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Abstract

Current fisheries monitoring practices in many regions of the world include precise

measures of fishing location. However, spatial information is ignored in most current

stock assessments, which assume instead that fishery catch per unit effort (CPUE)

observations are independent replicate measurements of average stock density. This

aspatial approach misleads estimates of stock status and productivity because: (1)

harvesters are not random samplers of stock density, and (2) CPUE observations may

be spatially autocorrelated.

This paper introduces a hierarchical Bayesian method describing the spatial distri-

bution of fishery CPUE. The spatial method is applied to British Columbia sablefish

(Anoplopoma fimbria) and compared to traditional aspatial approaches in a stock

assessment context. I show that spatial assessments offer less optimistic estimates of

stock status and productivity compared to traditional aspatial assessments, and that

the area occupied by the commercially exploitable stock is estimated to have declined

by 62 percent from 1990 to 2005.
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“If we knew what it was we were doing, it would not be called research, would it?”
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Chapter 1

Spatial hierarchical Bayesian

models for analyzing fishery data

1.1 Introduction

The use of average fishery catch per unit of effort (CPUE) as an index of fish stock

abundance has been the cornerstone of fisheries stock assessment for nearly a century.

The use of fishery CPUE has been popular because catch records are easily and cheaply

obtained compared to alternative methods of abundance estimation such as tagging

experiments. The use of fishery catch statistics to deduce stock abundance goes back

to at least the work of Baranov (1918). Baranov envisioned a sedentary fish stock

of uniform density over its occupied area, and a fishery that randomly samples this

homogeneous stock with independent and identical fishing sets, so that the set-by-set

catch is some constant fraction of the total remaining stock. Ricker (1940) showed

that a similar relationship would arise for highly mobile fish stocks that re-occupy

fished areas instantaneously. However, deviations from the assumptions of Baranov

(1918) or Ricker (1940), namely heterogeneous densities of fish or targeted fishing

activities, have the potential to affect the predicted proportional relationship between

CPUE and stock abundance (Paloheimo and Dickie, 1964).

A famous example of disproportionality between CPUE and stock biomass is the

collapse of the northern cod (Gadus Morhua) fishery off the coast of Newfoundland,

1



CHAPTER 1. SPATIAL HBMS FOR ANALYZING FISHERY DATA 2

Canada. The collapse has been characterized as “one of the worst social and eco-

nomic nightmares in the nations history” (Walters and Maguire, 1996). The ensuing

moratorium on fishing led to what was described in the popular media as the sin-

gle biggest layoff of Canadian workers ever. In 1505, before the large scale deploy-

ment of European fishing fleets in North America, the estimated biomass of cod in

Newfoundland waters was approximately 7,000,000 tonnes (Rose, 2004). The same

analysis estimates current biomass near 400,000 tonnes, or about six percent of the

pre-settlement biomass.

Although a combination of factors led to collapse of the northern cod stock, sci-

entists played a role by persistently overestimating the abundance and productivity

of the stock (Walters and Maguire, 1996). Several studies have suggested that the

stock assessment failed to track the declining abundance because of an assumed linear

relationship between fishery CPUE and stock abundance (Hutchings, 1996; Hutchings

and Myers, 1994; Walters and Maguire, 1996). Observations of stock decline in some

areas hinted that the overall biomass may have been decreasing significantly even

though the fishery CPUE remained high (Rose and Kulka, 1999). Despite knowledge

on the part of scientists and cod harvesters that the fishery was targeting smaller and

smaller areas of high stock density (Rose and Kulka, 1999), the assessment was unable

to show a decline in total stock biomass. Some authors (Hutchings, 1996; Hutchings

and Myers, 1994; Walters and Maguire, 1996) have recommended in hindsight that

a power relationship relating stock biomass to fishery CPUE (i.e. CPUE = aBc,

where B is the unknown stock biomass, and a > 0 and 0 < c < 1 are unknown

parameters) might be a better way to represent the link between fishery CPUE and

stock abundance when the spatial characteristics of the fishery and stock change over

time. They argue that the power relationship with 0 < c < 1 is a more appropriate

assumption that reflects the ability of the fishery to maintain high catch rates even as

the stock declines. However, Shelton (2005) showed that use of a power relationship

would not have changed scientific advice for the northern cod appreciably, which casts

doubt on the use of the power relationship to reliably avoid such fisheries assessment

failures in the future. A better approach to deal with the problem of changing spatial

distribution of stocks and fisheries is needed.
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1.1.1 CPUE-based assessment of fish stocks

In stock assessment, fishery CPUE is usually assumed proportional to underlying

abundance, even though it has long been recognized that the distribution of fish and

the characteristics of the fishery can cause serious departures from such a relationship

(Ellis and Wang, 2007; Harley et al., 2001; Paloheimo and Dickie, 1964; Peterman

and Steer, 1981; Swain and Sinclair, 1994). To account for these departures, analysts

tend to focus on standardizing the measure of fishery effort, so that each fishing

set can be treated as an identical replicate measurement of stock density. Fishery

CPUE standardization attempts to isolate the effects of auxiliary characteristics such

as the vessel, the skipper, the type or size of gear used, or the season in which the

effort was expended. Recent approaches to standardizing fishery CPUE involve the

use of generalized linear models (GLMs) to account for variation arising from these

auxiliary characteristics (covariates) (Maunder and Punt, 2004). Treating CPUE as

a response and including Year as a covariate factor in the GLM allows year effects to

be interpreted as an index of relative abundance. In essence, the GLM is:

f(CPUE) = Intercept + Year + Other Covariates + Residual Error

where f is a one-to-one link function. Once the GLM is fit, the effect of changes in

stock biomass is assumed to be represented by the Year effects, so that Year can be

used as an index of relative stock biomass.

The GLM standardization approach tends to result in a large number of statisti-

cally significant model covariates. However, the estimated effects are often small when

compared to the scale of the total variation in CPUE, so that little of the observed

variation is actually explained by the model. In such cases, the statistical significance

of model effects is the result of the large sample size created by assuming that each

of the large number of fishery observations (e.g. hundreds or thousands, typically) is

independent, rather than the result of important features in the data.

The continued treatment of fishing observations as independent is surprising be-

cause there are several mechanisms that may cause spatial correlation among fishery

observations (Nishida and Chen, 2004). I term this inattention to spatial autocor-

relation the non-independence oversight. The spatial distribution of fish stocks
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is often not random; rather, CPUE observations that are made geographically close

together will be on average more alike than observations made far apart. Conspe-

cific interactions or habitat features that are not easily deduced or measured can

cause heterogeneity in the density of fish stocks and fishery CPUE. In theory, some

of these features might be measured and included as covariates in the GLM, but

there are countless others such as water quality or predator-prey interactions which

are too costly or impossible to measure. In practise, it will be exceedingly difficult

to overcome the non-independence oversight by including enough covariates to ex-

plain spatial variation in CPUE and make GLM residuals statistically independent.

A more direct and feasible approach to modeling spatial CPUE data is to estimate

spatial autocorrelation. There is a paucity of fishery CPUE modeling exercises in the

primary literature that attempt such an approach, but Nishida and Chen (2004) is

one exception.

In addition to the non-independence oversight, systematic changes in the distri-

bution of fishery effort and stock density over time can also have an effect on GLM-

derived indices (Campbell, 1998, 2004; Walters, 2003). Stock abundance indices, by

design, should track changes in the abundance of a stock. Baranov (1918) and Ricker

(1940) viewed CPUE as a relative measure of stock density, defined as the biomass

in the area “swept” be the fishing gear. Assuming that harvesters fish randomly

over the area occupied by the stock, average fishery CPUE is an estimate of average

stock density. If the area occupied by the stock is constant, then the average stock

density is proportional to the total biomass of the stock. However, fish harvesters

most assuredly do not fish randomly. Rather, areas with higher densities end up

being targeted preferentially because such areas are more profitable. Fish harvesters

are able to target areas with higher densities based on previous experience if such

areas provide consistently high catch rates. Alternatively, harvesters can use modern

electronic fish-finding equipment such as sonar to search for and target high density

areas.

Given that harvesters do not fish randomly, changes in the spatial distribution of

the fish stock are expected to affect time trends in aggregate fishery statistics such

as mean fishery CPUE. Consider two scenarios in which a fish stock is declining in
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biomass (Figure 1.1): in the first scenario - aggregation - the fish stock is decreasing in

both biomass and spatial extent simultaneously; in the second scenario - disaggrega-

tion - the fish stock is decreasing in biomass, but increasing in spatial extent. Spatial

Lo
ca

l C
P

U
E

Location

Depletion

Aggregation Disaggregation

Figure 1.1: Effect of spatial aggregation and disaggregation on fishery CPUE. Curves
represent the simplified distribution of catch per unit effort (CPUE) over an imagined
space. Solid curves represent aggregation (left) and disaggregation (right) scenarios.
Dashed curves represent depletions proportional to density, and are provided for ref-
erence. Harvesters are assumed to be able to target those areas with the highest
CPUE; shaded areas represent the region over which most fishery activity is expected
to occur.

aggregation of the underlying stock leads to hyperstability (i.e. positive bias - abun-

dance declines faster than average fishery CPUE) because the stock density where

the fishery operates remains high even as the average density declines (Hilborn and
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Walters, 1992). In the second case, spatial disaggregation will lead to hyperdepletion

(negative bias) in relative biomass trends because the stock density where the fishery

operates declines faster than the average stock density (Hilborn and Walters, 1992).

These biases are the result of two effects (Campbell, 1998, 2004; Walters, 2003): (1)

disproportionate changes in the local density in those areas where the fishery oper-

ates; (2) changes in the area in which the fishery operates leads to changes in the area

over which stock density is measured. To address the first bias, measures of density

should be averaged by location (i.e. spatially) rather than by fishing set. To address

the second bias, the total stock area (even areas without fishing effort) that is consid-

ered in the analysis should remain constant throughout a CPUE time series. In cases

where the exploited area is changing over time, the CPUE at locations within the

total stock area that were not fished needs to be predicted using a model (Campbell,

2004). Ideally, survey measurements could be used to ensure that the exploitable

stock is contained within the defined total stock area.

Because harvesters are not random samplers of stock density, there is a disconnect

between aspatial GLM year effects and stock biomass from year to year. I term this

disconnect the dimensional oversight, because GLM year effects measure changes in

fishery performance as measured by average set-by-set CPUE, not changes in average

stock density. Other studies have addressed the dimensional oversight, but proposed

solutions have been somewhat ad hoc. For example, Walters (2003) suggested a

method of analysis for stocks in which the area fished was initially a subset of the

total historical stock boundary, and effort subsequently moved on to other areas as

the initially fished areas declined in abundance. His method used areas defined on a

grid and assumed: (1) that prior to the first instance of fishing in an area, the catch

rate would have been the same as the average in the first three years that the area

was fished (stable biomass before fishing, small area depletion in the first three years

fishing); (2) once an area was abandoned, future catch rates in the area would have

been the same as the last fishing year (no stock recovery after fishing ceases). Walters

(2003) suggested that the dimensional oversight is better recognized than ignored,

and that spatial gaps in fishery data might be filled in by borrowing information from

neighbouring areas. Campbell (2004), who also suggests analyzing fishery CPUE on
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a pre-defined grid, compared a series of assumptions that might be made in order to

fill in grid areas that did not receive any fishing effort. However, the assumptions

proposed by Campbell (2004) rely on the judgement of the analyst to determine how

the data gaps should be filled in, and are thus subjective.

To help deal with the challenge of using fishery CPUE data to infer year-to-

year changes in total stock biomass, I present a class of hierarchical Bayesian models

(HBMs) that predict fishery CPUE at every point in the fixed total stock area. The

HBMs use the spatial autocorrelation of the fishery CPUE data themselves when

predicting CPUE at unfished locations, which is more objective than the approach

proposed by Walters (2003) or Campbell (2004), and thereby has the potential to

better address the non-independence oversight. The HBM approach also addresses

the dimensional oversight by averaging CPUE density across space rather than aver-

aging fishery performance. Assuming that the predicted CPUE at a point in space is

proportional to the stock biomass density at that same point, the relative total stock

biomass is the average predicted CPUE over the total stock area. Spatial fisheries

data are treated continuously and on a set-by-set basis, which produces a level of

spatial resolution that is limited only by the resolution of the data. This high level of

resolution is desirable because changes in fish distribution may occur on a scale that

is fine relative to management areas (Kulka et al., 1996). However, not discretizing

the data increases the computational burden, especially for large fishery catch and

effort datasets. I develop a novel approach that allows large amounts of data to be

analyzed by sacrificing some resolution in spatial variation.

1.2 Methods and Computation

1.2.1 Hierarchical Models

Hierarchical models are appropriate for data that arise from a combination of pro-

cesses that operate on different scales, because they specify not only the statistical

distribution for the data, but also the distributions of model parameters. Specifying

distributions for model parameters creates additional levels or stages in the model
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where parameters at lower levels have probability distributions defined at higher lev-

els. For example, consider a model for lengths of fish of a given species in different

inlets along a coastline. Data are collected by travelling to each of the inlets and

collecting samples of fish. A non-hierarchical model for these data would involve a

distribution of fish lengths given an unknown mean fish length for all inlets, pooling

all inlets together. The alternative non-hierarchical model would involve a separate

distribution of fish lengths for each of the individual inlets. Neither of these non-

hierarchical descriptions seem to be suitable descriptions of fish length because inlets

will likely differ in their mean fish length, but not to the point where they are sta-

tistically independent. A hierarchical model for the same situation would include not

only a distribution for fish lengths in each inlet (first stage), but also a (prior) distri-

bution for the mean length across inlets (second stage). Including a distribution for

the mean length across inlets specifies how they might be related, which strikes a bal-

ance between the assumption that all inlets are the same and the assumption that all

inlets are independent. In addition, this balance need not be specified by the analyst,

but can be estimated from the data. The Bayesian approach allows for the statistical

analysis of such hierarchical structures by allowing population-level parameters (in

our case, the mean fish length in an inlet) to be defined probabilistically.

