a given location using meteorological inputs such as precipitation, air 

temperature, humidity, wind velocity and incoming short-wave and long-wave radiation 
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(Brun et al., 1989).  SNOWPACK shares many basic principles with CROCUS, but 

contains more features such as explicit representation of surface hoar growth, grain 

bonds and erosion of snow and does not impose a limit on the amount of numerical 

layers it calculates (Lehning, Bartelt, Brown, & Fierz, 2002; Lehning, Bartelt, Brown, 

Fierz, et al., 2002).  The main difference between the application of CROCUS and 

SNOWPACK is the operational scale; CROCUS simulates the snow cover at the scale of 

mountain ranges (i.e. massifs covering roughly 500 km2) whereas SNOWPACK 

simulates snow cover at point locations related to the weather station or NWP grid point 

data (Bellaire & Jamieson, 2013). 

SNOWPACK was developed by researchers at the Swiss Federal Institute for 

Snow and Avalanche Research for the purpose of providing avalanche forecasters with 

supplementary information for avalanche hazard assessments, especially in cases 

where obtaining real-time data from snow pits was either impossible or too time-

consuming (Bartelt & Lehning, 2002; Lehning, Bartelt, Brown, & Fierz, 2002; Lehning, 

Bartelt, Brown, Fierz, et al., 2002; Lehning et al., 1999).  SNOWPACK, based on a 

Lagrangian finite element implementation, is a multi-layer physically-based model that 

numerically solves partial differential equations governing the mass, energy and 

momentum conservation within the snowpack (Bartelt & Lehning, 2002; Morin et al., 

2019).  The driving input parameters needed can either be generated from automatic 

snow stations, NWP models, or a combination of both and includes variables such as air 

temperature, relative humidity, wind speed, incoming or reflected short-wave radiation, 

snow surface temperature, and precipitation (Morin et al., 2019).  The model output is a 

series of simulated timeseries of the vertical snow profile of the physical snow properties 

(Figure 2.4).
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Figure 2.4 Example of SNOWPACK’s timeseries evolution output for one NWP grid point over the duration of one 

season.  Colours are representative of grain type: Precipitation Particles (PP, +), Decomposing 
Fragments (DF, /), Rounded Grains (RG, ●), Faceted Crystals (FC, ☐), Depth Hoar (DH, ⋀), Surface 
Hoar (SH, ⋁), Melt Forms (MF, O), Melt-Freeze Crusts (MFcr, ∞).
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2.4. SNOWPACK Research and Application in Canada 

The sheer size of Canada’s mountainous regions and the sparsity of automated 

weather stations makes it impossible to use the Swiss version of SNOWPACK in the 

traditionally intended way.  In an effort to create a more meaningful forecasting tool for 

public avalanche forecasters in Canada, Bellaire, Jamieson, and Fierz (2011) coupled  

SNOWPACK with Canada’s regional forecasting model GEM-15 which predicted 

weather on a 15 km grid spacing (Erfani et al., 2005; Mailhot et al., 2010) to provide 

information for avalanche forecasting in regions that would otherwise be data-sparse.  In 

their study area of Glacier National Park (GNP), the authors found a notable 

overprediction of precipitation, which led to inaccuracies in the simulated snowpack 

within the models (Bellaire et al., 2011).  After pre-processing of the input data using 

elevation corrections, the SNOWPACK model was run and extensive comparisons 

between modelled and observed snow profile data were completed.  The results 

indicated that snow depth and new snow events were well modelled and many (over 

50%) of the relevant critical layers were reproduced (Bellaire et al., 2011). 

More recently, weather data from the HRDPS (GEM-LAM) (Milbrandt et al., 

2016) has been coupled with SNOWPACK, increasing the spatial resolution from 15 km 

to 2.5 km (Bellaire & Jamieson, 2013; Horton & Jamieson, 2016).  The increase in 

resolution allows for better modelling of localized atmospheric effects in complex terrain 

and a better representation of the variability of the snowpack at a regional scale.  

Projects currently being worked on at SARP by Herla et al. (In Preparation) and Horton 

et al. (2019) have the potential to provide avalanche forecasters with large amounts of 

relevant snowpack information in a meaningful and efficient way in the future. 

2.5. Modelling of Avalanche Hazard 

Existing studies modelling avalanche hazard have used a wide range of different 

statistical approaches using different input parameters.  Early studies tried to distinguish 

if a given day was susceptible to avalanches or not by using discriminant analysis and 

nearest-neighbour methods.  For example, Obled and Good (1980) introduced the use 

of the nearest-neighbour method to estimate the probability of an avalanche occurrence 

within a ski area in Switzerland.  The authors’ idea was to compare current avalanche 
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conditions with recorded avalanche conditions in the past.  McClung and Tweedy (1994) 

predicted avalanche occurrences using Bayesian statistics in their discriminant analysis 

model.  The authors also incorporated clustering techniques and the nearest-neighbour 

method to analyze the avalanche occurrences.  Brabec and Meister (2001) used the 

nearest-neighbour method to assess regional avalanche danger from manual weather 

station observations such as aspect, elevation and avalanche activity.  Results indicate 

that their model failed most often over periods when snow-cover stability was important.  

Floyer and McClung (2003) incorporated canonical discriminant analysis with a one-way 

analysis of variance to study which physical variables were important to avalanche 

prediction.  The authors were able to differentiate and classify time periods into 

avalanche and non-avalanche periods by identifying important variables such as new 

precipitation amounts, snowpack depth and air temperature. 

Other studies incorporated machine learning techniques such as support vector 

machines (SVM), artificial neural networks, Bayesian additive trees and classification 

trees to predict avalanche hazard.  Schirmer, Lehning, and Schweizer (2009) used 

SNOWPACK model outputs and meteorological variables to examine the link between 

weather and snowpack conditions and regional avalanche danger.  Although the authors 

tried numerous statistical methods (i.e. classification trees, artificial neural networks, 

SVM, hidden Markov models and nearest-neighbour methods), the nearest-neighbour 

method achieved the best results when incorporating the avalanche hazard from the 

previous day as additional input.  Pozdnoukhov, Matasci, Kanevski, and Purves (2011) 

incorporated local weather observations, modelled snowpack variables and avalanche 

observations into an SVM approach.  Using a 10 m resolution the authors were able to 

produce avalanche forecasts for a small forecast region in Scotland based on a 

probability framework from unlikely (0%) to certain (100%).  Bellaire and Jamieson 

(2013b) also used classification trees to model avalanche danger ratings from 

SNOWPACK model outputs and estimates of the regional avalanche danger from 

experienced forecasters.  Using four parameters derived from the simulated profiles 

(maximum new snow amounts over 24-hours and 3-days and measures of likelihood, 

and; expected avalanche size based on skier stability index and depth of a critical layer), 

the authors estimated avalanche danger with an accuracy ranging between 70 – 77%.  

Likewise, Hendrikx, Murphy, and Onslow (2014) used classification trees, but 

incorporated 28 years of weather, snowpack and avalanche activity observations to 
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identify the key variables responsible for days with significant avalanche activity.  The 

authors propose that the model could provide avalanche forecasters with an additional 

tool to assist with decision making.  More recently, Blattenberger and Fowles (2017) 

employed a Bayesian additive tree model to predict whether or not an avalanche would 

cross the main highway at a specific location in Utah.  By incorporating 17 years of 

winter data the authors’ method outperformed traditional statistical methods and reduced 

losses arising from misclassification.  Building on the existing research, Clark (2019) 

used conditional inference trees (CIT) to explore the relationship between avalanche 

hazard assessments and the danger rating assignments in Canadian public avalanche 

bulletins.  The author extracted key decision rules and the important components of the 

CMAH that influenced danger rating assessments and created a foundation for critically 

reviewing current forecaster practice. 

Since forecasted regional avalanche assessments can cover large amounts of 

terrain (usually >100 km2), Jamieson, Haegeli, and Schweizer (2009) used classification 

and regression trees (CART; Breiman, Friedman, Olshen, & Stone, 1984) to estimate 

the local avalanche danger at the scale of a recreational ski tour (~10 km2).  The authors 

identified simple weather, snowpack and avalanche observations that are used by 

recreationists to assess the current avalanche hazard in the field without having to dig a 

snow pit (e.g. whumpfing, shooting cracks, recent avalanche activity, etc.).  The 

recreational snow observations were incorporated with the regional avalanche danger 

level to create a more representative local avalanche danger level.  Building on this body 

of work, Haladuick (2014) incorporated a much larger dataset and used multivariate 

classification trees to assess the relationships between the recreational snow 

observations and the local avalanche danger for each avalanche problem type identified 

by the CMAH.  The author’s results indicated that the trees could be used to predict the 

current local avalanche danger for each avalanche problem based on the decision rules 

that emerged. 

Expert systems such as MÉPRA (Giraud, 1992) emulate the human avalanche 

forecasting and decision-making processes and are perhaps a more effective approach 

to predicting avalanche hazard.  Data is processed based on pre-determined decision 

rules to interpret simulated snow profile data and derive an avalanche hazard rating.  

MÉPRA is the final model of a chain of models (including the meteorological analysis 

system SAFRAN (Durand et al., 1993) and the snow cover model CROCUS (Brun et al., 
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1989)) that evaluates the avalanche hazard based on modelled weather and snowpack 

conditions.  Similarly, Schweizer and Föhn (1996) also created two separate expert 

system models to evaluate avalanche hazard based on the elevation and aspect of 

avalanche prone slopes and on weather and snowpack observations in Switzerland.  

The DAVOS model was strictly data-based and achieved an accuracy of 60%, while the 

MODUL model was a combination of data- and rules-based and achieved an accuracy 

of 70 – 75%. 
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Chapter 3. Methods 

3.1. Study Area 

The study area for my research was Glacier National Park (GNP), a Canadian 

national park which is located in the Columbia Mountain range between the towns of 

Revelstoke and Golden in the interior of BC (Figure 3.1).  The mountainous terrain in 

GNP ranges from dense vegetation in the valleys to open glades at treeline (~2000 

m.a.s.l.) and glaciated mountain tops (~3000 m.a.s.l.). 

Based on the snow and avalanche climate scheme described by Armstrong and 

Armstrong (1987) and further refined in a Canadian context by Haegeli and McClung 

(2003) and McClung and Schaerer (2006), the Columbia Mountains (and GNP) have a 

‘transitional’ snow climate with a strong ‘maritime’ influence.  The snowpack in a 

‘transitional’ snow climate is typically quite deep and exhibits several PWLs throughout 

the season.  However, these characteristics can vary considerably from year to year due 

to the ‘maritime’ influence.  On average, Roger’s Pass in GNP sees roughly 140 snowfall 

days per year which bring approximately 10 m of snow at treeline per season (Parks 

Canada, 2019). 

The combination of excessive amounts of powder snow and accessibility make 

GNP a popular destination for backcountry skiers, and the presence of a critical 

transcontinental railway (completed in 1885) and the Trans-Canada Highway (completed 

in 1962) have made Rogers Pass a focal point of Canadian avalanche risk mitigation.  

Within the park, Parks Canada is responsible for both managing avalanche risk on the 

transportation corridor and producing a public avalanche bulletin for backcountry 

recreationists.  Due to the large amount of snowfall, highway staff record approximately 

2000 avalanche events each winter on approximately 140 avalanche paths that impact 

the highway and railway (Parks Canada, 2019).  From a public avalanche forecasting 

perspective, GNP is a relatively small forecast region (1349 km2). 

Rogers Pass has also been the location for many avalanche research projects, 

including work done by Schweizer, Jamieson, and Skjonsberg (1998), Bellaire and 

Jamieson (2013) , and K. Côté, Madore, and Langlois (2017).  In addition, much of the 
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SNOWPACK model validation work done by Bruce Jamieson’s research group has been 

completed in GNP (Bellaire et al., 2011; Horton & Jamieson, 2016). 

 
Figure 3.1 Study Area - Glacier National Park of British Columbia.  Parks 

Canada study plots at Mt. Fidelity and Roger’s Pass are shown. 

 

3.2. Study Period 

My study covers the six winter seasons from 2013 to 2018 (December 1st to 

March 31st).  These winters cover a wide variety of weather and avalanche conditions 

giving my dataset a meaningful sample of the variability of conditions experienced within 

GNP. 

The 2013 season was a classic example of a ‘transitional’ snow climate and was 

characterized by multiple WS, SS, LDRY and PS avalanche problems.  Abundant early 

season snow and formation of PWLs increased the avalanche hazard rating to high by 

the beginning of December.  Cold, dry spells during mid-end of December and early-mid 

January created additional PWLs and by early March.  The combination of many PWLs 
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in the snowpack and large amounts of snowfall increased the occurrences of SS and PS 

avalanche problems and elevated the avalanche hazard rating to high and extreme. 

The 2014 season leaned more towards a ‘continental’ snow climate with more 

frequent periods with clear skis and less snowfall which resulted in longer cold spells 

and a thinner snowpack.  These conditions were conducive to the creation of many 

PWLs and the majority of days had forecasted WS, SS and PS avalanche problems.  

The combination of numerous PWLs and a large storm cycle at the beginning of January 

elevated the avalanche hazard rating to high and extreme.  A long cold snap from mid-

January to early February resulted in a relatively calm period of avalanche hazard but 

created a PWL that persisted through to the end of the season and caused elevated 

avalanche hazard. 

The 2015 season was an interesting season that saw a strong ‘maritime’ 

influence.  Periods of warm temperature brought heavy rainfall above the treeline 

elevation several times throughout the season which saturated the snowpack and 

temporarily elevated the avalanche hazard rating before colder temperatures stabilized 

the snowpack.  PS avalanche problems where dominant and persisted most of the 

season.  There was also an increase in LWET avalanche problems.  The rainfall events 

and warmer weather contributed to a very thin seasonal snowpack. 

The 2016 season saw a return to the standard ‘transitional’ snow climate with 

frequent periods of clear skies and colder temperatures.  The season was dominated by 

WS and SS avalanche problems and although there were many periods of cold dry 

spells conducive to PWL formation, there was not many occurrences of PS avalanche 

problems.  Comparatively, this season also seemed be safer compared to other years 

with many periods of low to moderate avalanche hazard. 

The 2017 season continued the standard ‘transitional’ snow climate trend, 

highlighted by colder temperatures and intermittent snowfall.  Also dominated by WS 

and SS avalanche problems, the avalanche hazard remained relatively low for the first 

half of the season.  An increase in temperatures and snowfall amounts in early February, 

buried a couple of PWLs that contributed to a few periods of elevated avalanche hazard 

and identified PS avalanche problems. 
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The 2018 season began with early season PWL formation and was again a 

standard ‘transitional’ snow climate. These PWLs contributed to an extended period from 

mid-December to late February where PS avalanche problems were continuously 

identified.  SS avalanche problems were also dominant, especially throughout the middle 

part of the season where the bulk of the snowfall occurred.  Overall, the avalanche 

hazard remained low to considerable with the exception of the mid-season storm cycles 

that elevated the hazard to high on multiple occasions. 

3.3. Dataset 

Since the winter season of 2013, the avalanche forecasting team in GNP has 

consistently applied the CMAH using the AvalX software (Statham et al., 2012) to record 

observations and produce daily avalanche bulletins.  Hence, complete avalanche hazard 

characterizations according to the CMAH are available for my entire study period.  

Simulated meteorological data was extracted from the HRDPS and used as inputs to 

simulate the snow cover using SNOWPACK.  Modelled weather and snowpack data 

were then merged with avalanche hazard assessment data from the GNP public 

avalanche bulletins by date to produce the analysis dataset for the study. 

