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Abstract 

Recovery plans for endangered salmon stocks often include aggressive 

restoration of freshwater spawning and rearing habitat. However, there is large 

uncertainty about its effectiveness for increasing freshwater survival rates 

compared to cheaper, passive, actions that focus on habitat protection. 

Experimental implementation of restoration projects could reduce uncertainty and 

improve future recovery decisions, but optimal designs should balance statistical 

requirements for high power against the social costs associated with uncertain 

outcomes. I used decision analysis to design an example experiment for testing 

the relative effectiveness of aggressive and passive habitat actions for increasing 

the egg-to-parr survival rate of spring chinook salmon (Oncorhynchus 

tshawytscha). This approach not only accounted for the costs of experimenting, 

but also the magnitude of costs for different outcomes and their probability of 

occurrence. I ranked the candidate designs using an objective of minimizing 

expected total cost to society and found that the most expensive, highest-power 

design was optimal. This choice was robust to a wide range of assumptions, but 

primarily depended upon the high social costs incurred under outcomes where 

stocks went extinct. These results are different from other research that shows 

less powerful experiments can be optimal. 
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Introduction 

Recent precipitous declines in the abundance of many stocks of Pacific 

salmon (e.g., Slaney et al. 1996; Schaller et al. 1999) are attributed partly to the 

degradation of their freshwater spawning and rearing habitat (NAP 1996). 

Consequently, the restoration of freshwater spawning and rearing habitat is a 

commonly used action to achieve recovery of such populations. Habitat 

restoration actions fall into two general categories: “passive”, or “aggressive” 

(e.g., NAP 1996). Passive actions include government legislation and regulations 

designed to protect salmon stream habitat (e.g., British Columbia’s Fish 

Protection Act) and rely on natural processes to restore habitat to its pristine 

state. Because natural processes can operate on decadal time scales (e.g., Roni 

et al. 2002) management agencies may also use “aggressive” restoration actions 

to manipulate freshwater habitat directly to speed its recovery (e.g., British 

Columbia’s Watershed Restoration Program (WRP) and Fisheries and Oceans 

Canada’s Habitat Restoration and Salmonid Enhancement Program (HRSEP)).  

Both types of restoration actions incur social costs - costs incurred by 

society as a result of government actions. These costs include lost economic 

opportunity due to new regulations as well as the cost of projects funded with 

public money. The costs of aggressive actions include the costs of passive 

actions and thus are always greater. For example, regional habitat protection 

regulations will also apply to those watersheds where aggressive actions take 

place, so the costs of aggressive actions will be added to the costs of ongoing 

passive actions. The costs of aggressive actions also have a higher profile than 
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passive costs. While the costs of passive actions may be spread widely over 

various stakeholder groups, aggressive actions are funded through budgets 

allocated to specific resource sectors (i.e. fisheries) and can make up a high 

proportion of those budgets. This inflicts additional opportunity costs.-.the net 

benefit forgone because the resources providing the service can no longer be 

used in their next most beneficial use (Tietenberg 1992). For example, 

implementing and properly monitoring an aggressive habitat restoration program 

may use up funds that could have been used for an alternative, and perhaps 

more successful, recovery program. 

Aggressive habitat actions are often justified on the assumption that they 

will restore spawning and rearing habitat, and consequently the salmon 

populations that depend on it, more quickly than passive habitat actions (e.g., 

Slaney 2000). This is usually just a hypothesis; there is limited evidence that the 

application of aggressive restoration actions is generally successful at increasing 

production of the freshwater lifestages of salmon (e.g., Roni et al. 2002). Using 

an experimental approach when implementing aggressive habitat restoration 

projects to deliberately test this hypothesis could reduce uncertainty about their 

future effectiveness and the benefits for both salmon and society (e.g., 

MacGregor et al. 2002). Proper experimental design contributes to this goal in at 

least two ways: (1) it increases the probability of detecting true effects of some 

specified magnitude (i.e. statistical power, Peterman 1990); and (2), it increases 

the strength of inferences about results of actions by reducing the confounding of 

management actions with uncontrolled environmental processes (Green 1979). 
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Statistically powerful experiments are not always economically optimal due to the 

costs of experimenting and the potential costs and benefits of decisions based on 

the outcome of the experiment and their probability of occurrence (Walters and 

Collie 1988; MacGregor et al. 2002; Keeley and Walters 1994). The net value of 

experimenting will depend on who bears the biological, social, and economic 

costs of experimental errors of inference and their probability of occurrence, 

factors that should be considered explicitly prior to the initiation of an 

experimental management program. A priori statistical power analysis (Peterman 

1990) and decision analysis (Clemen 1996, Peterman and Anderson 1999) are 

useful tools for assessing the relative value of different experimental designs in 

terms of both social and scientific objectives (Peterman 1990; Peterman and 

Antcliffe 1993; MacGregor et al. 2002) and both have been applied to the design 

of resource management experiments (MacGregor et al. 2002, Keeley and 

Walters 1994, Walters and Green 1997, McAllister and Peterman 1992a,b).  