Su et al. (2004) present a Bayesian hierarchical stock-recruitment analysis for

pink salmon (Oncorhynchus gorbuscha) populations in the Northeast Pacific. The

first stage of their model includes parameters that are specific to each population,

such as the effect of sea surface temperature on the stock-recruitment relationship. In

the second stage, population-specific parameters are correlated in space such that pa-

rameters for populations that are geographically close together are more similar than

for stocks that are geographically far apart. Correlation based purely on geographic

proximity is termed spatial autocorrelation, and in the case of Su et al. (2004) a dis-

tribution is specified for the statistical relationship between population parameters.

In combination with population-specific parameters (the first hierarchical stage), the

spatial autocorrelation parameters (the second hierarchical stage) and their priors

(the third hierarchical stage) form a hierarchical model for pink salmon stocks in the

Northeast Pacific.
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The class of models that I consider for spatial fisheries data also have a hierarchi-

cal structure (Figure 1.2) consisting of (1) a statistical model for the data (Response

level); (2) a model for the aspatial and spatial parameters (Process level); (3) pri-

ors for the aspatial and spatial parameters (Prior level); and (4) hyperpriors for the

spatial priors (Hyperprior level). One could go on specifying higher and higher levels

since the probability distribution for a parameter at any one level will entail addi-

tional parameters at the next higher level. At some level, the model parameters must

be assumed known, and are either chosen so as to be vague with respect to the dis-

tribution of the parameter that they describe (i.e. with a diffuse prior), or estimated

from the data as a first step in the analysis in what is called an empirical Bayesian

approach (Gelman et al., 2004).

Covariates Aspatial Spatial

Aspatial Spatial

Response

Spatial
Hyperpriors

Process

Priors

Hyperpriors

Data

Figure 1.2: Hierarchical model structure for spatial fisheries data.
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1.2.2 Advantages of a Bayesian approach

The spatial hierarchical model in figure 1.2 is suited to the Bayesian approach to data

analysis because the Bayesian approach allows both the observed data and model

parameters to be random variables (Banerjee et al., 2004). Bayesian methods are

often computationally expensive, but are becoming more straightforward to apply

thanks to Markov Chain Monte Carlo (MCMC) techniques, the ready availability of

large computer processing power, and automated software to perform the analysis.

The challenge of the Bayesian approach lies in the fact that making inferences about

model parameters θ separately requires computing the marginal distribution of each

parameter with respect to the other parameters. For example, given data y, the

marginal distribution of one model parameter θi

p(θi|y) =

∫
θj 6=i

p(θ|y)dθj 6=i

is often impossible to calculate in closed form. As a result, probability distributions for

parameters must be evaluated using numerical integration techniques such as MCMC.

Markov Chain Monte Carlo techniques enable approximate integrations by generat-

ing samples from the distribution of interest, in this case the posterior probability

distribution for the model parameters. Software to perform the MCMC sampling,

check diagnostics, and compare alternative models is freely available (for a list of

alternatives, see Gelman et al., 2004).

The incorporation of prior information in Bayesian analysis is also an attractive

feature of the method, because spatial autocorrelative effects may be difficult to dis-

tinguish from ordinary aspatial linear effects. This difficulty may arise, for example,

if fishing vessels operate largely in non-overlapping areas. Contrast in the number of

vessels fishing in a particular location (i.e. several vessels fishing in close proximity

to each other) is needed in order for the effect of the fishing vessel to be distinguished

from the effect of the location in which the fishing vessel operates. If such contrast

is not available, additional prior information about spatial effects or ordinary linear

effects (from scientific surveys, for example) may be available to help untangle the

model components. The natural incorporation of priors allows Bayesian models to
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include different sources of information that may otherwise be difficult to consider

together, which could ultimately lead to more encompassing and useful results. In

cases where prior information is not available, care must be taken to ensure that there

is sufficient contrast in the data to allow extrapolation beyond sampled points.

1.2.3 Statistical models for fishery CPUE

My approach in describing statistical models for fishery CPUE is to begin with a

familiar aspatial generalized linear model (GLM), which represents the common ap-

proach to standardizing fishery CPUE data (Maunder and Punt, 2004). I then modify

the aspatial GLM to include spatial effects that take into account spatial autocorrela-

tion in fishery CPUE and heterogeneity in sampling effort over space. This set-by-set

approach raises computational problems associated with large numbers of data points

typical of fishery catch and effort datasets; therefore, I present a modified spatial

model that can be fitted to large amounts of data.

Aspatial Generalized Linear Model

The most commonly used method for modeling CPUE is the GLM. The generalized

linear model explains variation in fishery CPUE as a linear combination of specified

continuous covariates such as depth, and discrete covariates such as year. The objec-

tive of fitting a GLM to fishery CPUE data is to isolate effects on CPUE that are

not the result of changes in stock abundance, which are assumed to be represented

by year effects.

Suppose that set-by-set fishery CPUE data are available:

yi =
Ci

Ei

(1.1)

where i is fishing set, y is CPUE, C is catch, and E is fishing effort expended. The

yearly average fishery CPUE could be used as an index of stock abundance, computing

the average yi each year t. However, effects other than changes in stock abundance

can influence fishery CPUE. Commonly considered fishery-related effects include in-

dividual fishing vessels or fishing vessel characteristics. Other factors such as depth
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of fishing set, underlying habitat type, and the season in which the fishing event took

place, may also influence CPUE, so these factors should also be considered in the

model formulation. All of these factors are gathered column by column into a design

matrix of covariates

X =


1 X11 ... X1p

1 X21 ... X2p

...
...

...

1 Xn1 ... Xnp

 (1.2)

where n is the total number of fishing records and p is the number of covariates

included (i.e. covariates are in columns and fishing sets are in rows). The generalized

linear model is then

f(y)
iid∼ N(Xβ, τ 2) (1.3)

where β = β0, β1, . . . , βp is the column vector of linear effects corresponding to the

covariates X0, X1, . . . , Xp, τ 2 is the residual variance, and f is a link function such

that the residual variation in the f(y) has a normal distribution. A logarithmic link

function is often used for CPUE, in part because it properly constrains CPUE to be

positive (Hilborn and Walters, 1992). Because equation 1.3 describes the distribution

of the data y, it is often called the data likelihood. Model specification is completed

by specifying priors. Unless informative prior knowledge is available, it is suitable to

use vague or diffuse priors for model parameters, e.g.

β
iid∼ N(0, 1000) (1.4)

τ 2 ∼ IG(1, 0.001) (1.5)

where N is the normal distribution with mean 0 and variance 1000, and IG is the

inverse-gamma distribution with mean 1 and 0.001 degrees of freedom. These diffuse

priors allow the data to determine parameter estimates. Figure 1.3 is a depiction

of the aspatial GLM as a special case of the spatial hierarchical model. The linear

model coefficients β estimate the effect that each of the covariates has on the CPUE.

The β corresponding to the year effect is interpreted as a relative measure of stock

abundance that is linearly independent of other covariate effects in the GLM.
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Figure 1.3: Aspatial GLM for fisheries CPUE data.

Point-referenced spatial Hierarchical Bayesian Model

The aspatial GLM analysis is made into a spatial one by adding set-by-set autocorre-

lated spatial effects to the hierarchical model. Point-referenced spatial models consist

of observations made at continuous locations s that occur within a defined spatial

domain D, which is a fixed subset of the two-dimensional space R2. Observations

made at locations s are partially defined by their location and are therefore denoted

y(s). For fishery CPUE, y(s) is assumed to be a measure of relative stock density at

locations s. Point-referenced spatial models have the attractive feature that the spa-

tial domain D is unchanging, even though the locations sobs will differ over time. In

fisheries, this addresses the dimensional oversight by ensuring that inference is made

in relation to the domain D instead of the actual locations s that were observed, which

may change over the history of the fishery. For example, if the underlying stock is
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aggregating over time such that the area occupied by both the stock and the fish-

ery are decreasing, then biases can be avoided when constructing an aggregate index

by averaging over the spatial domain D rather than the subset of D that is occu-

pied by the fishery (Campbell, 1998, 2004; Walters, 2003). In other words, predicted

fishery CPUE density must be averaged over the total stock area, even at locations

that receive little or no fishing effort. Thus, averaging over D requires prediction at

unsampled points, which underscores the need to treat CPUE spatially.

Beginning from our aspatial GLM model, spatial effects can be included at the

process stage so that

f(y(s)) ∼ N(Xβ + w(s), τ 2) (1.6)

where w(s) are the spatial random effects at locations s. The spatial random effects do

not refer to the effect of any particular covariate on f(y(s)), rather they are random

location effects that include patterns of spatial variation. Priors for the w(s) are

needed to make the spatial component of the model complete. Priors that specify the

correlation structure of the w(s) allow spatial autocorrelation to be included in the

model.

Spatial process models commonly assume isotropy: the correlation between two

observations made at points si and sj 6=i depends solely on the distance vij between

them, and not on other factors such as the direction of separation. Although there

are several possible models for isotropic spatial correlation Banerjee et al. (2004),

all of them specify a functional relationship between the degree to which points are

correlated and the separation between them, i.e. cov(si, sj 6=i) ≡ ρ(vij) = g(vij, θcov),

where g is a decreasing function in vij, and θcov are parameters describing the shape

of g. It may be worth comparing different models of spatial correlation for a given

data set that differ in shape and complexity. However, in practise it is very difficult

to determine which spatial correlation model is appropriate by examining the data

alone, because many correlation models will fit the data equally well. Nishida and

Chen (2004) consider several spatial correlation functions in their analysis of data from

the Japanese longline yellowfin tuna fishery, but their results show little sensitivity to

the choice of correlation function.

Because of its simplicity, one of the most commonly employed models of isotropic
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spatial correlation is the exponential

ρ(vij) = e−φvij (1.7)

where vij is the distance between data points, and φ > 0 is the decay parameter.

When i = j, vij = 0, and

ρ(vii) = 1 (1.8)

that is, observations made at the same point in space are repeated measures. In this

paper, I use the exponential correlation model, but it is also possible to use other

correlation models without loss of generality (Banerjee et al., 2004).

A covariance matrix for the locations s ∈ D can be constructed from the correla-

tion equation 1.7. For a given distance matrix V , which is the n by n collection of vij

for all of the observed locations s, the correlation matrix H(φ) is

H(φ) = e−φV (1.9)

thus, the covariance matrix Σw of the spatial random effects is

Σw(φ, σ2) = σ2H(φ) (1.10)

where σ2 is the variance of the spatial effects. The vector of spatial random effects

w(s) = w(s1)...w(sn), which are conditionally independent of Xβ (equation 1.6), thus

have the prior distribution

w(s) ∼ Nn(0, Σw) (1.11)

Finally, a vague conjugate prior for the spatial variance is

σ2 ∼ IG(1, 0.001) (1.12)

Note that the model in equation 1.6 has more parameters to estimate than there are

data points, because there is a w for each s plus other model parameters (β, τ 2, σ2, φ).

The number of parameters that need to be estimated can be reduced specifying the

marginal distribution of f(y(s)) with respect to w(s), i.e.

f(y(s)) ∼ Nn(Xβ, Σ) (1.13)
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where Σ = Σw + τ 2I, I being the identity matrix. This form of the model includes

spatial autocorrelation directly in the covariance matrix Σ.

Year effects on CPUE can be included in the same way as for the aspatial model

by including year as a factor in X. However, spatial effects w(s) that vary with

time can also be considered. Time-varying spatial effects are appropriate in cases

where patterns in spatial variation are changing over time, as is often the case in

natural systems that respond to changing environmental conditions. A simple way to

incorporate time-varying spatial effects into the model is to estimate a separate set

of spatial effects w(sr) for time periods r ∈ 1 . . . R. The prior distribution for w(s)

is then divided into R conditionally independent spatial effects surfaces, each having

the prior distribution

w(sr) ∼ Nnr(0, σ2
rHr(φr)) (1.14)

where nr is the number of observations, σ2
r is the spatial variance, φr is the Exponential

correlation parameter, and Hr is the correlation matrix of the observations, all at

time r. Figure 1.4 is a depiction of the point-referenced spatial HBM for the case in

which there may be a time series of spatial effects surfaces. In this depiction, spatial

parameters σ and φ are presented as vectors of length R.

1.2.4 The big n problem

Despite the apparent simplicity of the spatial covariance model in section 1.2.3, such

models are not computationally feasible for commercial fishery data analysis in which

there are many thousands of observations. The difficulty lies in the matrix inversions

required to evaluate the conditional distribution for β (Banerjee et al., 2004). From

equation 1.13, this conditional distribution is

p(β|τ 2, σ2, φ, y(s)) = N(Aa, A) (1.15)

where

A−1 = XT (σ2H(φ) + τ 2I)−1X + Σ−1
β (1.16)

a = XT (σ2H(φ) + τ 2I)−1y + Σ−1
β µβ (1.17)



CHAPTER 1. SPATIAL HBMS FOR ANALYZING FISHERY DATA 17

Response

Process

Priors

Hyperpriors

Figure 1.4: Hierarchical model for normally distributed fisheries data.

and where µβ and Σβ are the mean and variance, respectively, of a normal prior

distribution on β. If there are n observations, a square matrix of dimension n by n

must be inverted in order to compute A. Beyond approximately 500 observations,

repeated matrix inversion of the type necessary for MCMC integration techniques

becomes infeasible in commonly available computing environments. This is described

by Banerjee et al. (2004) as the big n problem.