3.3.1. Avalanche Bulletins from Parks Canada 

Avalanche bulletin data from AvalX consists of three main components: 

metadata, avalanche problem type characteristics, and associated avalanche danger 

ratings for each day.  Metadata contains information on the authoring forecaster, date of 

publication and the associated region and mountain range.  Avalanche problem type 

data contains information from the application of the CMAH, including: a) the minimum, 

typical and maximum values of likelihood and destructive size; b) avalanche problem 

location based on elevation bands and aspects; c) the spatial distribution, and; d) the 

sensitivity to triggering.  The overall avalanche hazard assessment is represented by an 

avalanche danger rating for each elevation band on the day the bulletin is released and 

also includes a forecast for the following two days (Figure 3.2). 
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Figure 3.2 Sample of a daily avalanche bulletin from GNP (Parks Canada, 2019). 

 

A custom R package was designed by the SARP lab to easily extract the data 

from the AvalX database and make it accessible for analysis.  The extracted data from 

AvalX for the six winter seasons was a list of three data frames; Bulletins, containing all 

metadata; AvProblems, containing avalanche problem data for each elevation band, 

and; DngRating, containing the current and forecasted danger ratings data for each 

elevation band. 

The daily avalanche hazard assessments were converted and split into separate 

wide format tables for each elevation band.  Each row of the table was for a unique day 

and columns were added to represent the presence of each avalanche problem type 

with binary values for the present (1) and absence (0) of that problem.  Each problem 
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type column contained the binary value of their presence on each of the eight aspects of 

that elevation band (eight cardinal and intermediate directions). 

3.3.2. NWP Model 

Hourly weather data from the HRDPS was compiled for 225 NWP grid points that 

fell within the boundaries of GNP and written into a SARP research database for easy 

access.  The HRDPS provides an updated weather forecast every 6 hours, and so 6 

hours of data were taken from each forecast to produce a continuous hourly timeseries 

for all six winter seasons.  Variables extracted included air temperature (°C, 2 m above 

the surface), wind speed and direction (m/s, azimuth degrees, 10 m above the surface), 

relative humidity (% of maximum, 2 m above the surface), precipitation (mm/h), and 

incoming short-wave and long-wave radiation (W/m2).  All grid points were labelled with 

the elevation bands used by Parks Canada in their avalanche assessments in GNP; 

Below Treeline (BTL, 0 – 1800 m.a.s.l.), Treeline (TL, 1800 – 2100 m.a.s.l.), and Alpine 

(ALP, above 2100 m) (Parks Canada, personal communication, 2018).  Each grid point 

is given a Station ID # (eg. 086523), and once in the SARP database, data for each grid 

point can be queried using these identifiers. 

For the present study, one NWP grid point for each elevation band was chosen 

to keep the analysis relatively simple.  Grid points were selected near the Trans-Canada 

Highway since Parks Canada mainly uses observations from locations near the highway 

for their avalanche assessments (Table 3.1).  Additional criteria for the selection of the 

grid points was a) their location being in the middle of GNP, and b) their elevation being 

roughly located in the middle of their respective elevation bands (Figure 3.2).  The 

simplification of only focusing on a single grid point per elevation band seems 

reasonable since weather among grid points at similar elevations are highly correlated. 

Table 3.1 Station ID #s - 2013 – 2017 Seasons 
Station ID # Elevation Band Elevation (m.a.s.l.) 

158676 BTL 1436 
158681 TL 1904 
155942 ALP 2141 
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Figure 3.3 2013-2017 NWP grid point locations. 

 

An upgrade to the HRDPS prior to the 2018 winter season changed the location 

of all grid points, therefore new grid points were chosen for the last two seasons under 

the same premise (Table 3.2, Figure 3.3). 

Table 3.2 Station ID #s - 2018 Season 
Station ID # Elevation Band Elevation (m.a.s.l.) 

080856 BTL 1499 
082514 TL 1875 
078657 ALP 2227 
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Figure 3.4 2018 NWP grid point locations. 

 

3.3.3. SNOWPACK Model 

The modelled meteorological data from the HRDPS (air temperature, wind, 

relative humidity, precipitation, incoming short-wave and long-wave radiation) was used 

as inputs for the SNOWPACK model to simulate a single flat-field (horizontal) snow 

profile at the three chosen NWP model grid points for all six winter seasons.  Default 

SNOWPACK settings were used in the simulations, with wind transport disabled to 

simulate conditions in sheltered terrain.  SNOWPACK outputs consisted of snow layers 

at every timestep and timeseries of modelled weather and key variables. 

Daily simulated weather and snowpack observations at 8:00 a.m. were extracted 

and written to the SARP research database to match the approximate time when 

avalanche bulletins are published in GNP (Parks Canada, personal communication, 
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2018).  Each profile consisted of snow layers with the following properties: height, 

deposition date, density, temperature, grain size, grain type, hand hardness, and a 

structural stability index based on the derivation of Schweizer, Bellaire, Fierz, Lehning, 

and Pielmeier (2006).  The number of layers in each profile was reduced using 

SNOWPACK’s internal layer aggregation routine that merges layers with similar 

properties.  In addition to the daily snow profiles, timeseries of the hourly input weather 

data from the HRDPS were compiled into a data frame along with a few key variables 

from SNOWPACK (height of snowpack (HS), height of settled snow from the previous 

24 h (HN24), and height of settled snow from the previous 72 h (HN72)), which was also 

written to the SARP research database. 

3.3.4. Weather Observations 

Within GNP, Parks Canada also operates several automatic weather stations at 

different elevations relevant to avalanche forecasting along the Trans-Canada Highway 

corridor.  Along with gathering weather data, numerous locations include study plots 

where manual snow profiles are recorded at regular intervals to document the evolution 

of the snow cover over the entire season.  Mt. Fidelity and Rogers Pass (see Figure 3.1 

for locations) both contain flat field study plots where information on the conditions of the 

snow cover are reported to the InfoEx regularly and there is 10+ years of consistent 

weather and snowfall data.  The study plot at Mt. Fidelity is located in a clearing at 

treeline (1905 m.a.s.l.), and is sheltered from the wind (Horton, 2015).  The study plot at 

Rogers Pass is in a large sheltered clearing below treeline, surrounded by dense forest 

(1305 m.a.s.l.).  To validate the simulated snowpack variables produced by my model 

chain, Parks Canada shared relevant weather and snowpack observations (air 

temperature, snow surface temperature, wind speed and direction, HS, HN24, and HST) 

with the research team. 

3.4. Data Preparation and Manipulation 

The dataset was converted into two separate structures to facilitate the analysis 

of surface avalanche problems and persistent slab avalanche problem types separately.  

Due to the unique characteristics of these avalanche problem types, each was 

approached differently.  Additional derived variables were computed from the original 
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model output variables to better represent what avalanche forecasters might be looking 

for when assessing the hazard of different avalanche problem types. 

3.4.1. Surface Avalanche Problem Types 

The relatively simple nature of surface avalanche problem types allowed me to 

extract variables and the surface avalanche problems (WS, SS, LDRY, LWET, WET, 

CORN) from the three representative grid points for all six seasons into a single table 

with a wide format where each day was represented by three rows, one for each 

elevation band (BTL, TL, and ALP).  The status of each surface avalanche problem was 

labelled Absent or Present based on whether it was currently being identified in each 

respective elevation band.  The status from the previous day for each avalanche 

problem was also recorded.  Since WET avalanche problems were only identified on two 

days in the entire dataset, I did not include this avalanche problem type in the analysis.  

The resulting data frame was wide format with columns for each modelled weather and 

snowpack variable from the representative NWP grid point for that elevation band (Table 

3.3). 

The NWP output data was used to calculate a few extra weather variables that 

were chosen to strengthen the dataset and offer different perspectives.  To mimic the 

HN24 precipitation variable calculated by SNOWPACK, a rain sum variable was 

calculated to keep track of the amount of rainfall for every day.  Also, in an effort to 

create more meaningful wind variables, wind run values were calculated as the sum of 

hourly wind speed values over defined periods of time (24 h, 48 h and 72 h) to represent 

the total amount of wind experienced at a location.  These variables were added to the 

surface avalanche problem dataset.Several additional snowpack variables were also 

calculated from the SNOWPACK output to include variables in the analysis that reflect 

how practitioners examine the real snowpack.  First, a key variable that forecasters and 

practitioners observe for their avalanche hazard assessments is the amount of snow that 

has accumulated through the duration of each storm using storm boards, height of storm 

snow (HST; CAA, 2014).  To produce this observation from the modelled data, I created 

a function that calculates HST and the properties of the storm snow from the snow 

profiles modelled by SNOWPACK.  The function determines the bottom HST  
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Table 3.3 Modelled and calculated variables for surface avalanche problem 
types 

Variable Name Units Source Description 
StatusWIND  Bulletin Problem status of WS avalanche problem 
StatusSTORM  Bulletin Problem status of SS avalanche problem 
StatusLDRY  Bulletin Problem status of LDRY avalanche problem 
StatusLWET  Bulletin Problem status of LWET avalanche problem 
StatusCORN  Bulletin Problem status of CORN avalanche problem 
StatusSTORMPrev  Bulletin Previous day problem status of SS  
StatusWINDPrev  Bulletin Previous day problem status of WS  
StatusLDRYPrev  Bulletin Previous day problem status of LDRY  
StatusLWETPrev  Bulletin Previous day problem status of LWET  
StatusCORNPrev  Bulletin Previous day problem status of CORN 
SeasonDay  Bulletin Day of the season (from October 1st) 
SeasonMonth  Bulletin Month of the season (from October) 
ta_avg °C NWP Average hourly temperature over last 24 h 
ta_max °C NWP Maximum hourly temperature over last 24 h 
ta_min °C NWP Minimum hourly temperature over last 24 h 
vw_avg m/s NWP Average hourly wind speed over last 24 h 
vw_max m/s NWP Maximum hourly wind speed over last 24 h 
vw_min m/s NWP Minimum hourly wind speed over last 24 h 
rain_sum mm NWP Total rainfall over last 24 h 
wr24 m NWP Wind run of last 24 h 
wr48 m NWP Wind run of last 48 h 
wr72 m NWP Wind run of last 72 h 
tss °C SNOWPACK Snow surface temperature 
hs cm SNOWPACK Height of snowpack 
hn24 cm SNOWPACK New snow over last 24 h 
hn72 cm SNOWPACK New snow over last 72 h 
ski_pen cm SNOWPACK Ski penetration from surface 
hst_thickness cm SNOWPACK Total thickness of storm snow 
hst_density kg/m3 SNOWPACK Weighted average density of storm snow 
hst_ssi_bottom  SNOWPACK SSI of layer under storm snow 
hst_ssi_min  SNOWPACK Minimum SSI of storm snow 
hst _grain_type_below  SNOWPACK Grain type below storm snow 
hst_grain_size_below mm SNOWPACK Grain size below storm snow 
hn48_thickness cm SNOWPACK Total thickness of 48 h snowfall 
hn48_density kg/m3 SNOWPACK Weighted average density of 48 h snowfall 
hn48_ssi_bottom  SNOWPACK SSI of layer under 48 h snowfall 
hn48_ssi_min  SNOWPACK Minimum SSI of 48 h snowfall 
hn48_grain_type_below  SNOWPACK Grain type below 48 h snowfall 
hn48_grain_size_below mm SNOWPACK Grain size below 48 h snowfall 
hn72_thickness cm SNOWPACK Total thickness of 72 h snowfall 
hn72_density kg/m3 SNOWPACK Weighted average density of 72 h snowfall 
hn72_ssi_bottom  SNOWPACK SSI of layer under storm 72 h snowfall 
hn72_ssi_min  SNOWPACK Minimum SSI of 72 h snowfall 
hn72_grain_type_below  SNOWPACK Grain type below 72 h snowfall 
hn72_grain_size_below mm SNOWPACK Grain size below 72 h snowfall 
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interface layer in the snow profile by determining the starting day for a new storm cycle.  

New storm snow cycle periods were initialized after each day with zero precipitation.  

The function then computed the overlying storm slab properties including; slab 

thickness, maximum and average hardness, maximum and average density, and 

minimum structural stability index (SSI).  It also attached the SSI, grain type and grain 

size of the interface layer below the storm snow.  All slab average values were 

calculated using a product sum to properly account for the varying thicknesses of the 

layers.  To gain insight into how different time periods of recent snowfall affected surface 

avalanche problems, I created two additional sets of surface snow layers for my 

analysis.  Interfaces defined by HN48 and HN72 were used to calculate the slab 

properties of all layers deposited within the last 48 h and 72 h, respectively.  All three 

extra groups of calculated variables were added to the existing data frame to complete 

the surface avalanche problem properties (Table 3.3). 

3.4.2. Persistent Slab Avalanche Problem Types 

Since PS and DPS avalanche problems are inherently linked to PWLs within the 

snowpack, a meaningful analysis of these avalanche problems required a different data 

structure than what was used for the surface avalanche problems.  Instead of focusing 

on days and examining whether a specific avalanche problem existed or not, the 

analysis of PS and DPS avalanche problems tracked all storm interfaces with the 

potential to turn into PWLs and examined their link to different avalanche problem types 

over time.  Hence, creating this dataset required a) identifying potential PWLs, and b) 

tracking their characteristics and the properties of the associated overlying slab as they 

evolved over the entire season. 

Since the SNOWPACK model reproduces PWLs most accurately at the TL 

elevation band (Horton & Jamieson, 2016), only the TL elevation grid point for all six 

seasons was analyzed (Table 3.1 and Table 3.2).  It is important to note that to simplify 

the present analysis, DPS and PS avalanche problem types were merged in the present 

study.  This was done because a) the number of days with DPS avalanche problems 

was relatively small (only 38 days for all seasons), b) they are directly related to the 

same PWLs as PS avalanche problems, and c) operational experience has shown that 

forecasters have challenges distinguishing between PS the DPS avalanche problem 

types (Klassen, 2014). 
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To ensure the capturing of all potential interfaces that could be related to PS and 

DPS avalanche problems in the SNOWPACK model, a function was created to 

determine the last day before a new storm cycle began.  Since each new storm cycle 

had the potential to bury a possible weak layer (e.g. SH, DH, FC, or MFcr grain types 

created on the surface and subsequently buried by new snowfall), every storm cycle 

start date was compared to the daily avalanche bulletins to make sure that the dates of 

all PWLs that were explicitly discussed in the bulletin text throughout all six seasons 

were captured.  Due to the fact that SNOWPACK merges adjacent layers of similar 

characteristics for efficiency reasons by default, it is possible that the date of a particular 

PWL of concern may not be explicitly represented in every simulated snow profile at the 

chosen grid point.  To address this issue, I manually assigned a meaningful date range 

to each potential interface (based on days with no snowfall leading up to the next storm 

cycle) that would look through SNOWPACK profiles and find the weakest layer within the 

date range using the SSI of the layer (Schweizer et al., 2006).  Similar to the function for 

extracting HST characteristics from the surface avalanche problems, a function was 

created that extracted all the characteristics for an associated interface and the overlying 

slab from the simulated SNOWPACK profiles (Table 3.4).  In addition, the age of each 

interface was calculated by counting the number of days between the initial burial of the 

layer and the day of the forecast.  Each interface captured by SNOWPACK was labeled 

with the date of burial taken from the daily avalanche bulletin analysis or from the storm 

cycle analysis. 