One area where such considerations are especially relevant is the 

Columbia River basin where salmon stocks have declined sharply since the  

development of the Columbia River hydrosystem, leading to listing many stocks 

under the United States’ Endangered Species Act (ESA) (Schaller et al. 1999). 

The Northwest Power Planning Council’s Fish and Wildlife program spends 

millions of dollars annually to help recover threatened salmon stocks (e.g., BPA 

2001). Recent modeling analyses have provided contradictory advice, finding 

that either the breaching of certain dams (Peters and Marmorek 2001), or off-site 

mitigation efforts (e.g., habitat restoration) in combination with improved 
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downstream migration conditions for smolts (e.g., transportation around dams) 

(Kareiva et al. 2000) will be the best option for recovery. Prior to deciding 

whether to breach dams, the National Marine Fisheries Service (NMFS) opted to 

first try and achieve recovery through a combination of “reasonable and prudent 

actions”, including freshwater habitat restoration, with periodic evaluation of their 

effectiveness at 3-, 5- and 8-years (NMFS 2000). The large amount of money 

being spent annually on recovery as well as the implications of dam breaching in 

terms of lost electric power and impaired river transportation indicate that the 

outcomes of these decisions have high social costs, and that these costs may be 

distributed asymmetrically across stakeholder groups (e.g., those who value the 

existence of the salmon vs. those who rely on economical hydroelectic power). 

Therefore, it is important to design restoration experiments that can provide good 

estimates of effectiveness and that also consider the costs of the uncertain 

outcomes of these experiments.  

Here I show an example of how to design a Before-After-Control-Impact-

Paired series (BACIP) (Stewart-Oaten et al. 1986) management experiment for 

comparing the relative effectiveness of passive and aggressive habitat 

restoration actions, roughly in the time-frame of the evaluation period set by 

NMFS (2000). I set this experiment in the context of increasing the egg-to-parr 

survival rate of ESA-listed stocks of spring chinook salmon (Oncorhyncus 

tschwaytscha) in the Middle Fork Salmon River basin, Idaho by reducing stream 

sedimentation. The Middle Fork Salmon River (a river in the Columbia River 

basin) is in the Idaho Batholith (Andrews and Everson 1988), a geographic area 
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of granitic soils particularly susceptible to erosion (Platts et al. 1989, Rhodes et 

al. 1994). Many of the land-use practices there, such as livestock grazing, can 

increase sediment input to salmon streams (e.g., Meehan 1991). Increased fine 

sediment reduces the quality and quantity of juvenile rearing habitat by covering 

redds and suffocating incubating eggs, entombing alevin, removing habitat for 

the benthic organisms that are food for juvenile salmon, and filling interstitial 

cobble spaces and pools where juvenile chinook hide and overwinter (Rhodes et 

al. 1994). Various state, federal and tribal management agencies have 

implemented both passive and aggressive restoration actions in this area to 

address severe sediment problems believed limiting for the production of juvenile 

chinook. An example of a passive action is the United States Forest Service’s 

(USFS) revised grazing plans for the Marsh Creek and Bear Valley/Elk Creek 

watersheds (Beamesderfer et al. 1997). An example of an aggressive action is 

the USFS’s and Shoshone-Bannock Tribe’s fencing and re-vegetation program in 

the Bear Valley/Elk Creek watershed (Andrews and Everson 1988).  

Because there is as yet no coordinated approach to experimental 

evaluation of habitat restoration activities across the Columbia River basin, I 

assume this experiment takes place in isolation of other activities throughout the 

Columbia basin and that managers can afford to monitor at most two 

watersheds. I assume that they have pre-existing baseline data available to them 

from other monitoring programs that will allow implementation of a BACIP 

experiment without preliminary baseline monitoring. I also assume that if the 

results of the experiment indicate that aggressive treatment is better than the 
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passive treatment, this will trigger the release of funds allowing wider application 

of the aggressive treatment to other candidate watersheds. 