Banerjee et al. (2004) list several big n strategies. For example, simply ignoring

some of the data by subsampling is one potential approach. Although it may seem like

a bad idea to thin the data, observations aren’t expected to be statistically indepen-

dent anyway. The information lost may be slight if the data points that are actually

used show good contrast in X and are representative of the spatial domain D. To

check the effect of subsampling, several subsamples can be taken and model results

compared for consistency. Another possible big n strategy is Coarse-Fine Coupling
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(Higdon et al., 2003). In this method, two Markov chains - fine and coarse - are com-

puted simultaneously during the Bayesian analysis. The fine chain includes all of the

untransformed data, whereas the coarse chain is based on some transformation (e.g.

local average) of the data from n dimensions to some smaller dimension. The lower

dimensionality of the coarse chain means that parameter samples will be generated

much more quickly than for the fine chain. After some number of updates, a swap

of parameter values between the two chains is allowed according to a swapping rule.

This procedure allows the fine chain to achieve the desired amount of posterior reso-

lution while the coarse chain explores the parameter space quickly. The Coarse-fine

Coupling option still requires that the fine chain can be calculated, however slowly,

within the physical limits of the available computing environment, but doesn’t rely

on the fine chain to map the entire parameter space. The advantage of coarse-fine

coupling is that it carries the original resolution of the data through to the results.

Another option for performing a spatial hierarchical Bayesian analysis of a very

large dataset is to specify the priors for the random spatial effects using a condi-

tionally autoregressive (CAR) formulation instead of the continuous isotropic model

I described for the point-referenced HBM. With the CAR prior, the spatial domain

D is treated as a grid, with random spatial effects assigned according to the grid cell

ς in which an event takes place.

The spatial random effects w(ς) are shared by all observations within an area

or grid cell, reducing the number of spatial random effects that must be estimated

from n (the dimension of s) to the number of areas or grid cells m (the dimension

of ς). The assumption is that, conditional on covariates X, fishing event locations

have occurred randomly within each grid cell so that w(ς) represent grid cell average

spatial effects. Assuming that all observations within a grid cell share the same

spatial effect leads to a loss of spatial effect resolution. However, the sacrifice may

be worth making in cases where the number of observations is prohibitively large,

and predictions based on grid cell average spatial effects are sufficient. Unfortunately,

assessing the appropriateness of the CAR formulation for stock assessment using a

simulation approach is not practical since repeated model fitting remains much too

computationally expensive.
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1.2.5 Conditionally autoregressive hierarchical spatial model

The conditionally autoregressive hierarchical spatial model is nearly identical to the

point-referenced HBM; the first stage of the model described in equation 1.6 remains

the same, keeping the set-by-set covariate information from X, but the second stage

specification is adjusted to reflect the new CAR prior. Spatial effects are pooled

according to the grid cell in which the fishing event occurred, i.e. w(si) = w(ςj) for all

si ∈ ςj. In conditionally autoregressive priors, a normal specification (Besag, 1974) is

often used, i.e.

w(ςk)|w(ςl 6=k) ∼ N

(∑
l 6=k bklw(ςl)∑

l 6=k bkl

,
σ2∑
l 6=k bkl

)
(1.18)

where bkl define the objects or cells that are assumed to influence the value of w(ςk),

and (k, l) ∈ 1 . . . m. For spatial effects w(ς) estimated on a grid, the simplest choice

is to set bkl = 1 for bordering cells and bkl = 0 otherwise. The spatial hierarchical

model with the CAR prior is depicted in figure 1.5. In the figure, I present spatial

hyperparameters as time-dependent vectors (σ2 is σ2
r for r ∈ 1 . . . R), as was the case

in the point-referenced HBM. This time-dependent CAR model fits a separate set of

spatial effects for each time period, i.e.

w(ςk,r)|w(ςl 6=k,r) ∼ N

(∑
l 6=k bklw(ςl,r)∑

l 6=k bkl

,
σ2

r∑
l 6=k bkl

)
(1.19)

From equation 1.18, the probability distribution of w(ς) is defined conditionally,

where each w(ςk) is a function of its neighbours. Therefore, spatial effects are esti-

mated one at a time rather than simultaneously and no large matrix inversions are

required. Computing the joint distribution p(w(ς1)...w(ςm)) thus becomes a tractable

problem for large datasets.

The CAR prior for w(ς) is an example of a pairwise difference specification (Besag

et al., 1995). Pairwise difference priors are improper, which means that an arbitrary

constant can be added to each of the w(ςk) and the CAR specification in equation

1.18 would still be satisfied. Improper prior distributions do not guarantee proper

posterior distributions, but this is not of practical importance here because posterior
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Figure 1.5: CAR Hierarchical model for normally distributed fisheries data.

distributions will be proper so long as there is at least some spatial parameter infor-

mation available in the data (Banerjee et al., 2004). However, the overall level for

w(ς) is not distinguishable from β0 in equation 1.13, therefore the constraint

m∑
k=1

w(ςk) = 0 (1.20)

is often imposed in order to estimate β0 (Banerjee et al., 2004). When a set of spatial

effects is estimated for each of R time periods, as in equation 1.19, the above constraint

is applied to each set of spatial effects (i.e., for r ∈ 1 . . . R).

In terms of computation, the conditional dependence of the CAR prior is conve-

nient for Gibbs sampling routines, since the Gibbs sampler draws posterior parameter

samples from the conditional distribution of each parameter in turn. The Gibbs sam-

pling distributions for the spatial parameters thus follow directly from the definition

of the prior and the data likelihood, conditioned on the values of other model param-

eters. For example, in the normal likelihood - normal CAR prior case, the conditional
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Gibbs sampling distribution for the spatial effects is a normal distribution whose

mean is a weighted average of the CAR prior mean and y(si) − Xiβ for all si ∈ ςj,

with weights inversely proportional to the variance of the prior and the likelihood

(Gelman et al., 2004). The use of conjugate prior distributions and the conditional

autoregressive prior on spatial effects allows conditional distributions to be specified

for each parameter in the HBM, avoiding the need for alternative samplers such as

the hybrid Metropolis-Gibbs sampler employed by Su et al. (2004). For details, see

the Appendix.

1.2.6 Summaries of model results

In describing possible spatial models for fishery data, my approach has been to be-

gin with the familiar aspatial generalized linear model (GLM), and subsequently de-

scribe modifications that account for spatial effects. The resulting spatial hierarchical

Bayesian models take into account spatial autocorrelation in fishery CPUE and het-

erogeneity in sampling effort over space. In response to the big n problem, I present

the CAR prior for spatial effects estimated on a grid. I now turn to the subject of

what sort of information can be extracted from the results of fitting the spatial HBMs

to fishery data. In the simple aspatial GLM case, the information extracted typically

consists of the year effects on fishery CPUE. The spatial HBMs, however, can yield

much richer results because they do not assume that the fishery and stock are each ho-

mogeneous in space. As a result, there is potentially much more information available

in the spatial model results that can be used to infer trends in stock characteristics

such as stock density profiles and stock extent.

The spatial HBMs allow a much richer posterior analysis because they address

CPUE and stock density on a local scale rather than in aggregate. The assumption

made for the spatial HBMs is that the CPUE of a fishing set is proportional to the

stock density (local biomass) at the location of the set, which addresses the dimen-

sional oversight described earlier by relating fishery CPUE to stock density directly.

In addition, if suitable values for X can be obtained for all s ∈ D, then geographic
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maps of predicted CPUE, generated from spatial HBM results, can reveal spatial con-

trasts in stock density. Spatio-temporal shifts in patterns of stock density, be they

aggregation, disaggregation, or directional shifts, can be visualized by plotting a time

series of predicted CPUE maps. Plotting maps of spatial effects w(s) shows areas

where the fishery CPUE is higher or lower than expected given the aspatial covari-

ates. Over time, regions in D with consistently positive spatial effects are suggestive

of areas of high biomass production that can direct further scientific investigations or

inform spatial fishery management.

Maps of model-predicted CPUE are fine for visualizing trends in abundance, but

many assessments of stock status require a single measure of relative stock abundance

from year to year. The spatial HBM predicts CPUE for every point in D, so the

average predicted CPUE over D is one candidate for a relative index of stock biomass.

This spatial index of relative biomass will be more appropriate than covariate year

effects in the likely event that regions in D have gone unfished at some point in the

time series (Campbell, 1998, 2004; Walters, 2003). In such cases, extrapolations made

to fill in spatial gaps affect the average predicted CPUE in such a way as to depart

from trends in the year effects alone.

The average predicted CPUE over D can be evaluated numerically using Monte

Carlo integration by randomly choosing a set of locations s̃ ∈ D, and evaluating the

posterior predicted CPUE y(s̃) according to

p (y(s̃)|y(s)) =

∫
p
(
y(s̃)|y(s), β, w(s), τ 2

)
p
(
β, w(s), τ 2|y(s)

)
dβdw(s)dτ 2 (1.21)

which can be evaluated using the posterior samples from p (β, w(s), τ 2|y(s)) calculated

during MCMC sampling. Suitable values must be specified for covariates that are not

spatially referenced (i.e., that cannot be determined from the randomly chosen set of

locations s̃). For example, the non-spatial covariate values might be set at some value

of interest (e.g. a particular seasonal effect), or set at the average of the observed

values. As approximated by the predicted CPUE at locations s̃, the average predicted

CPUE across locations is then

ȳ(s) =
1

|D|

∫
D

y(s)ds ≈ 1

|D|
∑
D

y(s̃) (1.22)
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where |D| is the area of D. The mean predicted CPUE over D is a measure of

average stock density. However, several other statistics related to stock abundance

and distribution, such as the extent of the stock, can be estimated from the spatial

cumulative distribution function. Furthermore, uncertainties in these statistics can

be carried through the analysis using the posterior distribution of the spatial HBM.

Spatial cumulative distribution function

Suppose that a spatial hierarchical Bayesian model has been fit to fishery CPUE data.

Equations 1.6, and 1.14 or 1.18, define a predictive model for the response surface

y(s) for all possible locations in D, where the surface height is the predicted CPUE

at each location. Suppose that this predicted CPUE surface is integrated, beginning

from its lowest predicted CPUE point and ending at some higher predicted CPUE

point which I denote u. If the spatial domain D is normalized so that its area is

equal to one, then the integration can be seen as a cumulative distribution function

for CPUE over space - the spatial cumulative distribution function (scdf). The scdf

can be used to evaluate the proportion of the fixed region D with response y(s) less

than or equal to some value u, and is defined as

Fscdf(u) = Pr[s ∈ D : y(s) ≤ u] =
1

|D|

∫
D

zu(s)ds (1.23)

where |D| is the area of D, zu(s) = 1 if y(s) ≤ u and zero otherwise (Banerjee et al.,

2004). Notice that the scdf is itself random because zu(s) is based on the poste-

rior probability of y(s). In other words, the uncertainty in the posterior predictive

distribution for y(s) is carried through to the calculation of the scdf.

The scdf describes the distribution of CPUE over the spatial domain D, and

therefore, provides the basis for a range of summary statistics. The fiftieth percentile

of the scdf is a natural choice for an index of stock abundance because it represents

the median predicted y(s) over D. However, there are other indices that may reveal

changes in the spatial characteristics of the stock over time. For instance, at some level

of CPUE defined by the analyst, the stock density may be considered to be so low that

either the stock is absent or not economically exploitable. The area occupied by the

stock can be estimated by tracking the proportion of D with CPUE higher than this
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critically low level. Alternatively, the range of predicted CPUE values may also be

of interest as an indicator of aggregative or dissaggregative processes. An increasing

range of CPUE values coincident with decreasing mean spatial CPUE might imply

stock aggregation where fish are concentrating in certain areas and vacating others.

Equation 1.23 can be evaluated numerically using Monte Carlo integration in iden-

tical fashion to the evaluation of ȳ(s) by randomly choosing a set of locations s̃ ∈ D,

and evaluating the posterior predicted response y(s̃) according to equation 1.21. The

index of abundance corresponding to the fiftieth percentile of the scdf, which I denote

y50, is defined as

0.5 = Fscdf(y0.5) = Pr[s ∈ D : y(s) ≤ y0.5] =
1

|D|

∫
D

zy0.5(s)ds (1.24)

The tenth (y0.1) and ninetieth (y0.9) percentiles are defined analogously. From these

percentiles, I define the index of heterogeneity H as

H(0.9, 0.1) = y0.9 − y0.1 (1.25)

which is meant to capture the disparity, i.e. the range, between those areas with the

highest and the lowest expected CPUE values. The index of heterogeneity might

be calculated for some other combination of CPUE percentiles since alternative per-

centiles may be more appropriate depending on the fraction of D that is actually

occupied by the stock and/or the fishery. Trends in H(0.9, 0.1) will not be obvious,

for example, if the stock occupies only a small fraction of the spatial domain. In

such a case, an index of heterogeneity such as H(0.95, 0.8) might be more appropriate

because the bulk of the area D will have a near zero stock density so that small scdf

percentiles will be consistently negligible.

Changes over time in the area occupied by the stock can also be tracked using the

scdf. If some CPUE value yabs is defined for which the underlying stock is assumed

to be effectively absent, or perhaps economically unexploitable, then the scdf value

Fscdf(yabs) is the proportion of D in which the stock is effectively absent. The area

occupied by the stock in year t is then

Ψt = |D| (1− Fscdf(yabs)t) (1.26)
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Determining a value for yabs that is representative of effective absence may be diffi-

cult without information relating CPUE to the underlying abundance. There is no

standard way to define low abundance or effective absence directly from CPUE, but

one approach is to examine the distribution of historical CPUE on a set-by-set basis,

and choose yabs such that it defines the lower tail of the distribution. Determining a

value for yabs that is representative of economic exploitability is possible by making

enquiries into vessel profitability as a function of CPUE.