Finally, I created a variable named ProbStatus to describe the link of the tracked 

interface to PS and DPS avalanche problems throughout the season.  To understand 

which of the existing interfaces was associated with each forecasted occurrence of 

PS/DPS avalanche problems, I manually interpreted each daily public avalanche 

forecast from Parks Canada keeping track of the date of burial of the interfaces and 

when they were considered problems.  Klassen (2014) describes the common 

progression for the creation of a PS avalanche problem as a) the formation of a potential 

weak layer on the snowpack surface, b) the interface is buried by a storm cycle where it 

usually becomes a surface problem (i.e. SS avalanche problems), and c) the overlying 

snow becomes a cohesive slab and the interface becomes a PWL susceptible to natural 

and human triggers.  As time progresses, the PWL heals or becomes dormant deep in 

the snowpack before it potentially wakes up again in the spring.  Accordingly, three 
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different stages of an interface were recorded in the ProbStatus column.  Interfaces and 

the overlying snowpack were considered a Surface problem from their date of burial to 

the last day before they were associated with a PS/DPS avalanche problem in the 

bulletin.  If an interface was never assigned as a PS/DPS problem throughout the 

season, it remained a Surface problem.  The ProbStatus of an interface was labeled as 

Present for the duration of time that the PS/DPS avalanche problem was actively 

considered an issue in the bulletin.  Once the PS/DPS avalanche problem was 

considered healed or dormant (i.e. not mentioned in the bulletin anymore), the status of 

the interface was labeled Absent (Figure 3.5). 

The properties of each interface for each day of the season were merged by 

stacking them together and combined with the tracked interfaces from the rest of the 

seasons creating a long data frame.  Since I was only interested in the dates after 

interfaces were formed, this data frame did not necessarily cover all the dates between 

the December 1st – March 31st for every season in the study period.  In addition, many 

dates contained more than one record as multiple storm interfaces and potential PWLs 

would be tracked at the same time.  Therefore, each observation record in the data 

frame for the PS/DPS analysis contained information on the interface and the overriding 

slab at the TL elevation band for a given day. 
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Table 3.4 Modelled and calculated variables for PS avalanche problem types 
Variable Name Units Source Description 
ProbStatus  Bulletin Problem status of PS/DPS avalanche problem 
SeasonMonth  Bulletin Month of the season (from October) 
SeasonDay  Bulletin Day of the season (initialized on October 1st) 
ta_avg ºC NWP Average hourly temperature over last 24 h 
ta_max ºC NWP Maximum hourly temperature over last 24 h 
ta_min ºC NWP Minimum hourly temperature over last 24 h 
vw_avg m/s NWP Average hourly wind speed over last 24 h 
vw_max m/s NWP Maximum hourly wind speed over last 24 h 
vw_min m/s NWP Minimum hourly wind speed over last 24 h 
rain_sum mm NWP Total rainfall over last 24 h 
wr24 m NWP Wind run of last 24 h 
wr48 m NWP Wind run of last 48 h 
wr72 m NWP Wind run of last 72 h 
hs cm SNOWPACK Height of snowpack 
hn24 cm SNOWPACK New snow over last 24 h 
hn72 cm SNOWPACK New snow over last 72 h 
wkl_density kg/m3 SNOWPACK Average density of PWL 
wkl_lwc % of vol. SNOWPACK Liquid water content of PWL 
wkl_grain_size mm SNOWPACK Grain size of PWL 
wkl_hardness  SNOWPACK Hardness of PWL 
wkl_ssi  SNOWPACK SSI of PWL 
wkl_grain_type  SNOWPACK Grain type of PWL 
wkl_thickness cm SNOWPACK Thickness of PWL 
wklage days SNOWPACK PWL age in days since burial 
crust_below  SNOWPACK MFcr below PWL (y/n)  
slab_top cm SNOWPACK Height at top of slab 
slab_bottom cm SNOWPACK Height of bottom of slab 
slab_thickness cm SNOWPACK Total thickness of PS 
slab_maxhardness  SNOWPACK Maximum hardness within PS 
slab_avghardness  SNOWPACK Weighted mean hardness of all layers in PS 
slab_maxtemp ºC SNOWPACK Maximum temperature within PS 
slab_avgtemp ºC SNOWPACK Average temperature within PS 
slab_minssi  SNOWPACK Minimum SSI within PS 
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Figure 3.5 Sample (2016 Season @ TL) of how each tracked interface (January 

4th PWL shown) was labelled according to the text descriptions from 
the daily avalanche bulletins (Surface problem = green and yellow 
bands, Present problem = red band, Absent problem = grey band). 

 

3.5. Statistical Analysis 

I started my analysis with a general exploratory analysis to get a feel of the 

dataset and examine interactions between all variables.  A simple SNOWPACK model 

validation was then conducted to explore the accuracy of some of the major modelled 

variables.  Finally, Conditional Inference Tree (CIT) models were estimated to explore 

the relationships between modelled variables and forecasted avalanche problem types.  

All of the statistical analyses included in this study were performed in R (R Core Team, 

2019) 

3.5.1. Exploratory Data Analysis 

Exploratory data analysis was used to conduct initial investigations and to detect 

patterns or anomalies within the data.  Interactions between weather and snowpack 

variables and avalanche problem types were examined using boxplots, scatter plots and 

correlations.  All of these methods are standard applications of exploratory data analysis 

that help show the complex interactions of all the variables and is an important step prior 
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to quantitative analysis.  Particular attention was paid to examining the distributions of 

each variable that was to be included in the CIT model with respect to avalanche 

problem type to understand the specific characteristics of each avalanche problem type 

and their differences. These explorations provided critical information for guiding the 

analysis and interpreting the results in a meaningful way. 

3.5.2. Model Validation 

SNOWPACK model validation was conducted using the NWP grid point closest 

to the Mt. Fidelity study plot and located within the same elevation band (Mt. Fidelity - 

VIR160731 (TL), (Figure 3.3).  Due to NWP grid changes, the representative grid point 

for Mt. Fidelity was updated for the 2018 season (VIR083059), (Figure 3.4).  Using the 

same method for extracting data used in the surface problem analysis, weather and 

snowpack data was gathered for the NWP grid point location and merged with 

observational data from the Mt. Fidelity study plot.  Scatter plots and box plots of 

modelled versus observed data (HS, HN24 and HST) were analyzed to examine how 

well the modelled values corresponded to the observed values.  The measurement of 

the spread of predicted values around the regression line, the Root Mean Square Error 

(RMSE), was calculated by 

!"#$ = &∑ (ŷ*+,*).
/

/
012   (1) 

where 30 is the observed value for the 4th observation and ŷ0 is the predicted value.  The 

bias and coefficient of determination (r2) values for each observation was also calculated 

to determine the accuracy of the modelled data. 

3.5.3. Conditional Inference Trees 

Decision or classification trees are a statistical method used to model complex 

non-linear relationships with decision rules that offer tangible and easy to interpret 

insights.  Previous avalanche studies that have also incorporated decision trees as part 

their analysis include Schirmer et al. (2009) and Bellaire and Jamieson (2013b).  These 

studies used the Breiman et al. (1984) Classification and Regression Tree (CART) 

approach to partition their datasets using the Gini Index as splitting criteria.  Three main 

issues have been identified with the CART approach: a) a lack of stopping criteria can 
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lead to overfitting of data, b) pruning based on interpretation of performance indicators is 

required to be effective, and c) interpretation of trees is affected by a selection bias 

towards covariates with many possible splits (Hothorn, Hornik, & Zeileis, 2006).  To 

avoid these issues, the CIT model introduced by Hothorn et al. (2006) and recently 

applied by Clark (2019) in the avalanche context, recursively splits the dataset based on 

statistical hypothesis testing.  The CIT approach of using statistically motivated stopping 

criteria is equivalent to the performance of optimally pruned trees using the CART 

approach but offers a computationally efficient and intuitive solution to the stated issues 

related to CART.  The CIT approach also differs from the CART approach in that the 

splits in the dataset are based on a variable’s influence on the dependent variable and 

not an information criterion.  Because of these advantages, the CIT method was chosen 

for my analysis. 

The CIT method begins the splitting process by calculating a quadratic linear test 

statistic for the differences in dependent variable distributions for all possible partitions 

within the dataset (Hothorn et al., 2006).  Since the test statistic alone provides little 

information for determining the possible split, permutation framework tests are used to 

evaluate the calculated values.  Permutation tests offer a way of shuffling through 

numerous samples of the dataset and calculating corresponding test statistics for each 

of the random splits.  The resulting distribution of quadratic linear test statistics is then 

used to compare to the original test statistic and derive a p-value to assess the statistical 

significance of the proposed split.  All possible splits are ranked by p-value and the 

overall lowest p-value is determined as the split with the highest significance and chosen 

by the algorithm.  This process is repeated until none of the possible splits is significant 

anymore.  Once complete, the terminal nodes of each branch will contain a distribution 

of the dependent variable that can be used to make predictions.  The resulting tree can 

be easily visualized and offers intuitive interpretation of the partitioning and allows for 

extraction of decision rules.  The position of where the split occurs reflects the statistical 

significance and shows the importance of each individual variable.  Therefore, decision 

rules located higher in the tree are more significant while decision rules further down are 

responsible for fine-tuning. 

To explore my dataset, separate CIT analyses were conducted on all avalanche 

problem types using a significance level of 5% (⍺	=	0.05).  CIT analyses were applied to 

determine the presence or absence of surface avalanche problems and for 
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understanding the transition from surface to present PS/DPS avalanche problems and 

the transition from present to absent PS/DPS avalanche problems.  Each CIT analysis 

computed numerous decision rules that split the dataset into many distinct terminal 

nodes. 
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Chapter 4. Results 

The complete dataset consisted of 725 days with Parks Canada avalanche 

hazard assessments from the six winter seasons during my study period (2013 to 2018 

seasons).  The results of my analysis are presented in the following manner.  First, I 

discuss the validation results for some of the key modelled weather and snowpack 

observations to provide insight into the accuracy of the model simulations.  Next, I 

elaborate on the results of my main analysis of the presence of the different avalanche 

problem types in detail.  Because the dataset used in the analysis for surface avalanche 

problem types (SS, WS, LDRY, LWET, CORN) is different from the dataset used for 

persistent avalanche problem types, the results of these analyses are presented in 

separate sections.  Both of the main results are organized in the following way.  I first 

describe the distributions of the predictor variables as well as timeseries explorations 

and univariate comparisons to explore patterns seen in the data.  Afterwards, the CIT 

model outputs for each avalanche problem type are explained in detail, highlighting the 

strongest predictors first and then describing specific outlier cases. 

4.1. Validation of Model Data 

Observed weather and snowpack data from the Mt. Fidelity treeline study plot 

was compared against model output from the nearest NWP grid point.  For the entire 

study period (2013-2018 winter seasons) the NWP and SNOWPACK models provided 

relatively accurate forecasts for air temperature and 24 h snowfall, but under-estimated 

snowpack height (Table 4.1, Figure 4.1). 

Table 4.1 Model validation calculations 
Variable Bias RMSE R2 

Minimum Air Temperature -1.8 3.1 0.96 
Maximum Air Temperature -0.6 2.0 0.91 

HN24 -2.4 6.2 0.73 
HS -79.6 90.5 0.96 

 

The relatively large bias (the tendency for values to either be over- or under-estimated) 

seen with snowpack height and the lower R2 value (how close the data are to the fitted 

regression line) for recent snow can be explained by the fact that the NWP grid point is 
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not located exactly at the Mt. Fidelity study plot (elevation difference: 2013-2017 season 

= 102 m; 2018 season = 86 m), however the model provides reasonable representations 

of the actual values.  Because of the differences between modelled and observed 

weather and snowpack variables, it is important to remember that the relationships 

between avalanche problems and modelled weather and snowpack variables presented 

in this study may differ from the relationships with actual observed values. 

 
Figure 4.1 Scatterplots of observed versus modelled data from Mt. Fidelity 

study plot and matched NWP grid point. a) minimum air temperature 
(°C); b) maximum air temperature (°C); c) 24 hour snowfall (HN24, 
cm); and d) height of snowpack (cm). Colours represent separate 
seasons.  Dashed line represents 1-to-1 trendline, and solid line is 
line of best fit. 
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4.2. Surface Avalanche Problem Types 

4.2.1. Analysis Dataset Overview 

An analysis of the number of days when surface avalanche problems were 

present reveals substantial differences in the prevalence of the different avalanche 

problem types (Figure 4.2).  The most common surface avalanche problem types in my 

dataset were SS and WS avalanche problems.  When the assessments from all 

elevation bands were pooled, SS avalanche problems were present on a total of 934 

elevation band days, which is equivalent to 43% of the days included in my dataset, and 

WS avalanche problems were present on 677 elevation band days (31% of my dataset).  

While SS avalanche problems were distributed throughout all elevation bands fairly 

evenly, WS avalanche problems were predominantly forecasted in the alpine and at 

treeline (Figure 4.2).  CORN, LDRY and LWET avalanche problems were forecasted 

much less frequently.  The number of elevation band days when these surface 

avalanche problems were present were 83 (4%), 319 (15%) and 156 (7%) respectively.  

Similar to WS avalanche problems, CORN avalanche problems occurred mainly in the 

alpine, whereas LDRY avalanche problems occurred at all elevation bands, and LWET 

avalanche problems occurred more frequently at lower elevations (Figure 4.2).  Based 

on the coefficient of variability (Table 4.1), the seasonal variability of the presence of 

avalanche problems is smallest for SS, which means that their presence is most 

consistent from year to year.  LWET avalanche problems exhibit the largest season 

variability, whereas the variability of WS, CORN and LDRY are in the middle. 

 
Figure 4.2 Distribution of surface avalanche problems per elevation band for all 

seasons within the study period. 
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Table 4.2 Surface avalanche problem type hazard assessment summary by 
elevation band and season. 

Avalanche Problem Season 
Days Present Elevation Band 

Days ALP TL BTL 

Wind Slab Avalanche Problem 

2013 79 64 0  
2014 78 72 10  
2015 30 20 0  
2016 66 49 0  
2017 81 59 3  
2018 36 29 1  
AVG 61.67 48.83 2.33  
SD 22.90 20.47 3.93  

CoefVar 0.37 0.42 1.69  
TOTALS 370 293 14 677 

% 51% 40% 2% 31% 

Storm Slab Avalanche Problem 

2013 51 51 36  
2014 68 68 53  
2015 60 53 27  
2016 54 57 44  
2017 53 53 46  
2018 60 60 40  
AVG 57.67 57.00 41.00  
SD 6.28 6.29 8.94  

CoefVar 0.11 0.11 0.22  
TOTALS 346 342 246 934 

% 48% 47% 34% 43% 

Dry Loose Avalanche Problem 

2013 28 29 30  
2014 9 18 17  
2015 5 8 7  
2016 28 28 17  
2017 21 21 18  
2018 14 15 6  
AVG 17.50 19.83 15.83  
SD 9.73 7.99 8.75  

CoefVar 0.56 0.40 0.55  
TOTALS 105 119 95 319 

% 14% 16% 13% 15% 

Cornice Avalanche Problem 

2013 13 5 0  
2014 17 0 0  
2015 4 0 0  
2016 21 4 0  
2017 8 0 0  
2018 11 0 0  
AVG 12.33 1.50 0.00  
SD 6.12 2.35 0.00  

CoefVar 0.50 1.56 n/a  
TOTALS 74 9 0 83 

% 10% 1% 0% 4% 

Wet Loose Avalanche Problem 

2013 2 6 6  
2014 2 1 0  
2015 13 22 25  
2016 5 8 10  
2017 1 5 10  
2018 12 15 13  
AVG 5.83 9.50 10.67  
SD 5.34 7.66 8.33  

CoefVar 0.92 0.81 0.78  
TOTALS 35 57 64 156 

% 5% 8% 9% 7% 
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My exploratory analysis of the modelled independent weather and snowpack 

variables provided general insights about the modelled weather and snowpack 

conditions at the three NWP grid points included in my study between 2013 and 2018 

(Figure 4.3).  The daily average modelled air temperatures in GNP ranged from -27.0 ºC 

to +4.1 ºC during the study period, with a median modelled air temperature of -7.1 ºC.  