My example has three major components: experimental design, a priori 

statistical power analysis, and decision analysis. I will identify the rank order of 

alternative experimental designs based on two objectives: 1) a social objective of 

minimizing the expected total cost to society and 2) a statistical objective of being 

the quickest to achieve an acceptably high level of statistical power (i.e. ≥ 0.8). I 

calculate outcomes in terms of expected costs because it is difficult to estimate 

the intangible benefits to society of enhancement for endangered salmon stocks 

(e.g., Loomis and White 1996). Depending on whether the more expensive, 

higher power designs reduce costs to society more than their additional cost to 

implement, the rank order of designs may differ for these two objectives. 

Methods 

Experimental design 

I broke the experimental design into several logical components to 

facilitate description. The first component describes the purpose of the 

experiment and covers the experimental objective, treatment and management 

hypothesis. The second component covers the statistical requirements including 

the biological measurements of outcomes and the BACIP monitoring framework. 

The third component combines elements of the first two into a model of the costs 

of experimenting. A specific experimental design is a single combination of the 

number of years of post-treatment monitoring, the level of statistical significance 
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used for hypothesis testing, and the type of monitoring program used to estimate 

biological outcomes (i.e. a change in the egg-to-parr survival rate). 

Experimental objective, treatment and management hypothesis 

The experimental objective is to compare the relative effectiveness of 

passive land use regulations and a form of aggressive habitat manipulation for 

reducing stream sedimentation and increasing the egg-to-parr survival rate of 

juvenile chinook salmon. The treatment consists of applying aggressive sediment 

control actions (e.g., road deactivation) to one stream, while continuing to 

manage the other under an existing passive regime that relies on land-use 

restrictions (e.g., grazing management) to reduce sediment input. The 

management hypothesis is that the aggressive restoration action will increase the 

egg-to-parr survival rate of spring chinook salmon more quickly than the passive 

restoration action. 

Index of egg-to-parr survival rate and BACIP monitoring framework 

Index of egg-to-parr survival rate 

I used parr density/spawner abundance (P/S) as an index of the egg-to-

parr survival rate. Developing this index is more expensive than either a parr 

density or spawner abundance index, but it accounts for the effect of spawner 

abundance on parr density, is linked closely to freshwater rearing conditions, and 

can respond to changes in the first year after treatment. This will reduce 

confounding compared to just using parr abundance, or spawner abundance 

alone, decrease response time, and improve inferences about the effect of 
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habitat restoration actions. These advantages may offset the higher data 

collection costs. 

I assumed that fry emigration is minimal and not related to habitat quality 

so that P/S is an index of both habitat quality and the egg-to-parr survival rate. 

This is a necessary assumption because summer parr surveys index parr 

populations after egg-to-parr survival and fry emigration. If there is significant, 

habitat related fry emigration, the egg-to-parr survival and fry emigration rates will 

be confounded (i.e. a high emigration will be perceived as low egg-to-parr 

survival rate). However, the results of an Idaho Department of Fish and Game 

study suggest that fry emigration is not significant at the observed low spawner 

abundances for the stocks whose data I use in this analysis; a survey of 

mainstem Middle Fork Salmon River rearing areas found parr densities only 3-

13% of those observed in the sample areas of the tributary streams (Scully et al. 

1990). 

I developed the P/S index using parr density and spawner abundance 

data collected for ESA-listed spring chinook stocks in tributary streams of the 

Middle Fork Salmon River, Idaho (Bear Valley/Elk Creek, Marsh Creek, and 

Sulphur Creek, Table 1, top box). Bear Valley/Elk Creek is impacted by sediment 

while Marsh Creek and Sulphur Creek are pristine spring chinook spawning and 

rearing habitat (Hall-Griswold and Petrosky 1996). I used parr density data 

collected in C-channel habitat (Rosgen 1985) by the Idaho Department of Fish 

and Game’s (IDFG) General Parr Monitoring (GPM) program (Hall-Griswold and 

Petrosky 1996) from 1985-1996. C-channel habitat is the preferred habitat of 
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juvenile chinook and under the low seeding levels observed from 1985 to 1996, 

summer parr could be expected to concentrate there, making the data 

representative of the true parr distribution in the sampled streams. The spawner 

abundance data are derived from annual fall redd counts conducted by IDFG for 

these same streams, expanded to an estimate of total annual spawner 

abundance by adjusting for stream length (Beamesderfer et al. 1997). 
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Table 1. Summary of biological data. The top box presents summary statistics, 
sampling information and estimated egg-to-parr survival rates for Bear Valley/Elk 
Creek (BVC), Marsh Creek (MCR) and Sulphur Creek (SCR), tributaries of the 
Middle Fork Salmon River, Idaho. “Ln(P/S)” is the natural log of the ratio of parr 
density per 100m2 and spawner abundance. “x” is mean , s2 is sample variance, 
s is sample standard deviation, n is the number of annual Ln(P/S) data points for 
each stream, and CV is the coefficient of variation (the ratio of the standard error 
of the mean to the mean). “Stream sections sampled/year” is the range in 
number of stream sections sampled each year to estimate parr density for each 
stream. Egg-to-parr survival rate is estimated in a separate analysis. The middle 
box presents the correlations of the annual Ln(P/S) for each stream. The bottom 
box presents the summary statistics for the mean of the paired differences in 
Ln(P/S) for the two possible BACIP pairings under the assumption that Bear 
Valley/Elk Creek is the stream impacted by sedimentation. 