1.3 Discussion

By using spatial HBMs to analyze fishery data and generate stock abundance in-

dices, the relationship between CPUE and average stock density is treated on a local

scale. The dimensional oversight is addressed by treating CPUE spatially, weighting

information according to where it was collected. Instead of assuming that aggregate

fishery CPUE is related to total stock abundance, the spatial hierarchical approach

makes the weaker assumption that the CPUE at a given location is proportional to

the stock density at that location. The location-specific CPUEs are then integrated

over all possible locations to obtain a relative measure of the total stock biomass. The

typical aggregate approach, in which each CPUE observation has equal weight in the

calculation of the stock abundance index, is a measure of average fishery performance.

The case of the northern cod stock is an excellent example of the shortcomings

of the typical aggregate approach to addressing the dimensional oversight (Rose and

Kulka, 1999). It was recognized that the assumption of CPUE proportional to total

stock biomass did not hold, and that some correction had to be made. However, when

the stock collapsed and criticisms were targeted at the stock assessment methodol-

ogy, the suggested remedy was not to find and use an index that was proportional

to average stock density. Rather, the suggestion was to fit a power function to the

non-proportional relationship between average fishery CPUE and total stock biomass

(Hutchings, 1996; Hutchings and Myers, 1994; Walters and Maguire, 1996). This

solution relies not only on the power function being a suitable model for the rela-

tionship, but also on the assumption that it is stationary over time. The assumption
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of stationarity is particularly problematic because the power function is an emergent

relationship based on factors ranging from the distribution of the stock to the man-

agement of the fishery, any or all of which may be changing. Even in the unlikely

event that the unseen factors contributing to the CPUE-biomass relationship remain

constant, the relationship will only be estimable if there is enough contrast in stock

biomass. In the northern cod case, the chosen stock abundance index was unable

to track an overall decline because average fishery CPUE remained stable even as

local abundance declined dramatically over most of the fishing grounds (Rose and

Kulka, 1999). Such a situation undoubtedly reduces managers’ confidence in stock

assessment estimates of stock status.

Another advantage of the spatial HBM is that the Bayesian approach ensures that

information and uncertainty are properly handled throughout. The Bayes posterior

distributions contain all of the information that is available for model parameters,

assuming that the model is correctly specified. As such, spatial HBM derived indices

of abundance are amenable to inclusion in integrated stock assessment models, which

are considered to be important tools in modern stock assessment (Maunder et al.,

2006). The posterior probability distributions can also be used to guide future research

activities (e.g. survey designs) for resolving model uncertainties. Maps of variance in

the predicted CPUE can be useful in deciding where to focus survey effort.

Extension: Spatial HBM for presence-absence data

The hierarchical Bayesian framework can be used for fishery data other than CPUE.

For example, many species caught in commercial fisheries occur very infrequently.

Although such rare species are probably not targeted quota species, their status may

be of conservation concern. In establishing benchmarks for listing endangered or

threatened species, the Word Conservation Union (IUCN) has developed a set of cri-

teria (IUCN, 2001). When absolute abundance information is not available, trends

in either relative abundance or in the spatial distribution of a species based on pres-

ence/absence can be used to list that species as threatened or endangered.
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Assuming that the probability of catching a rare species is related to its pres-

ence, the spatial HBM can be modified to model the set-by-set probability of capture

rather than set-by-set CPUE by using a Bernouilli distribution rather than a normal

distribution in the response stage. The Bernouilli distribution represents a stochastic

process that can have either a success or failure outcome. For the presence-absence

version of the point-referenced spatial HBM, the response is

y(s) ∼ Bern(p(s)) (1.27)

where y(s) is the vector of observations and p(s) is the probability that the species is

observed at s. If the rare species is caught in set i, then y(si) is one, otherwise y(si)

is zero. Similar to the CPUE analysis, the model for the probability p(s) is a GLM

formulation with spatial effects added, i.e.

logit(p) ∼ Nn(Xβ + w, τ 2I) (1.28)

Here, the link function is the logistic, but otherwise the model is very similar to the

spatial CPUE model. Spatial effects w(s) are defined as in equation 1.14 or equation

1.19, so the probability of observing a species in a given fishing event is correlated

in space. Figure 1.6 is a depiction of the spatial presence-absence model. Note that

compared to the spatial CPUE model, only the response portion of the model has

been modified.

As in the CPUE model, a measure of the area occupied can be obtained from

the scdf by defining a value for yabs, the probability of catch associated with effective

absence. The probability of catch is modeled on the logit scale (equation 1.28), so a

strictly zero probability of catch is never predicted. As a result, a non-zero yabs must

be chosen when defining area occupied. Unfortunately, the scdf value corresponding

to very small values of yabs may be very uncertain. In cases where the uncertainty

in the area occupied calculated from the scdf is large, an alternative approach that is

compatible with IUCN criteria is to assume that the probability of catch is propor-

tional to the stock density. This assumption is most appropriate in cases where the

probability p of observing the species is very small, and there are very few individuals

caught in a set. Under this assumption, a time series of the mean probability of catch
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Figure 1.6: Hierarchical model for presence-absence fisheries data.

over space (ȳ(s)) will track trends in relative abundance. This alternative approach

may be preferred for species that are caught extremely rarely because of the difficulty

associated with specifying yabs and the uncertainty associated with estimating the

area occupied based on relatively few sightings. Although absolute abundance infor-

mation is preferred when using IUCN criteria, the use of time series of either the area

occupied or relative abundance is acceptable for assessing population status. Thus,

spatial HBMs can be used for listing stocks even in cases where absolute abundance

information is not available or too costly to collect, and only incidental catch records

are available.

Shifting stock distributions

There is sometimes a need to model directional changes in the distribution of fish

stocks. For example, fish stocks may shift their geographic distribution in response

to long-term changes in climate (Perry et al., 2005). It is imperative that the spatial
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domain D encompass the entire stock for the entire time series in order to properly

address the dimensional oversight (Walters, 2003). However, fishery-dependent data

may not be available for large portions of D where the stock is absent, with the

possible exception of multi-species fisheries in which effort occurs throughout D. In

cases where there is strong evidence of a regime shift, it may be appropriate to perform

a separate independent analysis for the period before and the period after the shift,

each with a separately defined D. Alternatively, strong priors on spatial effects could

be used to constrain stock density to be low for regions in which the stock is thought

to be vacant, either because the stock has yet to colonize the region, or because the

stock has vacated the region to colonize elsewhere.

The example of a fish stock exhibiting directional change in its distribution is

strong motivation to ensure that the spatial domain D is defined to be large enough to

encompass the entire stock. Too often, survey effort is targeted at the areas thought to

represent the core of the stock. This is due to survey designs that attempt to estimate

stock abundance to maximum precision by sampling in proportion to presumed stock

density. However, this objective may be short-sighted given that the fishery will

already be targeting what it thinks are the core areas of the stock, collecting stock

density information in the process. Rather, it may be of value to target some of the

survey effort at peripheral areas to ensure that D is suitably defined.

MacCall (1990) derives expected spatial distributions of fish stocks given density-

dependent habitat selection and logistic population growth. His results predict that

fish will distribute themselves according to habitat suitability, which leads to con-

tinuous patterns of spatial stock density. If this is the case, then the spatial HBM

approach outlined here is very well suited to describing such patterns. Environmen-

tal covariates that influence CPUE (and inferred density) can be included as linear

effects, whereas local processes either for which there is no available data, or which

are not measurable, are included as random spatial effects. Maps of predicted CPUE

show patterns in assumed stock density, which MacCall (1990) links to areas of high

habitat suitability. Such areas are priorities for conservation, and could be identified

using the results of the spatial HBM. The theoretical treatment of MacCall (1990)

also underscores the need to sample marginal areas, which become desirable habitat
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when increases in stock abundance lead to increases in core area density, or when

changing environmental conditions make current core areas less suitable.

Summary

Inferring fish stock abundance and various other parameters from commercial fish-

eries data can be problematic. Heterogeneities in the stock and the fishery mean that

aggregate commercial CPUE is often not proportional to total stock biomass. In ad-

dition, spatial autocorrelation can induce partial pseudoreplication if observations are

assumed to be conditionally independent, as is the case in typical GLM analyses used

to standardize commercial CPUE. Treatment of the problem with spatial HBMs can

recognize and estimate spatial autocorrelation in commercial fishery data, allowing

for prediction at unsampled points by borrowing information across space. Unfor-

tunately, the size of typical fishery datasets makes the calculation of spatial HBM

posterior distributions challenging. One solution to the computational big n problem

is to use a conditionally autoregressive areal model in which observations occurring in

a small area share the spatial effect for that area. The Bayesian framework allows the

incorporation of prior information, and results in a predictive model for CPUE. Once

posterior distributions are evaluated, a series of statistics that are spatially referenced

and proportional to area, rather than fishing intensity, can be calculated directly us-

ing the spatial cumulative distribution function. These scdf-derived statistics include

indices of abundance, measures of spatial range, and measures of stock aggregation.

The method is useful not only for targeted fishery CPUE analysis, but also for rare

species of conservation concern where presence-absence records are available.



Chapter 2

A comparison of spatial and

aspatial assessments of BC

sablefish using commercial data

2.1 Introduction

Using fishery-dependent data such as commercial catch records to ascertain trends in

the state of fish stocks is appealing for at least two reasons. First, much of the effort to

collect the data is already being made in the course of fishing activities. Second, catch

records may be the only (or the most complete) data source available. However, the

information collected from fishery observations must be properly interpreted in order

to be useful in determining stock trends. Proper interpretation means recognizing

that common statistical model assumptions may not hold in all cases. In particular,

the assumption of independence of observations made in standard generalized linear

model analyses will almost certainly not hold for fishery data because some amount of

spatial autocorrelation is expected when dealing with observations made close together

in space (Nishida and Chen, 2004). In addition, because the primary goal of fish

harvesters is to catch fish, not to survey the population, the volume of observations

will be weighted towards areas where fish tend to occur at the expense of areas where

31
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fish do not tend to occur (Campbell, 1998, 2004; Walters, 2003). In other words,

aggregated commercial catch rate data will tend not to be representative of the average

underlying fish population density.

Despite some strong assumptions, commercial fishery data is commonly used to

assess fish stocks, whether due to necessity or the lure of abundant data. In typi-

cal aspatial generalized linear model (GLM) analysis of fishery catch rate data, the

assumption is that, conditional on specified covariates, fishery observations are in-

dependent replicate measurements of a constant but unknown mean stock density.

However, fishery data with unbalanced sampling effort (i.e. fishing that is not random

with respect the area over which the stock is distributed) and spatial autocorrelation

will violate the aspatial GLM assumptions.

In this chapter, I analyze commercial catch and effort data form the British

Columbia (BC) sablefish fishery using a spatial hierarchical Bayesian model (HBM)

that accounts for unbalanced sampling and spatial autocorrelation. The approach

taken makes the weaker assumption that the stock density at the location of a fishing

set, not the total stock biomass, is proportional to the set-by-set catch per unit effort

(CPUE).

The first objective of this analysis is to determine the consequences of using the

spatial HBM for stock assessment of BC sablefish. To accomplish this objective, I fit

a Schaefer biomass dynamics model using each of four relative stock biomass indices.

The four indices are: (1) the nominal fishery CPUE; (2) the aspatial GLM year effects;

(3) the mean spatial CPUE, predicted using the HBM; and (4) the spatial median

CPUE, predicted using the HBM. The second objective of this analysis is to determine

whether the area occupied by the commercially exploitable stock has declined over

the fishery time series, and whether aggregative or disaggregative processes appear

to be occurring for BC sablefish. Beyond calculating an index of abundance, the

results of fitting the spatial HBM can be used to map predicted CPUE over space.

These predicted CPUE maps can then be used to calculate area occupied and spatial

distribution statistics.
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2.1.1 British Columbia sablefish fishery

Sablefish (Anoplopoma fimbria) is a deepwater fish species found throughout the North

Pacific Ocean, from Mexico to Japan. The bathymetric range of adult sablefish ex-

tends from 200 metres to greater than 1900 metres depth, with the highest densities

occurring between 350 and 900 metres (McFarlane and Beamish, 1983). Juvenile

sablefish inhabit inshore waters shallower than 200 metres and move to deeper waters

as they mature. The analysis of tagging studies by Kimura et al. (1998) suggest that

there are two Northeast Pacific sablefish stocks that mix off the BC coast near south-

west Vancouver Island. Tagging studies suggest that most sablefish off the coast of

British Columbia (BC), Canada, are relatively sedentary, and that within stock areas,

movement is low. Kimura et al. (1998) observed more movement of tagged sablefish

in the northern stock than in the southern stock for sablefish tagged in US waters.

For sablefish tagged in Canadian waters, Beamish and McFarlane (1983) found that

more than four in five tag recaptures occur less than 200 kilometres from the point of

release.

Sablefish have been harvested off the BC coast since the late nineteenth century

primarily by longline hook or longline trap gear (McFarlane and Beamish, 1983).

During the sixteen year period from 1990 to 2005, more than seventy-five percent

of the sablefish quota was taken using longline trap gear (Haist et al., 2005), which

consists of modified Korean conical traps that are baited with a combination of squid

and hake (Wyeth et al., 2004). A typical longline trap set deploys about sixty traps

for a soak time of about 48 hours. I focus my analysis on the BC sablefish long-

line trap catches because the majority of the catch is taken using traps. Prior to

the enforcement of Canada’s Exclusive Economic Zone in 1977, Japanese vessels ac-

counted for the majority of catch. From the time that Japanese vessels were excluded

in 1977 until 1989, the Canadian fishery was regulated by various mechanisms of ef-

fort limitation designed to achieve target total allowable catches (Haist et al., 2004).

However, beginning in 1990, the Canadian sablefish fishery changed to an Individual

Transferable Quota (ITQ) management system. My analysis uses data from this later

period (1990 - 2005) exclusively because transitions between management systems
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may affect fishery performance (i.e. CPUE) independent of actual changes in stock

biomass. However, the period of study was not without changes in management, the

most notable changes being the introduction of trap escape rings in 1998, and the

use of a two-year quota for 2002 and 2003 (Haist et al., 2004). Most of the two year

quota was taken in 2002, resulting in very little quota remaining for the 2003 season.