Minimum modelled air temperatures, which usually occurred overnight, ranged from        

-31 ºC to +0.8 ºC with a median of -10.5 ºC, while maximum modelled air temperatures, 

which usually occurred during the day, ranged from -25.0 ºC to +8.9 ºC with a median of 

-4.4 ºC.  Modelled snow surface temperatures ranged from -45.3 ºC to 0.0 ºC, with a 

median of -11.2 ºC.  The median modelled average daily wind speed was 1.7 m/s, with 

maximum modelled wind speeds reaching 13.8 m/s.  Calculated wind run values from 

the previous 24 h ranged from 4.2 m/s∙h to 269.4 m/s∙h with a median value of 

40.7 m/s∙h.  Calculated wind run values from the previous 48 h ranged from 11.9 m/s∙h 

to 509.9 m/s∙h with a median value of 84.9 m/s∙h.  Calculated wind run values the 

previous 72 h ranged from 23.7 m/s∙h to 725.6 m/s∙h with a median value of 130.8 m/s∙h. 

Modelled snowfall over the previous 24 h occurred on approximately 75% of days 

within the study period and ranged from many days with 0.1 - 5 cm (ALP = 313 days, TL 

= 240 days, BTL = 237 days) to very few days with more than 20.0 cm (ALP = 35 days, 

TL = 27 days, BTL = 23 days) with a median snowfall of 4.7 cm and maximum snowfall 

of 41.4 cm.  The snowfall accumulation contributed to a median modelled height of the 

snowpack of 145.0 cm with a maximum of 345.0 cm which was simulated during the 

2013 season.  Modelled ski penetration depth ranged from 8.0 cm to 58.0 cm with a 

median of 21.0 cm.  Rainfall throughout the study period was modelled during two days 

at the ALP elevation band, 30 days at the TL elevation band, and 90 days at the BTL 

elevation band.  The majority of the rainfall days saw less than 5.0 mm with a median 

rainfall of 0.3 mm and maximum rainfall of 30.0 mm which occurred in the 2015 season. 

The thickness of the modelled HST layer had a median of 16.3 cm (minimum = 

0.1 cm, maximum = 116.8 cm) and had a median density of 132.1 kg/m3 (minimum = 

34.1 kg/m3, maximum = 383.0 kg/m3).  The modelled interface layer below the HST layer 

consisted mainly of FC (26%), DF (24%), and SH (21%) with a median grain size of 

0.9 mm (minimum = 0.3 mm, maximum = 9.9 mm) and a median simulated stability 

index of 6.  The median of the minimum stability index within the HST layer was also 6.  

The median modelled thickness of the HN48 layer of surface snow was 3.5 cm 
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(minimum = 0.0 cm, maximum = 64.6 cm) and had a median density of 101.2 kg/m3 

(minimum = 30.0 kg/m3, maximum = 383.0 kg/m3).  The modelled interface layer below 

the HN48 layer consisted mainly of DF (45%), PP (26%), and FC (12%) with a median 

grain size of 0.5 mm (minimum = 0.3 mm, maximum = 7.6 mm).  Both the median 

minimum stability index within the HN48 layer as well as the median stability index of the 

interface layer below was 6.  Finally, the median thickness of the simulated HN72 layer 

of surface snow was 6.5 cm (minimum = 0.0 cm, maximum = 77.4 cm) and had a 

median density of 108.8 kg/m3 (minimum = 30.0 kg/m3, maximum = 383.0 kg/m3).  The 

interface layer below the HN72 layer consisted mainly of DF (52%), FC (15%), and PP 

(11%) with a median grain size of 0.6 mm (minimum = 0.3 mm, maximum = 7.2 mm).  

Similar to the HST and HN48 layers, the median minimum stability index within the 

HN72 layer and the median stability index of the interface layer below were also 6.  

Stability indexes for all new snow time periods were heavily skewed to the value 6, with 

the majority of the values equal to 6 (Figure 4.4; HST ~70% of dataset, HN48 ~95% & 

HN72 ~90%).  This is because the rules included in the SNOWPACK model 

automatically gives a stability index of 6 to any layers that are near the surface and 

within the ski penetration depth.  Hence the simulated stability index values do not reflect 

the true stability of these layers.  For this reason, I omitted the stability index variables 

from the surface avalanche problem analysis. 

Explorations of seasonal differences in the independent variables revealed a few 

patterns that are important to consider when interpreting the results of my analysis.  

Several variables indicated that the 2015 season was an anomalous winter.  During this 

winter, the amount of rainfall was exceptionally high, the daily average air temperature 

was warmer, the ski penetration depth was lower than normal, and the HST layer was 

thinner than normal (Figure 4.5).  Another important observation is the sudden jump in 

wind speed values from the 2014 season to the 2015 season and beyond (Figure 4.6).  

Further investigation revealed that this dramatic change in wind speeds was related to 

an update of the HRDPS model, which included refinements to the wind speed model 

and produced more realistic wind speed values in subsequent years (Milbrandt et al., 

2016).  
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Figure 4.3 Frequency distribution of all variables in the Surface Avalanche Problems Types dataset.  Zero 
precipitation values (hn24, hn72 & rain_sum variables) are omitted to show distributions more clearly. 
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Figure 4.4 Sample of frequency distributions of stability indexes from interface 

at the bottom of HST and the minimum within the HST. 

 
Figure 4.5 a) Summary of total rainfall per season; Frequency distribution for 

all seasons of: b) average air temperatures; c) Ski penetration per 
season; d) HST thickness per season. 
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Figure 4.6 Wind speed distributions per season. 
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Figure 4.7 Correlation plot of all numeric weather and snowpack variables 

included in the Surface Avalanche Problem Type dataset. 
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duration of 6 days (Table 4.2).  Overall, the alpine elevation band had a total of 213 days 

with a WS avalanche problem present, which represents a seasonal average of 53 days 

per season (Table 4.2).  The treeline elevation band exhibited a similar pattern (not 

shown), whereas WS avalanche problems were extremely rare below treeline. 

As expected, a visual examination of the weather and SNOWPACK profile 

timeseries plots showed that WS avalanche problem occurrences aligned well with wind 

and snowfall events (Figure 4.8), which indicates that a combination of sufficient wind 

and new snow was required for forecasters to be concerned about WS avalanche 

problems.  Later seasons (e.g. 2018 season shown in Figure 4.8) also show a 

relationship between WS avalanche problems (green dots) and the presence or absence 

of SS avalanche problems (yellow dots).  WS avalanche problems were usually not 

forecasted during times where SS avalanche problems were forecasted.  Exploratory 

univariate comparisons revealed additional, but weaker relationships between other 

possible predictor variables and the presence of WS avalanche problems.  For example, 

average modelled air temperatures were lower on days when WS avalanche problems 

were present (WS present: median = -9.0 ºC, WS absent: median = -6.4 ºC, Mann-

Whitney-Wilcoxon Test: p- value < 0.01); and accumulated 72 h wind run values were 

increased on days when WS avalanche problems were present (WS present: median = 

134.3 m/s∙h, WS absent: median = 129.8 m/s∙h, Mann-Whitney-Wilcoxon Test: p-

value < 0.01), (Figure 4.9). 

Table 4.3 Season Summaries – WS Avalanche Problem Type – Alpine 
Elevation 

 
Season 

WS Av. Prob. 
occurrences 

Avg. 
Duration 

(days) 

Minimum 
Length 
(days) 

Maximum 
Length (days) 

Total days with 
WS (days) 

2013* 9 8.8 1 27 79 
2014* 8 9.8 1 26 78 
2015 5 6.0 1 19 30 
2016 11 6.0 1 17 66 
2017 10 8.1 1 20 81 
2018 9 4.0 1 9 36 

Average 8.75 6.0 1 16.3 53.3 
Totals 35 NA NA NA 213 

* omitted from analysis 
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Figure 4.8 Timeseries (2018 Season - Alpine) of WS avalanche problems, associated weather variables (HN72 and 
wind speed) and snowpack evolution. Yellow bands represent the presence of a WS avalanche 
problem on any given day. 
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Figure 4.9 Distribution of average air temperature and 72 h wind run when WS 
avalanche problems were absent or present (2015-2018 Seasons). 
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TL and ALP elevation bands, the next decision rule related to whether avalanche 

forecasters were concurrently concerned with SS avalanche problems in the same 

elevation band.  This terminal node shows that forecasters were unlikely to identify a WS 

avalanche problem when they were concerned about SS avalanche problems at the 

same time (Node 11, n = 335, 4% probability).  The remaining nodes on the branch 

when a SS avalanche problem was absent (Nodes 7, 8, 9 & 10) outline specific 

circumstances when forecasters would possibly be concerned about WS avalanche 

problems.  First, significant modelled winds over the past 72 h (> 320 m/s∙h, equivalent 

to an average hourly windspeed of > 4.5 m/s∙h) were associated with a 56% probability 

of WS avalanche problems being predicted that day.  However, it is important to note 

that with n = 26, this is a relatively small terminal node.  When the modelled winds over 

the last 72 h were lower, modelled HN72 was responsible for the next split in the tree.  

Values of modelled HN72 > 2.3 cm resulted in 27% probability of WS avalanche 

problems being identified, whereas lower amounts were associated with only a 4% 

probability of WS avalanche problems.  The last split in the tree along the Absent branch 

was related to average modelled air temperatures.  Days with average modelled air 

temperatures below -19 ºC had a higher prevalence of WS avalanche problems (Node 7, 

n = 7, 43% probability), than warmer days (Node 8, n = 88, 1% probability).  Since most 

of the terminal nodes with higher probabilities of WS avalanche problems only include 

few observations, generalizing the observed thresholds is questionable.  However, the 

observed splits still offer valuable insight about the importance of individual variables in 

existing forecasting practices. 

Following the “turning-off” or right branch when WS avalanche problems were 

Present the previous day, the first and most important decision rule was related to 

whether there was a SS avalanche problem identified the same day.  When forecasters 

were concerned about an SS avalanche problem that day, there was only an 56% 

probability that the WS avalanche problem would persist (Node 17, n = 117).  This is the 

terminal node with the lowest probability of a WS avalanche problem in the Present 

branch of the tree.  When forecasters were not concerned about SS avalanche problems 

that day, the probability that they would identify a WS avalanche problem increased to 

90%.  The final decision rule on this branch related to whether they were concurrently 

concerned about LWET avalanche problems (Nodes 15 & 16).  WS avalanche problems 

were significantly less prevalent when a LWET avalanche problem was present (67% 
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versus 92%).  Interestingly, none of the modelled weather and snowpack observations 

included in the analysis emerged as significant predictors on this side of the WS 

avalanche problem tree. 

 

Figure 4.10 Conditional Inference Tree for WS avalanche problems (2015-2018 
Seasons). 
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snowfall events (Figure 4.11), as thick layers of precipitation particles (PP) and 

decomposing fragments (DF) are the primary reason for forecasters to be concerned 

about SS avalanche problems.  Air temperatures also aligned well with snowfall and rain 

events, as the coldest temperatures occurred during dry periods in the winter.  As found 

with WS avalanche problems, SS avalanche problems were rarely forecasted at the 

same time as WS avalanche problems (e.g. 2018 season shown in Figure 4.11). 

Exploratory univariate comparisons also revealed the expected relationships 

between possible predictor variables and the presence of SS avalanche problems.  For 

example, 24 h and 72 h snowfall amounts were higher on days when SS avalanche 

problems were present (HN24: SS present: median = 5.6 cm, SS absent: median = 

0.7 cm, Mann-Whitney-Wilcoxon Test: p-value < 0.01; HN72: SS present: median = 

15.2 cm, SS absent: median = 4.0 cm, Mann-Whitney-Wilcoxon Test: p-value < 0.01); 

the simulated snow layer from the past 48 h was thicker on days when SS avalanche 

problems were present (SS present: median = 8.6 cm, SS absent: median = 1.0 cm, 

Mann-Whitney-Wilcoxon Test: p-value < 0.01); and ski penetration depth was deeper on 

days when SS avalanche problems were present (SS present: median = 24.0 cm; SS 

absent: median = 20.0 cm, Mann-Whitney-Wilcoxon Test: p-value < 0.01), (Figure 4.12). 

Table 4.4 Season Summaries – SS Avalanche Problem Type – TL Elevation 
 

Season 
SS Av. Prob. 
occurrences 

Avg. 
Duration 

(days) 

Minimum 
Length 
(days) 

Maximum 
Length 
(days) 

Total days 
with SS 
(days) 

Tracked 
Storm 

Interfaces 
2013 9 5.7 1 11 51 11 
2014 10 6.8 1 26 68 15 
2015 9 5.9 2 11 53 20 
2016 11 5.2 1 11 57 13 
2017 9 5.9 1 12 53 15 
2018 11 5.5 2 14 60 21 

Average 9.8 5.8 1.3 14.2 57 15.8 
Totals 59 NA NA NA 342 95 
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Figure 4.11 Timeseries (2018 Season - Treeline) of SS avalanche problems, associated weather variables (air 
temperatures, HN24 and rain) and snowpack evolution. Yellow bands represent the presence of a SS 
avalanche problem on any given day.  Air temperature timeseries colours are defined as: red = 
maximum, black = average, blue = minimum.
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Figure 4.12 Distribution of snowfall amounts (HN24 & HN72), HN48 layer 
thickness and ski penetration depth when SS avalanche problems 
were absent and present (2013 - 2018 Seasons). 

 

Representing SS avalanche problem relationships with a CIT model 
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Following the “turning-on” or left branch when SS avalanche problems were 

Absent the day before, the first and most important decision rule related to recent 

snowfall amounts.  With more than 7.3 cm of modelled 24 h snowfall there was a 41% 

probability that forecasters would identify a SS avalanche problem.  Although when 

forecasters assessed a WS avalanche problem on the same day, the probability of a SS 

avalanche problem being identified dropped to 16% (Node 22, n = 67).  When 

forecasters were not concerned with WS avalanche problems that day, they were more 

likely to identify a SS avalanche problem at the TL and ALP elevation bands (Node 16, 

n = 32, 72% probability) than at the BTL elevation band (Node 17, n = 38, 40% 

probability).  Forecasters were much less concerned about SS avalanche problems 

when HN24 was below the 7.3 cm threshold (Nodes 6, 8, 9, 12, 13, 14, 16 & 17, 

n = 1029, 8% probability).  The large number of cases in these nodes highlights that 

recent snowfall is a strong predictor, which confirms that SS avalanche problems are 

predominantly reliant on large amounts of snowfall to be “turned-on”.  The remaining 

nodes outline additional factors that contribute to forecasters’ concerns about SS 

avalanche problems.  First, on windy days (24 h wind run > 129.9 m/s∙h) the probability 

of forecasters being concerned about SS avalanche problems was strongly related to 

whether they identified concurrent WS avalanche problems (WS present: 21% 

probability, WS absent: 78% probability).  On days with less wind, characteristics of the 

modelled HN48 snow layer became relevant; when the layer was thicker than 2.6 cm the 

probability of forecasters identifying a SS avalanche problem increased slightly to 14% 

(Nodes 12, 13 & 14) where the WS avalanche problem status played a role again (WS 

present: 4% probability, WS absent: 19% probability) with an additional split on days 

without WS avalanche problems with windier days having a higher probability of SS 

avalanche problems (Nodes 12, 13% probability; Node 13, 44% probability).  However, 

the split on the 24 h wind run needs to be interpreted with caution due to the 

discontinuity in the simulated wind information caused by the upgrade to the HRDPS 

between the 2014 and 2015 seasons.  While I only included the seasons after the 

upgrade in the WS analysis, I used the entire dataset for all other surface and persistent 

avalanche problems where I expected wind to only play a secondary role.  Hence, care 

should be taken when interpreting any of the wind information.  Finally, when the 

modelled HN48 snow layer was thinner, the density of this layer was important.  

Whereas a less dense HN48 layer (≤ 145 kg/m
3
) meant there was almost no chance of a 

SS avalanche problem being identified by forecasters (Node 6, 1% probability), denser 
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HN48 snow layers increased chance of a SS avalanche problem being identified (Nodes 

8 & 9, 7% probability).  The final split on this node related to the amount of recent snow, 

where HN24 > 1.8 cm was associated with a higher probability of a SS avalanche 

problem (Node 9, 38% probability). 

Following the “turning-off” or right branch when SS avalanche problems were 

Present the previous day, the first and most important decision rule was related to the 

amount of snowfall over the previous 72 h.  With small amounts of snowfall (HN72 ≤ 

4.2 cm), there was 46% probability of a SS avalanche problem persisting (Nodes 25 & 

26), which was further affected by the presence or absence of a concurrent WS 

avalanche problem (WS present: 15% probability, WS absent: 58% probability).  These 

are the terminal nodes with the lowest probability of a SS avalanche problem in the 

Present branch of the CIT analysis.  As expected, larger amounts of snowfall (HN72 > 

4.2 cm) were associated with higher concerns for SS avalanche problems (86% 

probability).  The remaining nodes of this branch describe additional factors affecting 

forecasters’ concerns about SS avalanche problems (Nodes 29, 32, 33, 34, 36 & 37).  

First, recent snowfall > 2.6 cm was associated with a 93% probability of an SS 

avalanche problem being predicted that day (Nodes 36 & 37).  This node further divided 

according to minimum daily temperature with warmer temperatures being associated 

with higher probabilities of SS avalanche problems (> -16 ºC, 94% probability).  I 

attribute this final split to the fact that slabs formed more slowly at lower temperatures.  

Minor amounts of recent snowfall (≤ 2.6 cm) is associated with a 74% probability of a SS 

avalanche problem persisting that day.  Additional splits were based on significant 

modelled winds over the previous 72 h (> 60.6 m/s∙h, 78% probability; ≤ 60.6 m/s∙h, 53% 

probability) and the presence of assessed LWET avalanche problems (LWET present: 

47% probability, LWET absent: 81% probability).
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Figure 4.13 Conditional Inference Tree for SS avalanche problem types
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4.2.4. Loose Dry Avalanche Problems 

LDRY Avalanche Problem Dataset and Timeseries Analysis 

Over the study period, LDRY avalanche problems were identified by forecasters 

in the treeline elevation band an average 7 times per winter with an average duration of 

4 days (Table 4.4).  Overall, the treeline elevation band had a total of 119 days with a 

LDRY avalanche problem present, which resulted in a seasonal average of 20 days per 

season (Table 4.4).  The alpine and below treeline elevation bands exhibited similar 

patterns (not shown). 

Visual examination of the weather and SNOWPACK profile timeseries plots 

showed the LDRY avalanche problem occurrences aligned will with snowfall events and 

lower air temperatures (Figure 4.14), which indicated that a combination of sufficient new 

snow and colder temperatures was required for forecasters to be concerned about 

LDRY avalanche problems.  Exploratory univariate comparisons confirmed these 

observations and revealed strong relationships to other possible predictor variables and 

the presence of LDRY avalanche problems.  For example, maximum modelled air 

temperatures were lower on days when LDRY avalanche problems were present (LDRY 

present: median = -6.6 ºC, LDRY absent: median = -3.9 ºC; Mann-Whitney-Wilcoxon 

Test: p-value < 0.01); modelled storm slab densities were lower on days when LDRY 

avalanche problems were present (LDRY present: median = 107.7 kg/m3, LDRY absent: 

median = 138.3 kg/m3, Mann-Whitney-Wilcoxon Test: p-value < 0.01); and ski 

penetration depths were higher on days when LDRY avalanche problems were present 

(LDRY present: median = 24.0 cm, LDRY absent: 21.0 cm, Mann-Whitney-Wilcoxon 

Test: p-value < 0.01) (Figure 4.15). 
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Table 4.5 Season Summaries – LDRY Avalanche Problem Type – TL Elevation 
 

Season 
LDRY Av. Prob. 

occurrences 
Avg. Duration 

(days) 
Minimum 

Length (days) 
Maximum 

Length (days) 
Total days with 

LDRY (days) 
2013 11 2.9 1 12 29 
2014 6 3.0 1 4 18 
2015 5 2.0 1 5 8 
2016 2 14.0 2 26 28 
2017 8 2.3 1 5 21 
2018 7 2.1 1 3 15 

Average 6.5 4.4 1.2 9.2 19.8 
Totals 39 NA NA NA 119 
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Figure 4.14 Timeseries (2017 Season - Treeline) of LDRY avalanche problems, associated weather variables (air 
temperature, HN24 and rainfall) and snowpack evolution. Yellow bands represent the presence of a 
LDRY avalanche problem on any given day.  Air temperature timeseries colours are defined as: red = 
maximum, black = average, blue = minimum, & snow surface temperature = green. 
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Figure 4.15 Distribution of maximum air temperature, HST slab density and ski 
penetration depth when LDRY avalanche problems were absent and 
present (2013 - 2018 Seasons). 
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about LDRY avalanche problems.  First, shallower modelled ski penetration depths 

(≤ 23 cm) was associated with a lower probability of LDRY avalanche problems being 

predicted that day (5% probability).  When modelled ski penetration depth was higher 

(> 23 cm, 11% probability), maximum modelled air temperature was responsible for the 

next split in the tree.  Values of maximum modelled air temperatures above -9.0 °C 

resulted in an 8% probability of LDRY avalanche problems being identified, whereas 

lower maximum air temperatures were associated with a 26% probability of LDRY 

avalanche problems.  This was further refined by the presence of WS avalanche 

problems where the presence of a WS avalanche problem resulted in a decrease in 

probability of a LDRY avalanche problem being identified (Node 10, 11% probability) and 

the absence of a WS avalanche problem resulted in a 50% probability of a LDRY 

avalanche problem being identified.  The final split in the branch with WS avalanche 

problems being absent related to HN24.  At this node, the probability of a LDRY 

avalanche problem being identified was significantly higher when there was sufficient 

recent snowfall (HN24 > 3.3 cm; 81% versus 21%).  Therefore, for forecasters to be 

concerned about LDRY avalanche problems, the conditions needed to be cold and calm 

with sufficient recent snow.  Again, the terminal nodes with higher probabilities of LDRY 

avalanche problems only have few observations, which might indicate that we are 

looking at special cases. 

Following the “turning-off” or right branch when LDRY avalanche problems were 

Present the previous day, the first and only important decision rule was related to density 

values of the modelled storm snow.  Lower slab densities (≤ 130.2 kg/m3) where 

associated with higher probabilities of LDRY avalanche problems persisting that day 

(Node 16; 71% probability), whereas higher slab densities (> 130.2 kg/m3) where 

associated with lower probabilities of LDRY avalanche problem persisting that day 

(Node 17; 49% probability).  Although the probabilities are relatively high in either 

instance, this confirms forecasters become less concerned about LDRY avalanche 

problems as the top layers of snow evolve (i.e. settlement, wind transport, etc.).  At this 

point, forecasters might become concerned with other types of avalanche problems. 
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Figure 4.16 Conditional Inference Tree for LDRY avalanche problem types 
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CORN Avalanche Problem Dataset and Timeseries Analysis 
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relationships to additional possible predictor variables.  For example, modelled 

snowpack heights where significantly elevated on days when CORN avalanche 

problems were present (CORN present: median = 191.6 cm, CORN absent: median = 

143.5 cm, Mann-Whitney-Wilcoxon Test: p-value < 0.01); maximum modelled wind 

speeds were slightly higher on days when CORN avalanche problems were present 

(CORN present: median = 4.01 m/s, CORN absent: median = 2.7 m/s, Mann-Whitney-

Wilcoxon Test: p-value = 0.04); accumulated 72 h wind run values were slightly 

increased on days when LDRY avalanche problems were present (CORN present: 

median = 198.7 m/s∙h, CORN absent: median = 130.0 m/s∙h, Mann-Whitney-Wilcoxon 

Test: p-value = 0.07); and storm slab densities were significantly higher on days when 

LDRY avalanche problems were present (CORN present: median = 186.7 kg/m3, CORN 

absent: median = 131.3 kg/m3, Mann-Whitney-Wilcoxon Test: p-value < 0.01), (Figure 

4.18). 

Table 4.6 Season Summaries – CORN Avalanche Problem Type – ALP 
Elevation 

 
Season 

CORN Av. Prob. 
occurrences 

Avg. Duration 
(days) 

Minimum 
Length (days) 

Maximum 
Length (days) 

Total days with 
CORN (days) 

2013 4 2.8 1 4 11 
2014 3 5.7 3 11 17 
2015 1 4.0 4 4 4 
2016 6 3.5 1 5 21 
2017 3 2.7 1 4 8 
2018 4 2.8 1 4 11 

Average 3.5 3.6 1.8 5.3 12 
Totals 21 NA NA NA 72 

 



67 

Figure 4.17 Timeseries (2017 Season - Alpine) of CORN avalanche problems, associated weather variables (HN24, 
rain, and wind speed) and snowpack evolution. Yellow bands represent the presence of a CORN 
avalanche problem on any given day. 
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Figure 4.18 Distribution of height of snowpack, maximum wind speed, 72 h wind 
run and HST slab density when CORN avalanche problems were 
absent and present (2013 - 2018 Seasons). 

 

Representing CORN avalanche problem relationships with a CIT model 

The CORN CIT analysis for 2013-2018 seasons computed 4 decision rules that 
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significant split in the CIT model was the CORN avalanche problem status from the 

previous day.  When a CORN avalanche problem was Present on the previous day, 

there was a 76% probability that forecasters’ concerns about a CORN avalanche 

problem persisted (n=79).  When a CORN avalanche problem was Absent on the 

previous day, there was a 99% probability that a CORN avalanche problem remained 

absent.  Again, these results indicate that persistence plays an important role in the 

forecasting of CORN avalanche problems. 
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Following the “turing-on” or left branch when CORN avalanche problems were 

Absent the day before, the first and most important decision rule related to elevation 

band, which separated the ALP elevation band from TL and BTL.  This split showed that 

there was no chance of a CORN avalanche problem being forecasted at treeline or 

below (Node 8, n = 1441, 0% probability).  This node reflects that CORN avalanche 

problems were forecasted predominantly at higher elevations which are more exposed 

to prevailing winds.  The remaining nodes on the branch (Nodes 5, 6 & 7) highlight 

additional factors contributing to forecasters’ CORN avalanche problem assessments in 

the ALP elevation band.  First, the next decision rule related to day of the season, which 

like LDRY avalanche problems, indicated a split at the beginning of March (155 = March 

4
th
, except on leap years), where later in the season was associated with a higher 

probability of CORN avalanche problems being identified (Node 7; n = 119; 11% 

probability) than earlier in the season (1% probability).  Finally, in the rare instances that 

forecasters were concerned about CORN avalanche problems earlier in the season, 

MFcr and DH grain types below the 72 h storm snow increased their probability of being 

present to 13% (Node 6; n = 15).  This rule is potentially based around the fact that 

forecasters may be worried more about cornice falls initiating avalanches on weak layers 

with these grain types within the snowpack.  However, since this particular terminal node 

only includes a small amount of observations, it might simply represent a special 

situation. 

No additional rules were found in the “turning-off” or right branch when CORN 

avalanche problems were Present the previous day.  This means that once cornices 

have been created and become significant enough to be a cause for concern, there is a 

high probability that the assessed CORN avalanche problem persists regardless of any 

current weather and snowpack conditions. 
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Figure 4.19 Conditional Inference Tree for CORN avalanche problem types 
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(LWET present: median = -1.9 ºC, LWET absent: median = -7.4 ºC, Mann-Whitney-

Wilcoxon Test: p-value < 0.01); modelled ski penetration depths were lower on days 

when LWET avalanche problems were present (LWET present: median = 14.0 cm, 

LWET absent: median = 22.0 cm, Mann-Whitney-Wilcoxon Test: p-value < 0.01); and 

modelled storm snow densities were higher on days when LWET avalanche problems 

were present (LWET present: median = 154.0 kg/m
3
, LWET absent: median = 

130.8 kg/m
3
, Mann-Whitney-Wilcoxon Test: p-value < 0.01) (Figure 4.21). 

Table 4.7 Season Summaries – LWET Avalanche Problem Type – BTL 
Elevation 

 
Season 

LWET Av. Prob. 
occurrences 

Avg. Duration 
(days) 

Minimum 
Length (days) 

Maximum 
Length (days) 

Total days with 
LWET (days) 

2013 1 6.0 6 6 6 
2014 0 0.0 0 0 0 
2015 7 3.6 1 6 25 
2016 5 2.0 1 4 10 
2017 3 3.3 1 6 10 
2018 3 4.3 1 11 13 

Average 3.2 3.2 1.7 5.5 10.7 
Totals 19 NA NA NA 64 
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Figure 4.20 Timeseries (2015 Season – Below Treeline) of LWET avalanche problems, associated weather variables 
(air temperature, HN24 = grey bars, and rainfall = black bars) and snowpack evolution. Yellow bands 
represent the presence of a LWET avalanche problem on any given day.  Air temperature timeseries 
colours are defined as: red = maximum, black = average, blue = minimum. 
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Figure 4.21 Distribution of HN24, average air temperature, ski penetration depth 
and HST slab density when LWET avalanche problems were absent 
and present (2013 - 2018 Seasons). 

 

Representing LWET avalanche problem relationships with a CIT model 

The LWET avalanche problem CIT analysis computed 8 decision rules that split 

the dataset into 9 distinct terminal nodes (Figure 4.22).  Similar to all the other surface 

avalanche problems, the first and most significant split in the CIT model was the LWET 

avalanche problem status from the previous day.  When a LWET avalanche problem 

was Present on the previous day, there was a 66% probability that forecasters’ concerns 

about a LWET avalanche problem persisted (n=145).  When a LWET avalanche problem 

was Absent on the previous day, there was a 97% probability that a LWET avalanche 

problem remained absent. 
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Following the “turning-on” or left branch when LWET avalanche problems were 

Absent the day before, the first and most important decision rule related to maximum 

modelled air temperature.  This split showed that if the maximum modelled air 

temperature from the previous 24 h was above -2.6 ºC there was 32% probability that a 

LWET avalanche problem was identified by forecasters.  This probability increased to 

88% if the minimum air temperature of the previous 24 h (i.e. the previous night) was 

also above -1.8 ºC (Node 16, n = 8).  Although there were only few cases when these 

two thresholds were met, they represent the situation when the snowpack warmed 

considerably during the day and did not have a substantial refreeze over-night to 

strengthen the surface layers of the snowpack again.  When the maximum modelled air 

temperature was below -2.6 ºC there was almost no chance of a LWET avalanche 

problem being forecasted (Nodes 5, 7 ,9, 10, 12 & 13, 2% probability).  However, the 

CIT algorithm found a few additional factors affecting forecasters’ likelihood of identifying 

a LWET avalanche problem.  In general, late season (end of March or after) was 

associated with a higher probability of LWET avalanche problems being predicted (13% 

probability), whereas the grain size of the layer below the HN72 interface further split the 

sample with larger grain sizes (> 1.2 mm) being associated with higher probabilities of 

LWET avalanche problems (Node 13; n = 26; 35% probability).  Earlier in the season 

(before the end of March) there was only a very small chance of a LWET avalanche 

problem being forecasted (1% probability), but in the rare cases where a LWET 

avalanche problem was predicted, the maximum modelled air temperature over the 

previous 24 h needed to be above -2.9 ºC and either be in the ALP elevation band 

(Node 7; n = 68; 10% probability), or if in the TL and BTL elevation bands the grain type 

of the interface below HN72 snow layer needed to be either RG or SH (Node 10; n = 22; 

13% probability).  In other words, while warm temperatures were sufficient to increase 

the likelihood of a LWET avalanche problem in the alpine, the present of RG or SH 

further enhanced the likelihood at treeline and below. 