Thus, the noticeable increase in fishery CPUE from 2002 to 2003 may be the result

of changes in targeting by the fleet due to the shortened 2003 season rather than an

increase in stock biomass. This could cause stock production to be overestimated for

2003 if fleet-targeting effects are not accounted for.

Fishery-independent surveys for BC sablefish include (Kronlund et al., 2002): (1)

standardized survey, which began in 1988, and has remained largely unchanged since

1990; (2) stratified random survey, which began in 2003; and (3) tagging program

that began in the offshore in 1991 and was modified to include BC mainland inlets

in 1994. The standardized survey was designed to index historic offshore trap fishing

areas (Wyeth and Kronlund, 2003). The survey began in 1988 with eight areas, and

was modified to include a ninth area in 1994. Not all areas have been surveyed in each

year. Longline trap sets are targeted at several depth ranges, with the exact location

of the set left to the discretion of the survey skipper. The more recently implemented

stratified random survey, described in Wyeth et al. (2004), divides the BC offshore

into five bordering areas that cover most of the area targeted by the commercial trap

fishery (Figure 2.1). The stratified survey further divides these areas into three depth

strata, and survey set locations are randomly chosen from each strata. Five sets

are made at random locations in each depth strata and area combination for a total

of seventy-five stratified survey sets per year. The design of the stratified random

survey is on the whole more representative of the entire BC sablefish stock than the

standardized survey, which focuses primarily on the core fishing areas (Kronlund et al.,

2002).
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2.2 Methods

2.2.1 Data characteristics and exploratory analysis

Spatial catch and effort data

The data used in this study were obtained from a database of sablefish commercial

catch and effort compiled by the Department of Fisheries and Oceans Canada (DFO).

The DFO database contains information on commercial fishing events as recorded in

fishing logbooks and corroborated by a dockside monitoring program. Data from the

commercial sablefish fishery deploying longline trap gear were used in this analysis;

the records of interest for the individual fishing sets are summarized in Table 2.1. Sets

with incomplete or missing records were assumed to be missing at random and were

excluded from the analysis. The resulting dataset included 45,034 fishing sets.

Table 2.1: Data extracted from the commercial sablefish database.

Name Description Values or Units

Year The year of the fishing event 1990 to 2005
Quarter The quarter (season) November-January,

February-April,
May-July, or August-October

Skipper Numerical skipper code 1 to 50
Vessel Numerical vessel code 1 to 29
Catch Retained round weight of sablefish Kilograms
Traps Traps deployed in the set Number of traps
Lat Mean latitude of fishing set Degrees
Lon Mean longitude of fishing set Degrees
Depth Mean fishing depth Depth in metres

Beginning in 1998, some harvesters began using traps with escape rings to allow

undersized fish to escape. Escape rings were made mandatory beginning in 1999.

Variation in trap effectiveness may include factors such as the use of escape rings, and

differences in fishing practise such as trap baiting, length of string, and soak time.
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Unfortunately, nearly all vessels began using escape rings only once they became

mandatory in 1999, so the effect of escape ring introduction on CPUE is confounded

with changes in abundance from 1998 to 1999. I adopt the convention of previous

assessments of BC sablefish, performed by sablefish biologists who have attributed

other sources of variation in trap effectiveness to the practises of the vessel or skipper

associated with the fishing set, by using “trap” as the unit of effort (e.g. Kronlund

et al., 2003).

Bathymetry data were obtained from the Scripps Institution of Oceanography

(http://topex.ucsd.edu/WWW html/mar topo.html) via the R (R Development Core

Team, 2007) package PBSmapping (Schnute et al., 2006). The bathymetry data

have a longitudinal resolution of approximately 0.033 degrees (about 2.3 kilometres)

and a latitudinal resolution of approximately 0.019 degrees (about 2.1 kilometres).

These bathymetry data, although not necessary for fitting the model because depth

is recorded for each fishing set, were used to generate the posterior predicted CPUE

surfaces for mapping and subsequent analysis.

Study area

The spatial domain D was defined by assuming that the spatial and depth distribution

of the exploited stock overlaps with past fishing activity. The stratified random survey

divides the BC offshore into five bordering areas that cover most of the area targeted

by the commercial trap fishery, so I defined the spatial domain by dividing the union

of the five areas into 10-km square grid cells, and eliminating those cells that weren’t

fished by the commercial trap fishery during the period from 1990 to 2005 (Figure

2.1). Thus, the spatial domain included all of the 10-km grid cells in the five stratified

survey areas that received some fishing effort during the period. The domain D was

further refined by limiting the depth range of the exploited stock to past (1990 to

2005) fishing activity, which was conducted between depths of 176 m and 1,312 m.
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Figure 2.1: Map of study area. Shaded areas are the British Columbia sablefish
random stratified survey areas. Overlain are the 10km grid cells with at least one
commercial trap set during the period 1990-2005.
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Exploratory analysis of spatial catch and effort

An exploratory analysis of spatial catch and effort data reveals two concerns for indices

of abundance based on nominal fishery CPUE or GLM year effects. First, although

there is no obvious trend in the number of cells fished by year (Figure 2.2a), the area

of the grid cells used by the fishery has varied over the period from approximately

12,100 to 28,200 square kilometres. As a result, nominal fishery CPUE may not be

measuring the stock in a representative way, with some years focused on a smaller

region of the BC coast, and other years focused a larger region. Second, the number

of cells which received at least one percent of the total effort shows a trend over the

period examined, suggesting a spatial concentration of effort over time (Figure 2.2b).

These two aspects of the fishery effort underscore the need for a spatial approach to

address the dimensional oversight.

Differences in the number of fishing sets made in each grid cell can also present

analytical challenges due to an unbalanced statistical design. For example, the skipper

effect on CPUE may be confounded with location of the fishing event if the skipper has

only fished in a small number of locations. However, the concern over such confounded

effects is mitigated when:

1. There are multiple skippers fishing in each cell, resulting in the location effect

having contrast in skipper effects. Although this is generally true for the BC

sablefish trap fishery data I examined, there are some spatial cells that were

only fished by one or two skippers (Figure 2.3).

2. There are multiple cells fished by each skipper, resulting in the skipper effect

having contrast in spatial effects. Although a large number of skippers fished in

relatively few cells, there are many skippers that have fished a relatively large

number of cells (Figure 2.4).

The story is similar for vessels. Although a few vessels have only fished a small number

of cells, and some cells have been fished by only a few vessels, there are a number of

vessels that have fished a large majority of the spatial domain D. These vessels have

covered many spatial cells and provide the contrast necessary to differentiate spatial
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effects from vessel effects in those cells that have seen few vessels.
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Figure 2.2: Spatial concentration of effort. (a) Annual proportion of 10-km grid cells
that were not fished by the commercial trap fishery. The high point in 2003 is a
consequence of the reduced fishery quota for that year. (b) Annual proportion of
spatial cells receiving at least one percent of the total trap fishery sets.
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Figure 2.3: Number of skippers by grid cell. The total number of skippers fishing in
each 10-km grid cell for the BC sablefish trap fishery 1990-2005.
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Figure 2.4: Number of grid cells fished by skipper. The total number of 10-km grid
cells fished for each of the skippers in the BC sablefish trap fishery 1990-2005.
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2.2.2 Data analysis

The first objective of this study was to determine the consequences of using the spatial

HBM for stock assessment of BC sablefish. The first step in addressing this objective

was to calculate the four indices of abundance for comparison. The first index the

nominal CPUE index, which involved calculating the mean CPUE directly from the

set-by-set commercial catch and effort. The second index was an aspatial GLM index,

which involved fitting a GLM to the commercial CPUE data and extracting year

effects. The third and fourth indices were based on a spatial hierarchical Bayesian

model (HBM), beginning with the GLM structure and adding spatial effects. Notation

for the various quantities in the models (Table 2.2) follows the notation developed in

Chapter 1.

Nominal CPUE index

The nominal CPUE index was calculated by averaging set-by-set fishery CPUE for

each year from 1990 to 2005, i.e.

QCPUE
t =

1

nt

∑
i

yi,t (2.1)

where i indexes fishing set and nt is the total number of fishing sets that took place

in year t.

Aspatial GLM index

Using the nominal CPUE index as a measure of relative stock abundance assumes that,

within a year, each fishing set is a replicate measurement of the average stock density.

However, factors other than which year the fishing set was made may influence CPUE,

such as the effect of individual fishing vessels or of fishing vessel characteristics, the

depth of fishing set, the underlying habitat type, or the season in which the fishing

event took place. The generalized linear model allows the effects of these other factors

on CPUE to be included and estimated. Once the GLM has been fit to the data, the

Year effect can be used as the relative stock abundance index.
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Table 2.2: Symbols used in specifying the BC sablefish commercial trap fishery models.

Symbol Description

n Number of fishing sets (45,034)
C Set-by-set Catch
E Set-by-set number of Traps
y CPUE - see equation 1.1
f(y) Natural logarithm of CPUE
p Number of linear covariates
X Design matrix of p covariates - Examined covariates include:

Year, Quarter, Vessel, Skipper, Depth, Squared Depth
β Vector of p linear effects
τ 2 Variance of Response
s locations of the n fishing sets
w(s) set-specific spatial random effects
w(ς) grid cell-specific spatial random effects
R Number of time blocks for spatial effects
σ2 Variance of the R CAR prior(s)
t Index of year
i Index of fishing set
j Index of linear covariates β
k Index of grid cell
r Index of time block of spatial effects

I fit fifteen candidate generalized linear models (Table 2.3) specified according

to equations 1.1, 1.2, and 1.3 using the glm function in the statistical computing

environment R (R Development Core Team, 2007). The design matrix in equation

1.2 included an intercept and covariate values for Year, Quarter, Depth, and squared

Depth. Some models also included Skipper and others included Vessel. Covariates

Year, Quarter, Skipper, and Vessel were all treated as factors, whereas Depth and

squared Depth were continuous. Previous analysis of the available survey data showed

that the highest CPUEs are observed at depths ranging from 457 to 824 m (250 to 450

fm), which suggested a quadratic relationship between the logarithm of CPUE and

depth (Wyeth et al., 2004). The quadratic relationship was also allowed to vary over
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time by estimating separate Depth and squared Depth effects for time blocks lasting

one, two, four, eight, or all sixteen years.

Table 2.3: Generalized linear model selection statistics. Covariates Year, Quarter,
Depth, and squared Depth were included in all models examined. Some models also
included Skipper or Vessel effects. Except for models 1 - 3, Depth and squared Depth
effects were aggregated into multi-year time blocks. The chosen model is shown in
bold.

Covariate Statistic

Model Skipper Vessel Depth Blocks AIC Deviance

1 Yes No 16 321598 3315253
2 No Yes 16 322125 3357362
3 No No 16 327034 3748677
4 Yes No 8 321984 3346125
5 No Yes 8 322445 3383706
6 No No 8 327472 3788000
7 Yes No 4 322228 3365479
8 No Yes 4 322681 3402676
9 No No 4 327716 3809967
10 Yes No 2 322389 3378169
11 No Yes 2 322859 3416825
12 No No 2 327980 3833055
13 Yes No 1 322395 3378884
14 No Yes 1 322877 3418431
15 No No 1 328039 3838395

Akaike’s Information Criterion (AIC) and the residual deviance were calculated for

each of the candidate model fits. The AIC (Akaike, 1973) is an information theoretic

model selection criterion that balances model parsimony with model fit. Models with

lower AIC values are considered to be better. In addition to the AIC, the Depth and

squared Depth parameters were checked to ensure that a realistic relationship between

CPUE and Depth was being estimated. Some time blocks lacked fishing sets made at

relatively deep or shallow depths, resulting in poor contrast in Depth. Those models



CHAPTER 2. BC SABLEFISH: SPATIAL VS. ASPATIAL ASSESSMENT 45

that estimated a positive Depth effect and a negative squared Depth effect in some

time blocks were removed from consideration because they predict relatively higher

CPUE for deep and shallow depths compared to intermediate depths. Such estimates

of CPUE versus Depth have no biological foundation, and are purely the result of

poor contrast in Depth. If CPUE increased as the square of depth, then harvesters

would target locations that are as deep as possible, which is clearly not the case.

I extracted the Year effects from the best model as the GLM index of relative

abundance. Because the raw Year effects are for CPUE on the natural log scale, I

transformed the effects to the arithmetic scale according to

QGLM
t = eβ0eβjt (2.2)

where βjt is the linear model effect corresponding to year t. Only differences between

the base year (1990) and subsequent years are estimated by the Year effects, so in the

base year, βj1 is zero and QGLM
1 = eβ0 .

Spatial Hierarchical Bayesian Model

The first step in estimating the spatial stock biomass indices was to formulate and fit

a series of spatial HBMs. The BC sablefish data set contains 45,034 entries, which

precludes a continuous spatial effects model such as the one depicted in Figure 1.4

due to the big n problem. Therefore, I used the CAR prior (equation 1.18) for spatial

effects, defined on the 10-km grid as shown in Figure 2.1. This is equivalent to the

CAR spatial hierarchical model (figure 1.5). I use the same notation as in the model

definition (equations 1.1, 1.2, 1.4, 1.5, 1.6, 1.12, 1.19, and 1.20); Table 2.2 contains a

brief description of specific BC sablefish symbol definitions used in the CAR spatial

HBM.

Set-specific CPUE was computed as in equation 1.1, and was subsequently log-

transformed (as in equation 1.6) according to

f(yi) = loge(yi + 0.001) (2.3)

to allow y to be modeled using a normal error distribution. The value 0.001 was

added to each observation to allow zero catches in the analysis.
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The design matrix included the same covariate values as the aspatial GLM analysis

except that, in similar fashion to the aspatial GLM analysis, Depth and squared

Depth effects were estimated for separate time blocks lasting one, two, or four years.