No additional splitting rules were identified in the “turning-off” or right branch 

when LWET avalanche problems were Present the previous day.  With no subsequent 

splits in the data, once LWET avalanche problems have been identified, more often than 

not they will persist until weather or snowpack variables change drastically. 
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Figure 4.22 Conditional Inference Tree for LWET avalanche problem types 

 

4.3. Persistent Avalanche Problems 

4.3.1. Analysis Dataset Overview 

A comparison of the number of days when persistent avalanche problems were 

present (Figure 4.23) reveals substantial differences in the prevalence of PS and DPS 

avalanche problems.  The most common persistent avalanche problem type in GNP 

over the study period was PS avalanche problems.  When the assessments from all 

elevation bands were pooled, PS avalanche problems were present on a total of 1080 

elevation band days, which is equivalent to 50% of the days included in my dataset, and 

DPS avalanche problems were only present on 58 elevation band days (3% of my 

dataset).  While PS avalanche problems were present in all elevation bands, they were 

most prevalent at treeline followed by the alpine and below treeline elevation bands.  

DPS avalanche problems, on the other hand, tended to be more prevalent at treeline 

and above (Figure 4.23).  Based on the coefficient of variability (Table 4.8), the seasonal 

variability of the presence of persistent avalanche problems was smaller for PS 

avalanche problems than for DPS avalanche problems, which means that their presence 
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problems, the two persistent slab problems (PS and DPS) were amalgamated together 

for ease of analysis.  Once PS and DPS were pooled together, persistent avalanche 

problems were present on 1138 elevation band days (52% of my dataset). 

 

Figure 4.23 Distribution of DPS and PS avalanche problems per elevation band 
for all seasons within the study period. 

 

Exploratory analysis of the modelled weather and snowpack variables included in 

the persistent avalanche problem analysis again provided an overview about the 

modelled weather and snowpack conditions at the treeline elevation band for same NWP 

grid points used for the analysis of surface avalanche problems (Figure 4.24).  An 

overview of the modelled air temperature, wind speed and precipitation trends are 

discussed at length in the surface avalanche problem dataset (Section 4.2.1.) and since 

the dataset for PS/DPS avalanche problems duplicates entries for each day depending 

on the number of layers tracked, these trends are not discussed further.  

The characteristics of the tracked modelled weak layers and the overlying slab 

were extracted from SNOWPACK.  The tracked weak layers had a median age of 

41 days (minimum = 1, maximum = 146), a median modelled temperature of -2.7 ºC 

(minimum = -26.1 ºC, maximum = 0.0 ºC), and a median liquid water content of 0.0 

(minimum = 0.0, maximum = 6.0).  The thickness of the tracked weak layers had a 

median of 2.3 cm (minimum = 0.1 cm, maximum = 30.2 cm) and had a median density of 

309.0 kg/m
3
 (minimum = 32.0 kg/m

3
, maximum = 507 kg/m

3
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(minimum = 0.2, maximum = 6).  The tracked weak layers consisted mainly of FC 

(23.6%), FCxr (21.9%), MFcr (15.6%), DH (13.5%), RG (9.3%), DF (5.8%) and SH 

(4.7%) with a median grain size of 1.1 mm (minimum = 0.3 mm, maximum = 6.2 mm).  

The modelled overlying slab had a median average temperature of -4.8 ºC (minimum = -

39.8 ºC, maximum = 0.0 ºC) and a median maximum temperature of -2.5 ºC (minimum = 

-26.1 ºC, maximum = +0.4 ºC).  The median thickness of the simulated slab was 69.6 cm 

(minimum = 0 cm, maximum = 232.6 cm) and had a median average hardness of 2.0 

(minimum = 1.0, maximum = 4.5), a median maximum hardness of 3.5 (minimum = 1.0, 

maximum = 5.0), a median average density of 236.8 kg/m
3
 (minimum = 40.0 kg/m

3
, 

maximum = 446.8 kg/m
3
), and a median maximum density of 349.0 kg/m

3
 (minimum = 

40.0 kg/m
3
, maximum = 574.0 kg/m

3
).  The minimum simulated stability indexes within 

the overlying slab ranged from 0.5 to 6 with a median value of 1.69. 

Table 4.8 Persistent avalanche problem type hazard assessment summary by 
elevation band and season. 

Name Season Days Present Elevation Band 
Days ALP TL BTL 

Persistent Slab Avalanche Problem 

2013 52 71 46  
2014 87 85 36  
2015 104 104 25  
2016 54 68 51  
2017 37 37 32  
2018 56 74 61  
AVG 65.00 73.17 41.83  
SD 25.14 22.05 13.29  

CoefVar 0.39 0.30 0.32  
TOTALS 390 439 251 1080 

% 54% 61% 35% 50% 

Deep Persistent Slab Avalanche Problem 

2013 0 1 1  
2014 12 12 0  
2015 10 10 0  
2016 0 6 6  
2017 0 0 0  
2018 0 0 0  
AVG 3.67 4.83 1.17  
SD 5.72 5.31 2.40  

CoefVar 1.56 1.10 2.06  
TOTALS 22 29 7 58 

% 3% 4% 1% 3% 

Persistent and Deep Persistent Slab 
Avalanche Problems Combined 

2013 52 72 47  
2014 99 97 36  
2015 114 114 25  
2016 54 74 57  
2017 37 37 32  
2018 56 74 61  
AVG 68.67 78.00 43.00  
SD 30.43 26.10 14.35  

CoefVar 0.44 0.33 0.33  
TOTALS 412 468 258 1138 

% 57% 65% 36% 52% 
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Figure 4.24 Frequency distribution of all variables in the Persistent Avalanche Problems Types dataset.  Zero 
precipitation values (hn24, hn72 & rain_sum variables) are omitted to clearly show distributions
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In the persistent avalanche problem type dataset, there are also considerable 

correlations between the simulated weather and snowpack variables included in my 

analysis (Figure 4.25).  The main pattern that stands out is the high correlation between 

weak layer age and many of the overlying slab variables (slab thickness = +0.87; slab 

maximum hardness = +0.63; slab average hardness = +0.74; slab maximum density = 

+0.77; slab average density = +0.82).  These correlations are not surprising as overall, 

the slabs above weak layers are expected to become thicker and stronger as the winter 

progresses. 

As in the surface avalanche problem analysis, all wind speed variables (vw_min, 

vw_avg, vw_max, wr24, wr48, wr72) were strongly correlated with each other (ranging: 

+0.83 to +1.00), but the modelled wind variables also had weak positive correlations with 

modelled slab and weak layer temperatures (range: +0.12 to +0.25) and weak negative 

correlations with modelled slab thickness (range: -0.15 to -0.22).  Modelled air 

temperature variables (ta_min, ta_avg, ta_max) were not surprisingly moderately to 

strongly correlated with modelled slab temperatures (range: +0.49 to +0.73) and 

moderately correlated to modelled weak layer temperature as well (range: +0.45 to 

+0.49).  Modelled air temperatures were also weakly correlated with the modelled slab 

and weak layer hardness and density variables (range: +0.12 to +0.32).  The modelled 

slab temperatures were strongly correlated with modelled weak layer temperatures 

(range: +0.86 to +0.98) and moderately correlated with the modelled slab and weak 

layer hardness and density variables (range: +0.36 to +0.66).  The modelled weak layer 

temperature was also moderately correlated with the modelled slab and weak layer 

hardness and density variables (range: +0.47 to +0.68).  These positive correlations 

between modelled temperatures and modelled slab and weak layer variables are the 

direct result of how air and snowpack temperatures influence snow metamorphism and 

grain changes which directly impact the hardness and density of snow layers. 

Not surprisingly, the modelled HN24 and HN72 variables are strongly correlated 

(+0.78), but these snowfall variables also have a weak positive correlation with modelled 

slab thickness (range: +0.17 to +0.23) and weak negative correlations with modelled 

slab average hardness and average density variables (range: -0.14 to -0.16).  This 

shows that when there is lots of new snow, a large portion of the slab above a layer is 

composed of soft low-density new snow which will cause a reduction in the weighted 

average hardness and density.  Once it stops snowing the slab hardness and density will 
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likely increase after a few days of settling.  The modelled minimum SSI within the slab 

had moderate negative correlations with the modelled slab and weak layer temperatures 

and hardness and density variables (range: -0.42 to -0.59) and weak negative 

correlations with the modelled air temperature variables (range: -0.17 to -0.18).  The 

modelled SSI of the weak layer had weak to moderate positive correlations with weak 

layer thickness, density and hardness and liquid water content variables (range: +0.08 to 

+0.43) and weak negative correlations with modelled snowfall variables HN24 and 

HN72, slab thickness and weak layer temperature and grain size (range: -0.07 to -0.25). 

 
Figure 4.25 Correlation plot of all numeric weather and snowpack variables 

included in the Persistent Avalanche Problem Type dataset. 
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To further minimize the PS/DPS avalanche problem dataset, certain variables that were 

highly correlated with other similar variables were removed to simplify the complex CIT 

model output into an interpretable and manageable result.  These included:  

• Slab hardness versus slab density  

o Average slab hardness versus average slab density: Spearman’s 
Rank Correlation: rho = 0.89; p-value < 0.01 

o Maximum slab hardness versus maximum slab density: Spearman’s 
Rank Correlation: rho = 0.88; p-value < 0.01 

• Temperature variables 

o Weak layer temperature versus maximum slab temperature: 
Spearman’s Rank Correlation: rho = 0.99; p-value < 0.01 

o Weak layer temperature versus average slab temperature: 
Spearman’s Rank Correlation: rho = 0.85; p-value < 0.01 

o Weak layer temperature versus average air temperature: Spearman’s 
Rank Correlation: rho = 0.62; p-value < 0.01 

o Weak layer temperature versus minimum air temperature: 
Spearman’s Rank Correlation: rho = 0.60; p-value < 0.01 

o Weak layer temperature versus maximum air temperature: 
Spearman’s Rank Correlation: rho =0.59; p-value < 0.01 

o Average air temperature versus maximum air temperature: 
Spearman’s Rank Correlation: rho = 0.95; p-value < 0.01 

o Average air temperature versus minimum air temperature: 
Spearman’s Rank Correlation: rho = 0.96; p-value < 0.01 

o Average slab temperature versus maximum slab temperature: 
Spearman’s Rank Correlation: rho = 0.86; p-value < 0.01 

o Weak layer temperature, maximum air temperature, and minimum air 
temperature were omitted from the analysis 

• Wind variables: 

o Average wind speed versus maximum wind speed: Spearman’s Rank 
Correlation: rho = 0.97; p-value < 0.01 

o Average wind speed versus minimum wind speed: Spearman’s Rank 
Correlation: rho = 0.91; p-value < 0.01 
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o Average wind speed versus 24 hr wind run: Spearman’s Rank 
Correlation: rho = 1.0; p-value < 0.01 

o Average wind speed versus 48 hr wind run: Spearman’s Rank 
Correlation: rho = 0.94; p-value < 0.01 

o Average wind speed versus 72 hr wind run: Spearman’s Rank 
Correlation: rho = 0.88; p-value < 0.01 

o Maximum wind speed, minimum wind speed and all three wind run 
variables were omitted from the analysis. 

Due to the high correlation between many of the weather and snowpack variables, the 

only variables kept for the CIT analysis out of the ones listed above were: a) average 

and maximum slab hardness, b) slab average and maximum temperature, c) average air 

temperature, and; d) average wind speed.  The removal of all highly correlated variables 

created a manageable model output that was much easier to interpret. 

4.3.2. Persistent Slab/Deep Persistent Slab Avalanche Problems 

PS/DPS Avalanche Problem Dataset and Timeseries Analysis 

My analysis of the GNP bulletins revealed that PS/DPS avalanche problem types 

were identified by forecasters at the treeline elevation band an average of 6 periods per 

winter season with an average duration of 17 days (Table 4.9).  Overall, the treeline 

elevation band had a total of 468 days with PS/DPS avalanche problems present, which 

is equivalent to an average of 78 days per season (Table 4.9).  Related to these PS/DPS 

avalanche problems, forecasters identified 41 PWLs over the entire study period for an 

average 7 PWLs per season (Table 4.10).  These PWLs were typically associated with a 

Surface avalanche problem (e.g. SS, WS) for an average of 11 days before becoming a 

Present PS/DPS avalanche problem, which typically persisted for an average of 22 days 

(Table 4.10).   

The method for finding and tracking possible layers employed in this study 

identified and tracked a total of 70 separate interfaces (including all PWLs identified by 

forecasters) that had the potential to become a PS/DPS.  On average, 12 interfaces 

were tracked per season (Table 4.10). 
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Table 4.9 Season Summaries – PS/DPS Avalanche Problem Types – Treeline 
Elevation 

 
Season 

PS/DPS Av. 
Prob. 

occurrences 

Avg. Duration 
(days) 

Minimum 
Length (days) 

Maximum 
Length (days) 

Total days 
with PS/DPS 

2012-13 8 9.0 1 36 72 
2013-14 8 12.1 2 22 97 
2014-15 5 22.8 2 65 114 
2015-16 5 14.8 6 28 74 
2016-17 6 6.2 1 19 37 
2017-18 2 37.0 10 64 74 
Average 5.7 17.0 1 65 78 
Totals 34 NA NA NA 468 

 

Table 4.10 Season Summaries – Tracked Interfaces and Persistent Weak 
Layers of concern from assessments 

Season # of Tracked 
Interfaces 

# of PWLs Avg. Days as 
Surface Problem 

Avg. Days 
Present 

2012-13 10 5 10.0 20.8 
2013-14 11 9 13.7 32.6 
2014-15 15 8 11.4 27.1 
2015-16 9 4 11.5 16.5 
2016-17 14 8 8.8 22.6 
2017-18 11 7 11.4 9.9 
Average 11.7 6.8 11.1 21.6 
Totals 70 41 NA NA 

 

A visual examination of the weather and SNOWPACK profile timeseries plots 

showed that tracked PS/DPS avalanche problems typically followed the occurrences of 

SS avalanche problems that had buried a substantial weak layer (yellow dots, Figure 

4.26) that formed prior to the last storm cycle when conditions were ideal for the 

formation of persistent grain types (e.g. SH, near-surface FC).  

To explore the relationships between the stages of the tracked interfaces and the 

modelled weather and snowpack observations, I first plotted boxplots (Figure 4.27) and 

used Kruskal-Wallace and pairwise Wilcoxon rank-sum tests to assess the significance 

of the observed differences.  In addition, I calculated effect sizes r to measure the 

magnitude of the observed differences.  This approach revealed the following 

differences: 
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• Median slab thickness increased significantly between each of the stages 

(Surface median = 49.4 cm; Present median = 56.4 cm; Absent median = 

96.0 cm).  However, the effect size calculations revealed that the 

difference between Surface and Present is only small, whereas the 

difference between Present and Absent is medium. 

o Kruskall-Wallis Test: p-value < 0.05 

o Pairwise Wilcoxon Tests:  

§ Surface vs. Present (p-value < 0.01, r = -0.07)  

§ Present vs. Absent (p-value < 0.01, r = -0.30) 

• Median slab density increased significantly between each of the stages 

(Surface median = 201.0 kg/m3; Present median = 215.2 kg/m3; Absent 

median = 270.5 kg/m3).  Again, the effect size calculations revealed that 

the difference between Surface and Present is small and the difference 

between Present and Absent is medium. 

o Kruskall-Wallis Test: p-value < 0.05 

o Pairwise Wilcoxon Tests:  

§ Surface vs. Present (p-value < 0.01, r = -0.07) 

§ Present vs. Absent (p-value < 0.01, r = -0.28) 

• Median slab hardness also increased significantly between each stage 

(Surface median = 1.6; Present median = 1.8; Absent median = 2.3) with 

similar results for the differences. 

o  Kruskall-Wallis Test: p-value < 0.05 

o Pairwise Wilcoxon Tests:  

§ Surface vs. Present (p-value < 0.01, r = -0.08) 

§ Present vs. Absent (p-value < 0.01, r = -0.25)) 

• Median weak layer age increased significantly (Surface median = 

27 days; Present median = 27 days; Absent median = 64 days).  Since 

the median values for Surface and Present are identical, the effects size 
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calculation was only done for the difference between Present and Absent 

and revealed a medium difference. 

o Kruskall-Wallis Test: p-value < 0.05 

o Pairwise Wilcoxon Test:  

§ Present vs. Absent (p-value < 0.01, r = -0.42) 

• Median weak layer density only increased significantly between Present 

and Absent stages (Surface median = 269.0 kg/m3; Present median = 

277.0 kg/m3; Absent median = 344.0 kg/m3) with a medium difference. 

o Kruskall-Wallis Test: p-value < 0.05 

o Pairwise Wilcoxon Test:  

§ Present vs. Absent (p-value < 0.01, r = -0.29) 

• Median weak layer hardness also only increased significantly between 

the Present and Absent stages (Surface median = 2.0; Present median = 

2.0; Absent median = 3.0) with a medium difference. 

o Kruskall-Wallis Test: p-value < 0.05 

o Pairwise Wilcoxon Test:  

§ Present vs. Absent (p-value < 0.01, r = -0.25) 

The progression of Surface avalanche problems to Present PS/DPS avalanche 

problems to Absent is apparent when plotting slab thickness against weak layer age 

(Figure 4.28). 
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Figure 4.26 Timeseries (2016 Season – Treeline) of PS/DPS avalanche problems, precipitation (HN24 = grey bars, 
and rainfall = black bars) and snowpack evolution (black lines = tracked layers). Yellow bands 
represent the presence of a PS/DPS avalanche problem on any given day. 
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Figure 4.27 Distribution of slab thickness, average density and average 

hardness and weak layer age, density and hardness when PS/DPS  
avalanche problems were surface problems, present and absent 
(2013 - 2018 Seasons). 

 
Figure 4.28 Tracked weak layer evolution for all tracked interfaces showing 

weak layer age versus slab thickness (Red = Surface problem; 
Green = Present PS/DPS problem; Grey = Absent PS/DPS problem) 
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Representing PS/DPS avalanche problem relationships with a CIT model 

To simplify the PS/DPS avalanche problem CIT analysis, two separate analyses 

were completed: one for “Turning On” or the switch between Surface and Present 

PS/DPS avalanche problems and; one for “Turning Off” or the switch from Present to 

Absent PS/DPS avalanche problems.  Interestingly, the “Turning Off” model did not 

produce any significant decision rules, which will be rationalized more in the discussion 

section. 

Across the entire dataset of the 70 tracked interfaces, there was a 31% 

probability of a tracked interface becoming a PS/DPS avalanche problem.  The analysis 

for “Turning On” PS/DPS avalanche problems computed 14 decision rules that split the 

dataset into 15 distinct terminal nodes (Figure 4.29).  The first and most significant split 

in the CIT analysis was weak layer age which showed that there was only a 10% 

probability of a tracked interface becoming a PS/DPS avalanche problem when the 

interface was less than or equal to 10 days old (Nodes 3, 5 & 6).  The most likely 

conditions for young weak layer of ages 6 to 10 days to become a PS/DPS avalanche 

problem was with a weak layer grain types of FC, FCxr or DH (Node 6, 40% probability). 

If a tracked interface was older than 10 days, there was a 44% probability that it 

would become associated with a PS/DPS avalanche problem.  As the age of the weak 

layer exceeded the 10-day threshold, the next significant decision rule that emerged was 

the hardness of the overlying slab.  Based on the Hand Hardness scale (1 = very soft 

(fist), 2 = soft (4 fingers), 3 = medium (1 finger), 4 = hard (pencil point), 5 = very hard 

(knife), (McClung & Schaerer, 2006)), softer slabs (≤ 2) only had a 26% probability of 

becoming a PS/DPS avalanche problem, suggesting conditions were not favourable for 

slab formation above the layer (Nodes 13 & 14).  The remaining nodes on the soft slab 

branch (hardness ≤ 2) highlighted additional variables that relate to forecasters turning 

on of PS/DPS avalanche problems: when maximum slab temperatures were cold (≤ -

5.4 ºC), there was less chance of a PS/DPS avalanche problem (Nodes 10 & 11, 6% 

probability).  The final split in this branch was related to a crust being present 

underneath the tracked interface.  If a crust was present, the probability of a PS/DPS 

avalanche problem being present was substantially higher (50% probability in Node 10 

versus 3% in Node 11).  However, only 8 cases were included in Node 10 in total.  When 

the maximum slab temperatures were above -5.4 ºC, the probability of a PS/DPS 
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avalanche problem increased to 40% and was driven by the thickness of the weak layer 

(≤ 3.73mm, 51% probability; > 3.73 mm, 18% probability). 

For weak layers older than 10 days with harder slabs (hardness > 2), the 

probability of forecasters becoming concerned with a PS/DPS avalanche problem 

increased to 61% and the next significant decision rule related to the grain size of the 

weak layer itself (Node 15).  With large grains in the weak layer (> 1.47 mm), a PS/DPS 

avalanche problem became almost certain (Node 29, 96% probability).  The remaining 

splits when the weak layer grain size was smaller (≤ 1.47 mm) outlines other weak layer 

and slab properties that help define when forecasters were possibly concerned with 

PS/DPS avalanche problems.  First, the main split was related to weak layer hardness 

where hardness greater than 2 decreased the probability of a PS/DPS avalanche 

problem to 39% followed by the grain type of the weak layer (Nodes 27 & 28).  When the 

weak layer hardness was less than or equal to 2, layer was more susceptible to failure 

and the probability of a PS/DPS avalanche problem increased to 69%.  The relatively 

small terminal nodes of the following decision rules describe various scenarios where 

PS/DPS avalanche problems were likely but only on special occasions:  

• when the average slab hardness was soft to very soft it was quite likely 

that a PS/DPS avalanche problem would exist (Nodes 19 & 20, 81% 

probability), especially earlier in the season;  

• when slab were harder and weak layers were at least 1.33 mm thick 

PS/DPS avalanche problems were almost certain (Nodes 24 & 25, 89% 

probability) especially as the weak layer got older;  

• when the weak layer was extremely thin (<= 1.33 mm) there was no 

chance of a PS/DPS avalanche problem (Node 22, 0% probability).   

As with the surface avalanche problem analysis, the fact that some of the terminal nodes 

only include small numbers of observations might indicate that they represent special 

cases that are not necessarily generalizable. 
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Figure 4.29 Conditional Inference Tree for turning PS/DPS Avalanche  Problem on
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Chapter 5. Discussion 

The purpose of my research was to explore the relationships between modelled 

weather and snowpack data and human avalanche problems assessments.  In the 

following sections, I combine the findings of the initial data exploration and the CIT 

analyses into a comprehensive picture that addresses my research question.  The 

resulting synthesis is broken into two main parts: a) the main themes that emerge, and 

b) the limitations of my research. 

5.1. Main Themes Developed from the CIT Analyses 

I identified three main themes that emerged from my analyses.  In the following 

sections, I will delve into the how each result relates to the existing knowledge and 

literature. 

5.1.1. Relevant Weather and Snowpack Factors 

The results from my analysis of individual surface and persistent slab avalanche 

problem types confirmed the influences of expected weather and snowpack variables on 

the presence of forecasted avalanche problems.  The CIT models identified many 

statistically significant splits related to these variables that provide insight into what 

forecasters might pay attention to when making complex decisions about avalanche 

hazard. 

Surface Avalanche Problem Patterns 

What emerged from my surface problem analyses is that the status of different 

avalanche problems depends on different combinations of weather and snowpack 

variables.  This is not surprising as each avalanche problem type is defined by their own 

set of variables and locations both spatially and temporally (Haegeli et al., 2010).  Many 

of the main decision rules to emerge can be directly linked to previous studies and rules 

that forecasters use in the field to assess avalanche conditions. 

As expected, any weather and snowpack variables that emerged in the WS and 

SS avalanche problem CIT analysis had to do with wind and new snow.  Explicitly, in the 
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WS avalanche problem analysis, the 72 h wind run split at 320 m/s∙h (average of 

16 km/h for 3 days) is on the low end of the thresholds described in the literature where 

snow transport is the greatest between 25-40 km/h (Föhn, 1980).  Since the actual wind 

speeds are likely higher than predicted by the NWP model (Horton, Schirmer, & 

Jamieson, 2015), the wind speed thresholds may not be good decision rules, but it is 

encouraging that they are represented in the CIT model as a variable that relates to 

forecaster decisions.  Another possible influence on the presence or absence of wind 

variables in all the CIT models (with the exception of WS), is that the discontinuity of the 

wind information due to the upgrade to the HRDPS between the 2014 and 2015 seasons 

was not corrected.  As the physics and modelling capabilities improve, these splitting 

rules may get closer to the thresholds currently used by practitioners.  As for new snow 

quantities, the analysis of SS avalanche problems contained many high-level decision 

rules that emerged at the top of the CIT model.  It is predictable that new snow is the 

driving factor for SS avalanche problem assessments as previous studies have shown 

that avalanche hazard increases with increasing new snow amounts (Floyer & McClung, 

2003; Perla, 1970).  Although the decision rule splits seen in the CIT (e.g. HN24: Node 

2, 7 cm; Node 27, 2.5 cm; HN72: Node 23, 4 cm, see Figure 4.13) analysis are well 

below the indicated 30 cm threshold stated by Perla (1970), they are much more similar 

to the thresholds that emerged from the study done by Haladuick (2014) and the 

presence of the main snowfall variables (HN24 and HN72) at the top of the decision tree 

also verifies their importance to forecasters when identifying SS avalanche problems. 

The expected weather and snowpack variables that play important roles in the 

identification of LDRY avalanche problems were in fact the variables that emerged in the 

CIT model.  The first decision rule split based on time of the season was expected since 

loose, dry snow is more probable earlier in the season before air and snow surface 

temperatures increase.  Since loose, dry snow is constrained to certain weather and 

snowpack conditions (cold and calm days), it is also reassuring to see air and snow 

surface temperatures and ski-penetration depth highlighted as decision rules.  Ski-

penetration depth, as modelled by SNOWPACK, is also considered a proxy for the 

availability of loose snow.  What is also promising is that storm snow density is the major 

(and only) decision rule that emerged for LDRY avalanche problems persisting.  The 

storm snow density split occurs at a reasonable value of 130 kg/m3 (Simon Horton, 
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personal communication, 2019) and indicates that as the storm snow settles and the 

snow begins bonding, there is less chance of a LDRY avalanche problem persisting. 

Although the size of the datasets of CORN and LWET avalanche problems was 

too small for an in-depth analysis, the CIT models showed promise.  Cornice avalanche 

problems, considered a late season phenomenon, occur mainly in the alpine along ridge 

crests and usually persist once they have formed (Haegeli et al., 2010; Statham, 

Haegeli, et al., 2018).  This is verified in the analysis for CORN avalanche problems with 

the majority of the assessments occurring after the beginning of March in the alpine and 

are more likely to persist once forecasters have become concerned about them.  Loose 

wet avalanche problems are also predominantly a late season phenomenon but occur 

more frequently at lower elevations as warmer spring conditions begin melting the upper 

levels of the snowpack (Haegeli et al., 2010).  This again is confirmed by the analysis for 

LWET avalanche problems with the majority of assessments occurring after late March 

when temperatures have increased. 

While the modelled predictive threshold values are underestimated and may not 

be directly meaningful, it is promising to see the relevant variables appear in the models 

as it is an indication that the weather and snowpack models are capable of identifying 

relevant factors that influence forecaster decisions.  Compounding errors from HRDPS 

underestimation of precipitation amounts and the resulting snowfall calculations done by 

SNOWPACK are not accurate representations of what forecasters would expect to see 

in the field before becoming concerned enough to make a crucial decision about 

assessing a certain avalanche problem (McClung & Schaerer, 2006).  My model 

validation also points to this underestimation and confirms the effect of precipitation bias 

on model simulations reported in previous research (Bellaire et al., 2011).  Part of the 

issue also lies in the fact that many of the real field observations are done in well 

sheltered areas and are not easily extrapolated across the entire region being forecasted 

since terrain, elevation, and other environmental factors play a large role in the amount 

of precipitation that accumulates.  The HRDPS wind model upgrade in 2015 improved 

the underestimation of modelled wind speed values, and although it was only accounted 

for in my analysis of WS avalanche problem types, the accuracy of the improved wind 

model is partially responsible for the fact that wind variables (wind speed and wind run) 

did not show up as decision rule splits as often as expected.  I believe that this is not 

only the result of underestimation by the NWP model but also the direct result of the 
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reliability of using the wind variable from the NWP model as wind is statistically 

calculated at 10 m elevations on a 2.5 km grid spacing, but in reality, it is highly affected 

by small scale terrain features that cannot be resolved on a coarse grid.  For example, 

Horton et al. (2015) found poor agreement in the distribution of wind speeds from 

different HRDPS wind speed variables with measurements from stations in GNP.  

Although modelled wind speeds are not representative of the actual wind speeds seen at 

the surface where it can interact with the deposited snow, they are still correlated, hence 

wind run calculations can still give meaningful information. 

Persistent Slab Avalanche Problem Patterns 

The analysis of the persistent slab avalanche problems revealed similar patterns 

seen in the surface avalanche problems but was dominated by snowpack structure 

variables.  The analysis for “turning-on” PS/DPS avalanche problems proved to be 

insightful in regard to the variables that emerged and was supported by existing 

literature about persistent slab avalanche problems. 

The most important split in the CIT model was the age of the weak layer.  Since 

younger layers do not develop into a persistent problem until they become sufficiently 

buried and/or the overlying snow has developed into a slab (Haegeli et al., 2010; 

Statham, Haegeli, et al., 2018), this result is unsurprising.  The other important fact to 

consider is that slabs of snow that overlie young weak layers are usually initially 

identified as a surface avalanche problem such as a SS or WS avalanche problem.  

Only if a weak layer persists and the overlying slab begins to densify and harden over 

time, the problem will transition into a PS/DPS avalanche problem (Klassen, 2014). 

After weak layer age, the rest of the significant splits were, not surprisingly, 

largely driven by snowpack structure with a relatively even distribution of slab and weak 

layer properties.  The main slab properties to emerge were hardness and temperature.  

In my analysis, slab hardness was used interchangeably with the highly correlated slab 

density (I removed the density variables).  If the weak layer is triggerable, a harder slab 

will generally result in an increase in fracture propagation and result in a larger, more 

destructive avalanche (Schweizer, Reuter, van Herwijnen, & Gaume, 2016).  Another 

meaningful predictor that emerged from the CIT analysis is average slab temperature.  