Aggregating Depth effects across years was necessary due to insufficient contrast on

a finer time scale. The spatial HBMs also included either four time blocks of spatial

effects w(ςr), r = 1 . . . 4, defined according to equation 1.19, or one set of spatial

effects covering all sixteen years. This allowed patterns in spatial variation to vary

over time for some models. The number of Depth blocks and spatial effects were

chosen so that the candidate HBMs covered a range of temporal complexity from

sixteen Depth blocks and four spatial blocks to four Depth blocks and one spatial

block (Table 2.4).

The spatial HBMs were fit using a Gibbs sampler (Geman and Geman, 1984)

that was custom-coded in R. The Gibbs sampler is a Markov Chain Monte Carlo

(MCMC) method for estimating the joint posterior distribution of the model parame-

ters by drawing from the posterior distribution of each model parameter, conditional

on the values of the other parameters. Compared to other MCMC methods such

as the Metropolis Hastings algorithm (Hastings, 1970; Metropolis et al., 1953), the

Gibbs sampler has the advantage that it can sample from the joint posterior without

the need for any tuning. Since hierarchical models can become rather complex, it

is also generally easier to think about and describe hierarchical model parameters

conditionally.

Vague priors were used for all model parameters that were not specified condition-

ally. Each linear coefficient in the column vector β (equation 1.4) was given a normal

prior with mean zero and large variance of 1000. The variance of the model residu-

als, τ 2 (equation 1.5), and the variance of the CAR priors σ2 (equation 1.12), were

each given Inverse-Gamma priors with mean 1 and 0.001 degrees of freedom. Com-

bined with distributions for other model parameters, the joint posterior probability
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Table 2.4: BC sablefish spatial hierarchical Bayesian model selection statistics. Co-
variates Year, Quarter, escape rings, Depth, and squared Depth were included in all
models examined. Models with aggregated Depth (and squared Depth) blocks were
considered due to apparent data coverage issues (see text). For each model, the av-
erage deviance (Davg), the best-fit deviance (Dθ̂), the effective number of parameters
ν, and the deviance information criterion (DIC) were calculated. Model F, in bold,
was chosen based on its low DIC statistic.

Covariate Blocks Statistic

Model Skipper Vessel Spatial Depth Davg Dθ̂ ν DIC

A Yes No 4 16 45037 44940 97 45135
B No Yes 4 16 45039 44961 78 45116
C No No 4 16 45038 44984 55 45093
D Yes No 4 8 45038 44956 82 45120
E No Yes 4 8 45042 44980 62 45104
F No No 4 8 45026 44986 40 45065
G Yes No 4 4 45036 44961 75 45110
H No Yes 4 4 45038 44984 55 45093
I No No 4 4 45040 45008 32 45072
J Yes No 1 4 45028 44949 79 45107
K No Yes 1 4 45033 44975 58 45092
L No No 1 4 45038 45005 33 45071

distribution for the spatial HBM is

p(τ 2)
R∏

r=1

CAR
(
w(s)|σ2

r

)
p(σ2

r)

p∏
j=1

p(βj)
n∏

i=1

p
(
yi|β, w(si), σ

2, τ 2
)

(2.4)

∝ IG(τ 2|1, 0.001)
R∏

r=1

CAR
(
w(s)|σ2

r

)
IG(σ2

r |1, 0.001)

×
p∏

j=1

N(βj|0, 1000)
n∏

i=1

N
(
f(yi)|Xi�β + w(si), τ

2
)

Because of the conjugacy of model priors, the conditional distribution for each model

parameter is available in closed form, which enables a Gibbs sampling approach to

generating the approximate joint posterior. I developed a Gibbs sampler to draw
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samples from the conditional posterior distribution of each model parameter in turn.

The conditional distribution for each model parameter can be extracted from the joint

posterior by treating all other model parameters as constants (e.g., Su et al., 2004).

When choosing an appropriate model for the data, models with a high predictive

power for future data are desirable. The deviance information criterion (DIC) is an

estimate of the expected predictive deviance of a given model (Spiegelhalter et al.,

2002). Models having a lower DIC are expected to be better out-of-sample predictors

(Gelman et al., 2004). The expected predictive deviance is a function of the expected

deviance of a point estimate based on a set of model parameters and the expected

deviance averaged over representative posterior parameter samples.

The DIC is composed of two components, each of which can be estimated from

posterior parameter samples according to

DIC = 2D̂avg(ζ)−Dθ̂(ζ) (2.5)

where the generic symbols ζ and θ represent data and parameters in the model,

respectively. The average expected deviance is

D̂avg(ζ) =
1

L

L∑
l=1

D(ζ, θl) (2.6)

for posterior samples l = 1, · · · , L, and the expected deviance of a point estimate is

Dθ̂(ζ) = D(ζ, θ̂(ζ)) (2.7)

An appropriate choice for the point estimate θ̂ is the mean of the posterior simulations.

Calculating both the average expected deviance and the expected deviance of a point

estimate requires estimates of the deviance, which is a measure of the discrepancy

between the data and model. It is defined as twice the negative log likelihood

D(ζ, θ) = −2 loge p(ζ|θ) (2.8)

The expected deviance of a point estimate and average expected deviance can also

be used to estimate the effective number of parameters in the model. Hierarchical

model structures, the value of priors and hyperpriors, and observed data, all constrain
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the value of parameters such that the effective number of parameters is less than the

actual number of parameters in the model. The results of model fits reflect these

constraints. The effective number of parameters

ν = D̂avg(ζ)−Dθ̂(ζ) (2.9)

is a measure of how much actual fitting of the model to the data occurs. It is the

number of unconstrained parameters in the model, and represents the effect on the

deviance of fitting the model.

Having selected the best candidate spatial HBM, I estimated the spatial CPUE

indices by stratified Monte-Carlo integration of the spatial HBM CPUE surface. In

the Monte-Carlo integration scheme, I randomly chose twenty-five points in each of

the spatial grid cells in each year, and predicted CPUE at each point for each of 3,000

posterior parameter samples. To calculate a predicted CPUE at each point, covariate

values and levels had to be specified. The Year covariate was determined by the

integration scheme (twenty-five points in each cell in each year). I set the Quarter

effect to the fall (August-October) to allow future comparisons to indices derived from

surveys, which are done in the fall. Finally, I calculated Depth and squared Depth by

interpolation of bathymetry data using multilevel B-splines in the R package MBA

(Finley and Banerjee, 2006). The resulting model-predicted CPUE surface consisted

of 113,200 points y(s̃) over sixteen years, each point estimate including uncertainty in

the form of 3,000 predictions, one for each posterior sample. Extrapolations beyond

the depth range historically fished were omitted when calculating statistics. Mean

predicted CPUE and eighty percent credibility intervals were calculated at each point

to generate final results. The mean spatial CPUE index was calculated as the average

of the Monte-Carlo samples in each year using

QHBM1
t ≡ ȳ(st) ≈

1

nDt

∑
D

y(s̃t) (2.10)

where nDt was the number of locations s̃t that were within the depth range 176 m -

1,312 m in year t.

I used the spatial cumulative distribution function to generate estimates of the

median spatial CPUE index QHBM2 ≡ y50 (equations 1.23 and 1.24) and the 10th, 30th,
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70th, and 90th percentiles for each year. The index of heterogeneity H(0.9, 0.1), which

is the difference between the 90th and the 10th scdf percentiles, was also calculated for

each year (equation 1.25). The area occupied by the stock Ψ was also calculated for

each year (equation 1.26) using a low-abundance threshold of six kilograms per trap,

which corresponds to the lowest tenth percentile of observed set-by-set commercial

CPUE over the period 1990 - 2005. A catch of six kilograms is roughly two sablefish

(Wyeth et al., 2004).

Consequences for Stock Assessment

I evaluated the consequences for stock assessment of choosing each of the four rela-

tive abundance indices derived from spatial catch and effort data. The intent was to

compare the different indices of relative abundance rather than to accurately estimate

actual BC sablefish population parameters. In this spirit, I chose a Schaefer surplus

production model (Schaefer, 1954) for stock assessment to make comparisons because

a more complicated model would have made interpreting differences in results diffi-

cult. The Bayesian production model was parametrized in terms of the theoretical

maximum sustainable yield (MSY ), and the optimal exploitation rate (hMSY ) corre-

sponding to MSY . Posterior parameter samples were generated using a Metropolis

Hastings algorithm (Hastings, 1970; Metropolis et al., 1953).

The surplus production model consists of a deterministic process model and ran-

dom observation model. The deterministic process model tracks the biomass B of the

stock according to

Bt+1 = Bt + %Bt

(
1− Bt

K

)
− Ct (2.11)

where K is the unfished biomass, % is the rate of growth when B is much less than

K, and C is the total catch of BC sablefish in all fisheries. This biomass model was

parametrized in terms of the optimum harvest rate hMSY = %
2

and the maximum

sustainable yield MSY = %K
4

= hMSY K
2

, and the state variable was redefined to

be the stock biomass depletion P = B
K

(Hilborn and Walters, 1992). Using this

parametrization, the Schaefer model becomes

Pt+1 = Pt + 2hMSY Pt(1− Pt)−
hMSY Ct

2MSY
(2.12)
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The full time series of catches (1965-2005) available for the BC sablefish fishery were

included. The initial depletion P1 (in 1965) was assumed to be 1 (i.e. unfished biomass

level).

The observation model specified the depletion in year t to be proportional to the

relative abundance index, with lognormal observation error, so that

Qt = qPte
εt (2.13)

where q is the catchability (the fraction of Pt caught per unit effort), and εt ∼ N(0, τ 2
Q),

where τ 2
Q is the variance of ε. The negative log-likelihood function for this observation

model is

− loge p(Q|hMSY , MSY ) ∝ T

2
loge

[
T∑

t=1

(
log(Qt/Pt)− log q

)2]
(2.14)

where log q is the conditional maximum likelihood estimate of log q:

log q =
1

T

T∑
t=1

log(Qt/Pt) (2.15)

I specified priors for the model parameters MSY and hMSY . The short time series

of catch and the declining trend in the four relative abundance indices (known as a

one-way trip (Hilborn and Walters, 1992)) contain limited information on either the

size of the stock or MSY . Due to the declining index trends, I used an informative

prior for the harvest rate parameter: p(hMSY ) ∼ Beta(8, 64). This prior was based

on the most recent assessment of neighbouring Alaska sablefish stocks (Hanselman

et al., 2007), which estimates hMSY = 0.101. The prior for hMSY was designed

on the premise that BC sablefish will have similar but not identical characteristics

to Alaska sablefish, which is not unreasonable given that they may be part of the

same biological population (Kimura et al., 1998). The prior for MSY was a normal

distribution centred on the average historical catch, with a coefficient of variation

set to one, i.e. p(MSY ) ∼ N(4200, 42002). This vague prior allows the indices to

determine the posterior probability distribution for MSY in tonnes.
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2.3 Results

2.3.1 Model selection and resulting indices of abundance

Aspatial GLM

Comparing the candidate aspatial generalized linear models using the AIC and resid-

ual deviance suggested that the most complex model (model 1) was the most suitable

GLM for describing the data (Table 2.3). However, all of the models that estimated

Depth effects in more than two blocks (eight years per block) reversed the biologi-

cally realistic CPUE-Depth relationship, predicting lower CPUE in the intermediate

depths compared to the deeper or shallower depths. This reversal was likely due to

limited contrast in the depths fished for finer timescales. On this basis, model 1 was

not chosen. Of those GLM candidates that estimated appropriate CPUE vs Depth

relationships (models 10-15), model 10 had the lowest AIC and residual deviance (Ta-

ble 2.3). The chosen model included skipper effects and two eight-year depth effect

blocks.

Spatial HBM

Statistics of fits were used to compare candidate spatial hierarchical Bayesian mod-

els (Table 2.4). Differences in the average residual deviance (Davg) among candidate

models were small. As a result, the simpler models that did not include either Skipper

or Vessel effects had lower DIC values due to their relative parsimony (fewer param-

eters). More complex models with Skipper or Vessel effects (e.g. A, B, D, E, etc.)

did not fit the data any better than the simple models, suggesting that variability in

CPUE is better explained by spatial effects than by the effect of particular skippers

or fishing vessels. The model with the lowest DIC was model F, which had no skipper

or vessel effects, four spatial effects blocks, and eight depth effect blocks (Table 2.4).

Despite estimating 1172 individual parameters, model F only explained the equivalent

of forty independent parameters, reflecting a high degree of correlation among effects.
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Spatial heterogeneities in the inferred stock density appear to violate the assump-

tions of the nominal CPUE and aspatial GLM analyses. Examination of HBM-

predicted CPUE maps (Figure 2.5) shows that the CPUE-Depth relationship is not

uniform along the coast. The spatial effects w(s), which represent the effect of pro-

cesses specific to location that are not otherwise specified in the model, capture depar-

tures from the mean CPUE-Depth relationship. As a result, the spatial effects show

areas with higher or lower CPUE than expected from aspatial covariates alone (Figure

2.6). From north to south, the time series of spatial effects maps shows three large

areas with positive spatial effects: (1) the north end of the Queen Charlotte Islands

(stratified survey area 5); (2) the western edge of Queen Charlotte Sound (stratified

survey area 3); (3) and west of Nootka Island (central part of stratified survey area

2). The area off the west coast of Vancouver Island south of Nootka Island (stratified

area 1) had consistently below average CPUE.