Since temperature also impacts the stiffness of the slab, warmer temperatures could 

reduce the stiffness increasing the potential to initiate a fracture in the weak layer, but 



95 

the increase in temperature could also decrease the ability for a fracture to propagate 

over larger distances.  A meaningful alternative temperature variable for future 

consideration could be the temperature gradient from snow surface temperature down to 

the weak layer temperature.  Although temperature gradients impact snow properties 

over longer time scales, decreased temperature gradients can promote bonding and 

increased strength, whereas increased temperature gradients, which are associated with 

colder air temperatures, slows down the bonding process (Zeidler & Jamieson, 2006b).  

In other words, the temperature gradient drives the type of metamorphism in the 

snowpack whereas the temperature itself relates to the speed of the metamorphism 

process.  Both hardness and temperature are readily measured in the field, but 

surprisingly, slab thickness which is one of the main field observations that forecasters 

focus on during their assessment of PS/DPS avalanche problems did not show up in the 

CIT model.  One possible reason for this is that thickness is highly correlated with weak 

layer age (thickness increases over time) and is already represented in the primary 

decision rule splits.  Slab thickness is also important to the strength of snowpack and the 

relative size of associated avalanches.  While thinner slabs can be easier to trigger 

(Zeidler & Jamieson, 2006a), a thicker slab will also result in a larger avalanche once a 

crack propagation is initiated (Schweizer et al., 2016) which increases the concern that 

forecasters have surrounding PS/DPS avalanche problem assessments. 

Finally, the weak layer properties that emerge from the CIT analysis were 

hardness, thickness, grain type and grain size.  The same weak layer properties have 

been identified as being important by forecasters in decision support tools such as those 

by Conlan and Jamieson (2017).  Persistent weak layers are often identified as layers 

composed of SH, DH and FC with relatively large crystal size (Haegeli et al., 2010; 

Statham, Haegeli, et al., 2018) and the presence of grain type and size in the CIT 

analysis confirms the importance of these variables.  An increase in the hardness of a 

weak layers results in an increase in the strength of that weak layer (Zeidler & Jamieson, 

2006a).  Although measuring hardness in the field is partly subjective and difficult to 

estimate for thin layers (Zeidler & Jamieson, 2006a), the introduction of new field 

technology could eventually assist with gaining more accurate measurements (McClung, 

2018). 

Overall, the decision rules that emerged from the CIT model, were reasonable 

and provided a meaningful connection between the variables used to assess avalanche 
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problems and the important variables predicted by the models.  Although the results 

have the potential to be used as the foundation for the development of future decision 

aids, the modelled thresholds are not directly relatable to field observations and the 

current modelled decision rules only provide insight into what forecasters may pay 

attention to when assessing avalanche problems in the past.  For instance, the modelled 

probability of a PS/DPS avalanche problem is almost certain when a slab of 1-finger 

hardness overlies a 10-day old weak layer that has grains larger than 1.5 mm, which is a 

promising result from this pilot study that can easily be interpreted by operational 

forecasters. 

5.1.2. Insight into Forecaster Practices 

The second important theme to emerge from my study is the possible insight into 

forecaster practice related to the CMAH.  Since avalanche forecasting requires 

substantial judgement (LaChappelle, 1980; McClung, 2002), it is inherently susceptible 

to human biases and errors.  While the CMAH introduced a general framework and 

language for avalanche hazard assessments (Statham, Haegeli, et al., 2018), it still 

leaves considerable room for interpretation, which can lead to undesirable 

inconsistencies (see, e.g. Clark, 2019; Statham, Holeczi, et al., 2018), and means that 

forecasters can arrive at different conclusions based on identical information (Lazar et 

al., 2016).  Building on this research, the present analyses offer a complementary 

perspective on how the CMAH is used in operations. 

In all my analyses the status of the analyzed avalanche problem from the 

previous day was consistently the primary decision rule.  This result is intuitive and was 

expected as the previous day’s status is the foundation of forecaster assessment of the 

next day: Was there a significant change in the weather or snowpack conditions that 

would change the probability of a certain avalanche problem type occurring?  Depending 

on the answer, the subsequent splits provide insight into the weather and snowpack 

conditions that led forecasters to change their assessment.  This type of result is a 

reflection of the practice of Bayesian updating and time dependencies (LaChappelle, 

1980; McClung, 2002). 

The outlier avalanche problem in all of the CIT models was the WS avalanche 

problems where the majority of the decision rule splits were not driven by weather or 
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snowpack variables but rather the status of a concurrent SS avalanche problem.  This 

can be directly linked to the implementation of the CMAH and the evolution of forecaster 

practice since.  Specifically, during the last few seasons in GNP, forecasters appear to 

have separated WS and SS avalanche problems, not allowing them to be identified 

simultaneously for reasons explained by Klassen (2014).  Predictably then, the status of 

concurrent WS avalanche problems also plays a big role in the identification of SS 

avalanche problems.  Although it plays less of a role in this analysis, the status of WS 

avalanche problems occurs as four separate splits further down the decision tree, where 

its importance is more in refining certain situations where SS avalanche problems occur.  

This suggests that when conditions align for SS avalanche problems, they take 

precedence over WS avalanche problems.  If discussed at the operational level, insights 

such as this can help to improve forecaster practice and create a more streamlined 

approach to avalanche hazard assessment. 

5.1.3. The Challenge of “Turning off” Avalanche Problems 

The “turning-on” branch of avalanche problems are relatively well defined in all 

the CIT models through the presence of many decision rule splits that laid out specific 

scenarios where each avalanche problem was more likely to be identified.  What also 

became clear was that the scenarios for “turning-off” an avalanche problem were harder 

to explain.  Specifically, the CIT analysis for “turning-off” a PS/DPS avalanche problem 

generated no significant splits.  Although this result may not seem meaningful initially, it 

sheds light on a challenging component of forecasting avalanche problems and is 

consistent with the less defined “turning-off” branches seen in the surface avalanche 

problems.  The “turning-off” branches of all the surface avalanche problems had 

considerably fewer nodes and significant splits compared to the “turning-on” branches, 

even though certain variables that emerged were indeed meaningful (i.e. HN24 and 

HN72 (SS), HST density (LDRY)).  This indicates that while there is some consistency in 

identifying an avalanche problem initially, when it comes to “turning-off” an avalanche 

problem, it becomes less clear when and why this should occur.  In other words, the 

available dataset includes much more variability, which prevents the identification of 

meaningful rules. 

Although further exploration and analyses are necessary to examine the “turning-

off” of avalanche problems in more depth, incorporating other observations such as 
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recent avalanche activity could contribute to improving the quality of the analysis in the 

future.  While avalanche activity data available was available for the study area, it was 

not incorporated into the analysis since a) this study was aimed at understanding the 

relationships between modelled observations and the forecasted avalanche problems 

and b) because there is usually no avalanche activity records in data-sparse regions 

where this modelling approach for avalanche problems might be applied in the future.  

Another possible approach could be to use likelihood and size as target variables 

instead of the simple presence or absence of an avalanche problem as these avalanche 

problem characteristics might be more closely related to the modelled weather and 

snowpack variables. However, inconsistencies in the assessments of likelihood and size 

due to human judgement might prevent this analysis approach from providing any more 

meaningful insights in the future. 

5.2. Limitations 

Although my study offers meaningful insights into the relationships between 

modelled weather and snowpack data and forecasted avalanche problems, it is not 

without its limitations.  Firstly, although there were many days with avalanche problems 

present, the dataset contains very few cases were avalanche problems were “turned-on” 

or “turned-off”.  Hence, a longer dataset would help strengthen the analyses and result in 

a better understanding of the underlying weather and snowpack conditions needed to 

“turn-on” or “turn-off” a given avalanche problem.  In an ideal scenario, the dataset would 

contain many more seasons of data than the six seasons available for my research.  

This limitation is also obvious in the fact that there were only two observations for wet 

slab avalanches and so they were omitted from the analysis.  Although the CIT models 

that were analyzed should have only been run for avalanche problems with substantially 

large datasets (Hothorn et al., 2006), some of the lesser occurring avalanche problems 

(LWET, CORN) showed promising results and were not omitted.  As the dataset grows 

in future years, future analyses will not be subjected to the same limitation. 

Another limitation was that the weather and snowpack data was gathered from 

models run at a single virtual location and then linked to avalanche assessments that 

were representative of an entire region without taking advantage of the simulations at 

the other grid points within GNP.  While the approach employed in the present study was 

justified due to the high correlation between the simulated weather and snowpack 
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observations at the grid points, it nevertheless represents a substantial simplification.  

Although the simulated observations are representative of a 2.5 km by 2.5 km square 

and potentially have a larger extent than actual field observations used by forecasters to 

create their avalanche assessments, these subjectively chosen grid points may not be 

an accurate representation of the entire region’s snow conditions.  Haegeli and McClung 

(2004) referred to this issue as a scale mismatch.  To better characterize regional 

conditions, it will be imperative for future analyses to incorporate more grid points in 

future analyses to capture a wider variety of terrain influences. 

An added limitation in this study is that the study area is only representative of a 

‘transitional’ snow climate.  Since a ‘transitional’ snow climate is inherently variable from 

season to season, it may be difficult to gather meaningful decision rules and thresholds 

that are representative of the other snow climates (maritime and continental).  As this 

research field expands in the future it will be important to address this limitation to 

understand how decision rules and thresholds are possibly affected by weather and 

snowpack characteristics across all snow climates and regions. 

The final limitation in my study was the update of the HRDPS model in the middle 

of the study period (e.g. the wind variables) (Milbrandt et al., 2016).  While 

improvements in the NWP model are desirable, it created a substantial discontinuity that 

dramatically reduced the dataset of valid wind speed records for the present analysis.  

This means that weather data gathered for each season could potentially be generated 

under different assumptions and underlying physics, and although each consecutive 

season’s weather forecast is possibly more accurate it also affects the accuracy of each 

season’s simulated snowpack structure.  This makes the dataset somewhat inconsistent 

year over year and therefore makes it problematic to compare them to each other and 

build consistent statistical models.  This limitation will continue to appear in future 

research since models are constantly improved as scientific research evolves. 
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Chapter 6. Conclusions 

In this study, I explored the relationships between modelled weather and 

snowpack data and human avalanche problems assessments.  First, I created a 

comprehensive dataset of six winter seasons in Glacier National Park, combining public 

avalanche bulletins with simulated weather and snowpack data.  I then thoroughly 

examined the dataset using many exploratory analysis techniques to gain an initial 

understanding of how the variables interacted.  Surface avalanche problems (WS, SS, 

LDRY, LWET and CORN) and persistent slab problems (PS and DPS) were analyzed 

separately due to the differences in the factors contributing to their formation and the 

distinct data structures.  Finally, I used conditional inference trees (CIT; Hothorn et al., 

2006) to explore how the presence and absence of avalanche problem types relates to 

the simulated weather and snowpack variables in a multivariate fashion.  Three main 

result themes emerged from my analyses: 1) Each avalanche problem type has its own 

set of relevant weather and snowpack variables that contribute to when it is forecasted, 

2) Certain results give insight into forecaster practice and offer an interesting perspective 

on how the CMAH is used in avalanche forecasting operations in Canada, and 3) 

“Turning avalanche problems off” seems much more challenging for forecasters than 

turning them on. 

The results of my analysis provide a meaningful initial step towards deriving 

avalanche problem types from simulated weather and snowpack observations and can 

hopefully be used as the foundation for creating decision aid tools aimed at helping 

forecasters assess avalanche hazard in the data-sparse regions in the future.  Even 

though the CIT models extracted many of the expected snow and weather variables, the 

identified threshold values for the splits in the CITs had a tendency to be lower than the 

values published in the scientific literature or the rules of thumb used by practitioners.  I 

attribute this discrepancy to two main reasons.  First, weather and snowpack variables 

can vary extensively throughout the mountains, and the weather and snowpack values 

used in the analyses were modelled from a large-scale weather prediction model on a 

2.5 km grid that does not necessarily provide a true representation of the local conditions 

on the ground.  The simplification of only using a flat-field simulation from a single grid 

point from each elevation band for my analysis might further aggravate the issue as the 

simulated observations might not be representative of the region.  The second main 
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reason for the limitations of the derived CIT models is likely related to the subjectivity of 

the judgment involved in avalanche forecasting (LaChappelle, 1980; McClung, 2002) 

and inconsistencies in the application of the CMAH (Clark, 2019; Lazar et al., 2016; 

Statham, Holeczi, et al., 2018).  While the CMAH provides a conceptual framework for 

assessing and communicating avalanche hazard, the vague definitions of some of the 

scales included in the model (Thumlert, Statham, & Jamieson, 2019) likely prevent a 

more consistent application of the framework. 

Based on the results that emerged from my analyses, I see the following 

opportunities for future research on integrating avalanche problems into snowpack 

simulations.  One possible next step could be to focus on the characteristics of 

avalanche problems (i.e. location, likelihood, and size) instead of their presence or 

absence, as these characteristics may relate to modelled observations more directly.  

Another possibility could be to explicitly integrate the spatial variability of the predictions 

across the forecast area into the model instead of just focussing on one point in space 

per elevation band.  Although there are many NWP grid points within GNP (n = 225) 

distributed across all three elevation bands, my study used only one grid point per 

elevation band with a ‘flat-field’ simulation to begin understanding the relationships at a 

manageable level.  This is a major simplification and does not represent the entire 

picture of the true conditions within forecast regions.  Integrating distributions of 

observations into the model rather than single values would be one way to implement 

such an approach. In addition to simulating at different grid points, this approach could 

also include simulations on virtual slopes to also capture the spatial variability due to 

variation in aspects.  Research is currently being conducted in SARP to develop 

algorithms that can cluster sets of snow profiles and aggregate them into representative 

snow profiles to describe regional conditions more effectively (Herla et al., In 

Preparation; Horton et al., 2019).  Basing avalanche problem identification on 

aggregated representative profiles could be another approach to better represent 

regional patterns.  Both of these approaches would help to address the scale mismatch 

between observations and assessments.  

Another possible approach for improving the link between the simulated weather 

and snowpack observations and the presence or absence of avalanche problem types 

would be to include other possible predictor variables.  SNOWPACK produces a wide 

range of possible output variables, but the present study primarily focused on variables 
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that were intuitive and mirror existing forecaster practices to provide practical insight and 

allow the comparison with existing rules of thumb (e.g. rules for HST, HN48 and HN72 

layers).  This variable selection process excluded many of the more sophisticated 

patterns that could be extracted from output data of SNOWPACK simulations.  Possible 

derived variables to consider include precipitation rates, loading rates, or the combined 

effects of precipitation intensity, quantity and wind variables; differences in temperatures 

(e.g. 24 h temperature trend or temperature gradients); ratios of hardness or grainsize 

between weak layers and overlying slab; mechanical properties and stability indices. 

Although all of the outlined directions are interesting possibilities for future 

research, they do not get around the issue that avalanche assessments are inherently 

subjective judgements that are susceptible to forecaster variability and biases.  

Developing a decision aid based on historic assessment data will therefore always be at 

risk of simply perpetuating existing forecaster biases and inconsistencies.  This research 

offers a new perspective on forecaster habits that can potentially be used to develop 

approaches to improve forecaster consistency.  A possible alternative solution to this 

challenge would be to use the results presented in this study as a starting point for a 

discussion with expert forecasters about existing forecast practices and how define best 

practices.  Instead of the data-driven development of avalanche problem models 

pursued in the present study, this would lead to an expert-driven development of 

prescriptive avalanche problem models similar to the research being done Karsten 

Müller and colleagues who aim to develop an ‘avalanche problem solver,’ (Müller et al., 

2018) that will automatically predict daily avalanche problems and danger levels based 

on weather and snowpack conditions for all regions in Norway.  Since the two 

approaches are complementary with their distinct strengths, I believe that the best 

results will come from a combination of data- and expert-driven research and 

development. 
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