2.3.2 Consequences for stock assessment

All four indices show a decline over the period 1990 - 2005: nominal CPUE declined

by about thirty-two percent from 1990 to 2005; aspatial GLM year effects declined by

about thirty-one percent; mean spatial CPUE declined by about sixty percent; and

spatial median CPUE declined by about sixty-one percent. Calculation of pairwise

correlations between indices shows an apparent difference between the aspatial indices

and the spatial indices (Table 2.5). Comparing the indices directly requires them to

be put on a similar scale by dividing each series by its mean (Figure 2.7). When

compared in this way, the nominal CPUE index and the aspatial GLM index show a

sharp decline from the beginning of the time series to the late 1990s, after which they

vary but do not decline further. Both of the aspatial indices also show a one-year

peak in 2003, coincident with the second year of a two-year quota in which most of

the allowable catch was taken in the first year. The mean spatial CPUE and the

spatial median CPUE indices, on the other hand, show a more steady decline over

the entire period 1990 - 2005. The 2003 peak evident in the aspatial indices is not as

pronounced in the spatial indices, presumably because the aspatial indices measure
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Figure 2.5: Predicted CPUE from spatial HBM for BC sablefish trap data. Predicted
values of the spatial hierarchical Bayesian model (HBM) for the BC sablefish com-
mercial trap fishery, averaged by ten kilometre grid cell. The CPUE values plotted
are in units of kilograms per trap.
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Figure 2.6: Spatial effects from spatial HBM for BC sablefish trap data. Spatial
effects from the spatial HBM for the BC sablefish commercial trap fishery, averaged
by ten kilometre grid cell. Values are plotted on the arithmetic scale. For example,
all other covariates being equal, a spatial effect of 1.2 would correspond to twenty
percent higher predicted CPUE than a spatial effect of 1.
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fishery performance rather than average stock density.

Table 2.5: Pairwise correlations of relative abundance indices. QCPUE is the nominal
CPUE index, QGLM is the aspatial GLM index, QHBM1 is the mean spatial CPUE index,
and QHBM2 is the spatial median CPUE index. There appears to be a difference between
the aspatial indices and the spatial indices.

QCPUE QGLM QHBM1 QHBM2

QCPUE 1 0.946 0.776 0.742
QGLM 1 0.630 0.589
QHBM1 1 0.991
QHBM2 1

In the context of stock assessment, the mean spatial CPUE index and the spatial

median CPUE index result in less optimistic estimates of maximum yield than do

the nominal CPUE index and the aspatial GLM index (Table 2.6). However, stock

assessments based on all four indices estimate average historic catches to be in excess

of MSY . What differs among the stock assessments is the degree to which the stock

has been overfished. I calculated the average ratio of estimated MSY to average

catch from 1965-2005 (4200 tonnes). According to the aspatial GLM assessment,

which is the most optimistic of the four assessments, catches are estimated to have

been on average eleven percent higher than estimates of the theoretical maximum

yield. However, the spatial assessments are more pessimistic; they estimate catches

to have been on average thirty-six to thirty-nine percent higher than estimates of

MSY .

The spatial assessments based on the HBM also estimate the stock to be currently

more depleted than either the nominal CPUE or the GLM-based assessments (Table

2.6), which has implications for management. For example, the aspatial GLM stock

assessment estimates the current (2005) depletion (Bfinal/K) to be 0.445 , near the

assumed stock depletion at MSY (i.e. P = 0.5). Management advice based on

the aspatial GLM analysis would thus be along the lines of a slight reduction in

catch from average historic levels to be near the MSY estimate of 4,050 t. The
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Figure 2.7: Indices of abundance for BC sablefish. The top panels show the four time
series of relative abundance: nominal CPUE index (open circles), aspatial GLM year
index (solid circles), mean spatial CPUE index (open squares) and spatial median
CPUE index (open triangles). The bottom panel compares the four series by scaling
each series to its mean, and plotting the difference between each scaled series and the
scaled nominal CPUE (e.g. QGLM/Q̄GLM − QCPUE/Q̄CPUE for the scaled aspatial GLM
year index, where Q̄ is the mean of an index time series).
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spatial stock assessments, on the other hand, estimate the current depletion to be

about 0.148, which corresponds to about one-third of the assumed depletion of stock

biomass at MSY (P = 0.5). Management advice based on the spatial assessment

would thus call for catches smaller than MSY that would allow the stock to rebuild

towards MSY biomass levels. Although the stock assessment estimates of population

parameters could be improved by the inclusion of survey, tagging, or size composition

data, which are all available for BC sablefish, the current method allows at least a

comparison of the information provided by the alternative fishery-dependent indices.

In this context, if the stock assessment based on the spatial HBM is closer to the

truth than the stock assessment based on the aspatial GLM index, then there is the

potential for not achieving management objectives as a result of the dimensional and

non-independence oversights of the aspatial fishery CPUE analysis.

2.3.3 Trend in the area occupied

The second objective of this analysis was to determine if the area occupied by the

economically exploitable stock has declined over the fishery time series, and whether

aggregative or disaggregative processes appear to be occurring for BC sablefish. Using

an economically exploitable cutoff of six kilograms per trap, which is roughly equiva-

lent to two sablefish, the area occupied by the BC sablefish stock is estimated to have

decreased by about 62 percent from 1990 - 2005 (Figure 2.8). The area occupied by

the economically exploitable stock was near the area |D| from the beginning of the

time series in 1990 to 1999; most of the decline in the area occupied occurred late in

the time series from 2000 to 2005. This contrasts with the nominal CPUE history

of the fishery, which showed a rapid decline early in the time series followed by a

levelling off in CPUE.

Although the area occupied by the economically exploitable stock has declined,

trends in percentiles of the scdf and the heterogeneity indexH do not suggest aggrega-

tive processes in the BC sablefish stock. The percentiles of the scdf, which quantify

the spatial distribution of CPUE over the domain D, show that some relatively high

CPUE areas existed early in the time series, but that since the mid-1990s, these high



CHAPTER 2. BC SABLEFISH: SPATIAL VS. ASPATIAL ASSESSMENT 59

Table 2.6: Comparison of indices of abundance using five estimated quantities. A
Schaefer surplus production model was fit to each of four commercial fishery indices
using a Metropolis-Hastings algorithm. Listed are the posterior mean, posterior me-
dian, and the 2.5 and 97.5 percentiles of the posterior for each of five quantities: (1)
hMSY is the theoretical optimum harvest rate; (2) MSY is the maximum sustainable
yield (in tonnes); (3) K is the unfished biomass (in tonnes); (4) Pfinal is the stock
depletion in 2005; (5) C̄/MSY is the ratio of the average historical catch (1965-2005)
to MSY .

hMSY MSY K Pfinal C̄/MSY

Nominal CPUE
mean 0.088 3,570 88,600 0.329 1.22
2.5% 0.039 2,590 52,500 0.211 0.98
50.0% 0.084 3,540 83,500 0.306 1.19
97.5% 0.155 4,290 153,000 0.651 1.62
Aspatial GLM
mean 0.092 4,050 98,700 0.445 1.11
2.5% 0.038 2,750 50,600 0.264 0.51
50.0% 0.088 3,770 86,000 0.396 1.12
97.5% 0.164 8,290 242,000 0.868 1.52
Mean Spatial CPUE
mean 0.080 3,180 86,100 0.148 1.36
2.5% 0.033 2,100 54,100 0.102 1.07
50.0% 0.077 3,240 83,900 0.144 1.30
97.5% 0.146 3,950 125,700 0.214 2.00
Spatial Median CPUE
mean 0.074 3,100 89,500 0.147 1.39
2.5% 0.040 2,350 56,800 0.101 1.08
50.0% 0.068 3,090 90,100 0.144 1.37
97.5% 0.137 3,900 117,600 0.210 1.79
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Figure 2.8: Area occupied by the economically exploitable BC sablefish stock (1990-
2005). The area (km2) with HBM-predicted CPUE greater than six kilograms (ap-
proximately two sablefish) per trap, estimated from the scdf. Error bars correspond
to 80% credibility intervals.

CPUE areas have been depleted and the stock has been declining steadily throughout

the spatial domain (Figure 2.9). If stock aggregation were occurring in BC sablefish,

the heterogeneity index would be expected to increase as the average stock density

declined, because fish would be vacating areas of relatively low density in favour of

areas of higher density. The heterogeneity index H estimates that the gap between

the highest CPUE grid cells and the lowest CPUE grid cells narrowed rapidly from

about eighteen kilograms per trap in 1994 to about six kilograms per trap in 1996,

after which the gap has shown little trend. The trends in average stock density and

the heterogeneity index suggest that the highest density areas have been fished down

early in the time series, and that the current stock is being depleted more or less

uniformly.
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Figure 2.9: Time series of scdf and heterogeneity index. Time series of scdf percentiles
for BC sablefish, smoothed to show trends, and time series of the heterogeneity index.
Plotted in the left panel are the smoothed median (thick line), and the smoothed
10th, 30th, 70th, and 90th scdf percentiles (thin lines). Plotted in the right panel is the
heterogeneity index H(0.1, 0.9), which is the difference between the 90th and 10th scdf
percentiles. Error bars correspond to 80% credibility intervals.

2.4 Discussion

Case of BC sablefish

This study showed consequences for a BC sablefish stock assessment of using spatial

indices of stock biomass rather than typically used aspatial indices. The estimated

decline in the spatial indices resulted in lower estimates of MSY , hMSY , and stock

abundance when compared to estimates derived from the pattern of decline in aspatial

fishery indices. Although all four assessments estimate historical catch to be in excess

of MSY , differences in stock assessment have implications for management. Due

to the tenuous assumptions of the aspatial indices, and given evidence for spatial

heterogeneity in stock density above and beyond aspatial effects such as depth, more

confidence ought to be placed on the spatial assessments. If managers followed aspatial

management advice, when in fact the spatial assessments are accurate, they would
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tend to allow overfishing of the stock due to the difference in the estimates of current

biomass - the aspatial GLM assessment estimated the current stock biomass to be

forty-five percent of the unfished level whereas the mean spatial HBM assessment

estimated the current stock biomass to be only fifteen percent of unfished biomass.

Estimates of the area occupied by the economically exploitable stock showed a

marked reduction, especially late in the period 1990 - 2005. Decrease in the area oc-

cupied is a management concern because internationally supported criteria for listing

populations as threatened or endangered include trends in area occupied. The possi-

bility that decreases in area occupied are coincident with aggregation are of special

concern, especially given the prevalence of aspatial stock assessments. The BC sable-

fish stock does not display evidence for aggregation; rather, the results of the spatial

HBM suggest that current decreases in stock biomass are occurring evenly throughout

the spatial domain. Even so, the relatively low spatial HBM-based biomass estimate

for BC sablefish, combined with the sharp reduction in economically exploitable area,

should be of concern for BC sablefish managers, whose primary mandate is conserva-

tion of the stock.

Challenges of using spatial fishery CPUE data

According to Hilborn and Walters (1992), the first rule of using fishery catch and

effort data for estimating stock abundance is to spatially stratify the analysis. This

rule is based on the assertion that fishermen are not random samplers of the stock

density, thus the average rate of catch in a fishery is not representative of the average

density of the stock. This advice is revisited in the Folly and Fantasy arguments of

Walters (2003): the Folly is that nominal fishery CPUE represents average success of

harvesters, not average density of the stock; the Fantasy is that stock density in fished

areas is representative of density in unfished areas. In the case of GLM standardization

of CPUE, the arguments of Walters (2003) are what I call the dimensional oversight.

As pointed out by Walters (2003), stratification of fishery CPUE into small areas

or grid cells does not guarantee a proper spatial treatment. Once stratified, CPUE

values must be generated for unfished cells so that changes in effort distribution do



CHAPTER 2. BC SABLEFISH: SPATIAL VS. ASPATIAL ASSESSMENT 63

not influence the average density index per se. Assuming that there are no fish when

in fact there are fish in the unfished cells will introduce bias (Hilborn and Walters,

1992), so a better method is required. Walters (2003) chose to fill in missing cell values

by extrapolating through time using a three-year average for backcasting and the

last observed CPUE value for forecasting. Campbell (1998) presented an alternative

way to fill in missing area values by assuming that there is no stock aggregation or

disaggregation occurring, i.e. that the distribution of area CPUEs in a year, scaled

so that the highest area CPUE is one, is constant across all years. In order to fill in

areas without CPUE observations, these approaches make specific assumptions that

are generally not strictly justified. The spatial cells are also assumed to be statistically

independent even though in practise they will tend to be spatially autocorrelated

(Nishida and Chen, 2004). In addition, neither of these approaches is truly spatial

because they do not make use of location information; the areas or cells in these

analyses could be permuted randomly, and the analysis would be unchanged.

The spatial HBM addresses the Folly and Fantasy arguments while incorporating

spatial autocorrelation, and treats inferred stock density spatially so that quantities

such as area occupied can be estimated directly. However, the spatial HBM analysis

of fishery catch and effort data has its limitations, some of which are related to

unbalanced sampling by the fishery. In the case of BC sablefish, unbalanced sampling

may have been the reason that the HBM without skipper or vessel effects had the

highest predictive power, i.e. skippers and vessels did not visit enough spatial cells

to tell whether variations in CPUE were due to location or skipper/vessel effects.

This lack of contrast due to targeting also meant that spatial effects and depth effects

had to be estimated in blocks to ensure adequate spatial coverage and contrast. The

use of grid-cell aggregate spatial effects also limits the resolution at which reliable

predictions of CPUE can be made. For example, the spatial HBM with CAR prior

provides reliable estimates of mean CPUE for 10-km2 areas and larger, but prediction

within a grid cell will not capture the effects of finer spatial features that are deviations

from aspatial covariate effects. Finally, spatial effects were assumed to be temporally

independent even though the spatial effects show some evidence of consistent patterns

over time (figure 2.6).
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The shortcomings of the spatial HBM analysis may have implications for stock

assessment and subsequent management advice. Although the spatial HBM addresses

unbalanced fishery CPUE data, areas that do not receive much fishing effort increase

the amount of prediction uncertainty. These low-effort areas tend to occur at relatively

deep and shallow depths because catch rates are lower at these depths, which increases

prediction uncertainty at these depths in particular, and uncertainty in estimates of

average spatial CPUE overall. Decreasing uncertainty in the average spatial CPUE

should decrease uncertainty in stock assessment parameter estimates and improve

management advice and performance. The assumption of temporal independence

also contributed to uncertainty, especially in the low-effort areas. In similar fashion

to the lack of contrast, temporal independence increases uncertainty in the spatial

CPUE indices, and reduce certainty in stock assessment parameter estimates.

The reason that including spatial or temporal autocorrelation reduces uncertainty

in parameter estimates is that information in the form of a prior is borrowed across grid

cells or years. In the spatial HBM, the conditionally autoregressive prior constrains

spatial variation according to the characteristics of the data, resulting in shrinkage of

the spatial effects towards the prior mean (Greenland, 2000). Although this shrinkage

has the effect of introducing bias, because the prior mean will be different from the

within-cell mean, it can greatly increase the precision of estimates, especially for

parameters that have very little data available to estimate them (e.g. spatial effects

in grid cells with few or no fishing sets). In fact, shrinkage (or partial pooling of

effects) typically results in superior parameter estimates in terms of mean squared

error, when compared to maximum likelihood estimates (Carlin and Louis, 2000).

However, care should be taken when making one-off spatial HBM-based predictions

at individual locations due to the possibility that sizeable bias has been introduced

by the prior.

Even though the spatial HBM approach that I have outlined addresses to the

extent possible the non-independence oversight and the dimensional oversight, the

practise of using fishery CPUE to index stock density will be forever suspect. Changes

in the management regime of a fishery, for example, can have an impact on CPUE, as

Sigler and Lunsford (2001) demonstrated for the Alaskan sablefish fishery. In the BC



CHAPTER 2. BC SABLEFISH: SPATIAL VS. ASPATIAL ASSESSMENT 65

sablefish fishery, the fleetwide introduction of escape rings in 1999 may have affected

catch rates, but the effect is completely confounded with year-to-year changes in stock

density. Whether or not escape rings had any effect on catch rates is unknown, but

escape rings are designed to let sub-legal fish avoid capture. Therefore, the effect of

escape rings on the retained weight in catch, which is the measure of catch used in

this analysis, should be nil because fish escaping through rings would have had to be

released had they been brought on-board.

Another possible effect of management on fishery CPUE was the use of a two-

year quota for 2002-2003. Most of the quota was taken in 2002, which resulted in

targeted fishing effort during the winter in the northern region of BC. Winter catch

rates tend to be high, especially in the north. As a result, the two-year quota had an

apparent effect on both nominal CPUE and GLM year indices because of a particularly

unbalanced dataset for 2003. The spike in catch rates was less pronounced in the

spatial HBM indices presumably because the use of four-year spatial effects blocks

resulted in borrowed information for southern areas in 2003. Unfortunately, the two-

year quota was coincident with very high catch rates not only in the fishery, but also

in the survey (Wyeth et al., 2004). It is therefore possible that at least some portion

of the CPUE spike in 2003 is due to recruitment to the stock.

High-grading is another issue with fishery data that can have insidious effects on

the relationship between CPUE and density (Gillis et al., 1995). High-grading occurs

when smaller fish are released to conserve room in the vessel’s hold in anticipation of

larger fish caught later in a trip. Using retained weight in catch in the presence of

high-grading is suspect because fish that would otherwise be considered part of the

stock are not counted in CPUE statistics (Gillis et al., 1995). It is unclear whether

high-grading is an issue for BC sablefish; there is a price premium paid for larger fish,

but the reported rate of discards is low (around three percent).

Issues of management and harvester incentives aside, there is still no guarantee

that set-by-set CPUE will be proportional to local stock density (Hilborn and Walters,

1992). In fact, if catchability is not constant (equation 2.13) but rather random over

time, then periods of low catchability will tend to be sampled more than periods of

high catchability, resulting in a hyperstable relationship between CPUE and density
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(Cooke and Beddington, 1984). High catchability periods will be undersampled simply

because high catchability results in large catches, which take more time to handle

than small catches. In the case of the sablefish trap fishery, more time will be spent

travelling to and from fishing grounds to offload larger catches during periods of high

catchability. As a result, it may be prudent to allow hyperstability in the relationship

between CPUE indices and stock biomass when fitting stock assessment models, even

for spatial HBM-derived indices such as the mean spatial CPUE.

Future improvements and extensions

Improving estimates in areas with high prediction uncertainty should be the first

step towards improving management advice for BC sablefish using the spatial HBM

method. In order to improve contrast in depth, the fishery-independent scientific sur-

vey data could be incorporated into the analysis, either by assuming that survey and

commercial sets are equivalent, by estimating an effect for the difference between sur-

vey and commercial CPUE, or by modeling the stock density - commercial CPUE and

stock density - survey CPUE relationships explicitly using an additional hierarchical

level. This approach could be coupled with improved survey design that targets areas

where there are few commercial sets, to improve estimation over the entire area D.

For example, survey design in a given year could be a function of CPUE prediction

uncertainty, which is tied to the pattern of fishing effort in the current or previous

year. A prediction variance map such as the ones in Figure 2.10 could be used to

prioritize survey effort, keeping in mind that survey measurements that overlap with

commercial effort may be necessary for estimating the relationship between survey

and commercial CPUE. Such an approach is often used to site air-quality monitoring

stations (e.g. Zidek et al., 2000).

More complex interactions between space and time effects may also be in order.

The current HBM treats autocorrelation in the spatial effects over four-year blocks

of time. Presumably, the CPUE in a spatial cell is not only autocorrelated with

neighbouring cells (spatial autocorrelation), but also with CPUE in the same spatial
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Figure 2.10: Variance in spatial hierarchical Bayesian model predictions of log-CPUE
for the BC sablefish commercial trap fishery, averaged by ten kilometre grid cell.
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cell during neighbouring years (temporal autocorrelation). Modeling spatial autocor-

relation allowed the spatial HBM to borrow information across cells that had few

observations, and improve CPUE prediction where data were sparse. Adding tem-

poral autocorrelation to the mix would allow information to also be borrowed across

time, further improving prediction. This idea was presented in a stock assessment

context by Walters (2003). Such models have been used in epidemiological studies

with some success (e.g. Waller et al., 1997), and should be an improvement for stocks

such as BC sablefish that show consistent spatial effects patterns over time.

Quantities other than CPUE could also be mapped, if available. In particular,

mapping the average body size or age of sablefish would complement the information

provided by CPUE. Size information is available from survey data. Spatial patterns

of growth might be estimated either by assuming that fish are mostly sedentary, or

estimating rates of movement from tag releases and recoveries. Such demographic

information might be used to inform ecological models such as the basin model of

MacCall (1990), which uses habitat suitability to form an integrated view capable

of predicting patterns of abundance, productivity, movement, and distribution. In

addition, the patterns in body size could provide evidence of patterns of recruitment,

and would be very instructive for management of stocks such as BC sablefish, whose

recruitment patterns and dynamics are still to some degree uncertain.

Finally, the stock assessment model could be improved. The use of the Schaefer

biomass dynamics model was motivated by a desire not to muddle the comparison

of the aspatial and spatial indices with complicated stock assessment. However, the

Schaefer model does make strong assumptions about the relationship between stock

biomass and production, namely that it follows a deterministic logistic growth curve

with a one-year time lag, regardless of the composition of the stock or of prevailing

environmental conditions. Although production in the form of individual growth and

mortality occurs on a yearly timestep, recruitment to either the fishery or the spawning

stock takes several years (Hanselman et al., 2007). Variation in spawning success from

year to year is also evident. A more flexible stock assessment, incorporating ageing

information, and allowing for random variation in production, would represent an

improvement if the goal was to actually assess stock status rather than to simply
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compare alternative indices.

Making the most of spatial fishery CPUE data

Fisheries management is increasingly moving away from input-control systems such

as effort limitation to output-control systems such as quotas. The success of these

output-control systems depends strongly on the accuracy of stock assessments to

provide information on both stock abundance and production (Walters and Pearse,

1996). Accurate stock assessment in turn requires a time series of data that is re-

lated to stock abundance. Given a time series of such data, a relationship to stock

abundance must be either specified or estimated. Scientific research surveys allow for

simple relationships between the data series and abundance because the survey can be

designed specifically to measure stock density. However, many fisheries do not have

enough research survey information to estimate abundance with a reasonable degree

of certainty, and must instead use fishing records. Stock assessment scientists are

left trying to estimate the relationship between fishing data and abundance, which is

not a simple task because of noise in the data and insufficient contrast in abundance

(Hilborn and Walters, 1992). The relationship may also be changing over time, mak-

ing estimation even more difficult. The resulting estimates of abundance can thus

mislead output-control management systems, as was the case in the northern cod

fishery (Hutchings, 1996; Hutchings and Myers, 1994; Rose and Kulka, 1999; Walters

and Maguire, 1996). Spatial information, which can be used to improve estimates, is

typically not used.

Even in the earliest days of fishery stock assessment, Baranov (1918) acknowledged

that fish stocks are not distributed uniformly over space (Paloheimo and Dickie, 1964).

However, these early assessments were limited by the coarse spatial resolution of

fishery data, and simple analyses that could be performed without the aid of modern

computers. Today, many fisheries have time series of spatially-referenced catch and

effort data that have been collected and catalogued at some expense. Despite the

volume of spatial data that exists for many stocks, modern stock assessment largely

ignores this spatial information during analysis. Modern stock assessments that do
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include spatial information do not use it to its fullest potential. Typically, “spatial”

analysis is limited to calculating areal averages, for example by including area effects

in a GLM analysis, but these effects do not actually use location information because

areas are assumed to be independent. I have been unable to find an analysis that

makes use of spatial information on the scale of a fishing-gear set to construct an

index of stock abundance. The time is now to make the most of spatial fishery

information that has been so expensively collected to improve fish stock assessment

and address the shortcomings of aspatial assessments that were identified nearly a

century ago.



Appendix A

MCMC procedure for spatial HBM

Posterior probability distributions for the HBMs were estimated using a Gibbs sam-

pler. Three Gibbs MCMC chains were calculated, starting from different points in the

parameter space. This was done to check the MCMC chains for convergence to the

posterior distribution. In addition to examining trace plots of the MCMC chains, I

monitored the values of the potential scale reduction factor to assess convergence. The

potential scale reduction factor (Gelman and Rubin, 1992) calculates the within-chain

variance and the between-chain variance in order to estimate the factor by which the

scale of the distribution being sampled might be reduced if the chain were calculated

indefinitely. Values of the potential scale reduction factor near one for all model pa-

rameters suggests convergence of the MCMC chains on the posterior. Once the chains

had appeared to converge, I discarded the samples up to that point as burn-in. I took

500 additional draws from the posterior, which were also subsequently discarded, to

calculate the within-chain correlation. Finally, 3000 samples were drawn to represent

the joint posterior distribution. These final samples were thinned based on the previ-

ously calculated within-chain correlation, to obtain largely independent samples from

the posterior.

71



APPENDIX A. MCMC PROCEDURE FOR SPATIAL HBM 72

Sampling distribution for CAR spatial effects

Because the CAR prior for the spatial parameters w(ς) is Normal and conjugate

with the Normal likelihood of the transformed data f(y(s)), the conditional posterior

distribution for the spatial parameters is Normal (Banerjee et al., 2004)

p
(
w(ςk,r)|y(s), β, w(ςl 6=k,r), σ

2
r , τ

2
)

= N(µ∗k,r, τ
2∗
k,r) (A.1)

where

µ∗k,r =
τ 2

τ 2 + nk,rσ2
w(r)

µw(k,r) +
nk,rσ

2
w(r)

τ 2 + nk,rσ2
w(r)

w̄k,r (A.2)

and

τ 2∗
k,r =

τ 2σ2
w(r)

τ 2 + nk,rσ2
w(r)

(A.3)

Here, nk,r is the number of sets in cell k, time block r. The prior mean µw(k,r) from

the CAR prior definition (equation 1.19) is

µw(k,r) =

∑
l 6=k bklw(ςl,r)∑

l 6=k bkl

(A.4)

and σ2
w(r) is the prior variance from the CAR prior definition (equation 1.19)

σ2
w(r) =

σ2
r∑

l 6=k bkl

(A.5)

Finally, the mean w̄k,r for the spatial effects in grid cell k, time block r is

w̄k,r =

∑
i:si∈ςk,r

(f(y(si))−Xi�β)

nk,r

(A.6)

Sampling distribution for linear effects

The sampling distribution for model linear effects using the continuous spatial effects

model is given in equations 1.15 and 1.16. This sampling distribution is slightly

different in the case of the CAR spatial effects model because the spatial effects are

sampled directly. Given the CAR spatial effects, the conditional posterior distribution

for β is

p(β|τ 2, w(s), y(s)) = Np(ACARaCAR, ACAR) (A.7)
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where

A−1
CAR =

1

τ 2
XT X + Σ−1

β (A.8)

aCAR =
1

τ 2
XT (f(y(s))− w(s)) + Σ−1

β µβ (A.9)

and where µβ and Σβ are the mean and variance, respectively, of the normal prior

distribution on β.

Sampling distributions for variance parameters

The conditional posterior distributions for the variance parameters τ 2 and σ2 can be

parametrized as a scaled inverse-χ2 distribution (Gelman et al., 2004). Using this

parametrization, I used a vague inverse-χ2 prior (degrees of freedom ν0 = 0.001, scale

τ 2
0 = 1) for all variance parameters. Using this prior, the conditional posterior for the

residual error variance τ 2 was

p(τ 2|y(s), w(s), β) = Inv−χ2

(
n + 0.001,

∑n
i=1 (f(y(si))−Xi�β − w(si))

2 + 0.001

n + 0.001

)
(A.10)

and the conditional posterior for the CAR spatial effects in time block r was

p(σ2
r |w(s)) = Inv−χ2

(
nr + 0.001,

∑
k w(ςk,r)

2 + 0.001

nr + 0.001

)
(A.11)
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