Stream specific biological data1

BVC Ln(P/S) MCR Ln(P/S) SCR Ln(P/S)
x -5.75 -2.27 -2.92
s2 0.62 0.76 2.33
s 0.73 0.95 1.47
n 11 10 8

CV 0.04 0.13 0.18

Stream sections 
sampled/year 6 to 11 3 to 7 1 to 2
Egg-to-Parr 

survival rate2 1.2% 21.8% 11.9%

Correlation results, Ln(P/S)
BVC MCR

MCR 0.34
SCR 0.64 0.17

Mean and variance of the baseline paired differences (Di,j)
DBVC-SCR DBVC-MCR

x -2.71 -3.38
s2 1.34 0.93
s 1.16 0.96
n 8 10

CV 0.15 0.09

2 I.J. Parnell, unpublished data.

1 Parr density data from IDFG GPM database (Hall-Griswold and Petrosky 1996). Spawner 
abundance data from Beamesderfer et al. 1997.

 

The parr data showed a strong linear relationship with spawner 

abundance at the low-seeding levels in the data set (correlations ranged from 

0.72 to 0.74, I.J. Parnell. unpublished data), but this linear relationship may not 



 11

hold if juvenile populations increase substantially following successful treatment. 

A curvilinear Beverton-Holt egg-to-smolt relationship is commonly assumed for 

the chinook stocks of the Salmon River (e.g., Bjornn 1978, Bowles and Leitzinger 

1991). Therefore, an important analytical decision was whether to model density-

dependent effects explicitly. If not accounted for, these effects could confound 

results; increases in the P/S index could be interpreted as positive effects of 

habitat restoration but might actually reflect a density-dependent increase in the 

egg-to-parr survival rate under declining spawner abundance. If density-

dependent effects were important, then statistical tests of change in the index of 

survival rate (P/S) would need to focus on changes in the parameters for models 

of density-dependent egg-to-parr survival. Alternatively, if density-dependent 

effects were not important during the experiment, I could use the simple P/S 

index. To resolve this, I asked two questions: 1) “Do the data indicate that the 

egg-to-parr survival rate is density-dependent?”, and 2) “Are density-dependent 

effects likely to become important over experimental periods in the range of 

those specified by NMFS 2000 (i.e. 3-, 5- and 8-years)?” 

I found that a density-dependent model of parr production fit the data no 

better than a density-independent linear model of parr production (I.J. Parnell, 

unpublished data). Modeling the effects of recovery for a stock parameterized 

with the Middle Fork Salmon data showed that even under an unrealistic 

assumption of instant recovery in egg-to-parr survival rate from that of a 

degraded stream to that of a pristine one, it took 39 years for the spawning stock 

to rebuild to a range of abundances where density-dependent effects on the egg-
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to-parr survival rate would be important (I.J. Parnell, unpublished data). This is 

not surprising because these stocks are likely held well below their carrying 

capacity by the dam-related mortality they experience during their downstream 

migration through the Columbia River hydrosystem to the Pacific ocean (e.g., 

Deriso et al. 2001). Therefore, density-dependent effects would not be important 

for low-abundance stocks like those whose data I use here over experimental 

periods in the range of 3-8 years. 

Based on these results, I assumed the following linear model of parr 

production (in numbers of parr produced per year per 100 m2 of C-channel 

rearing habitat) for the rest of the analysis: 

(1) eeSP kjikji
kjikkji

νεα ,,,,
,,,,

×××=  

where P is parr density, S is spawner abundance, α is productivity (a function of 

the density-independent egg-to-parr survival rate and fecundity), i is the index of 

year, j is the index of period (before [B] or after [A] treatment), k is the index of 

treatment (i.e. aggressive = a; passive= p), εi,j,k is normally distributed process 

error (Bradford 1995), and νi,j,k is normally distributed measurement error. To 

produce the index used for statistical tests of change due to restoration I 

rearranged equation 1 and log-transformed it to normalize the errors, an 

important consideration for commonly used tests of significance. 

(2) νεα kjikjik

kji

Ln
S
PLn

,,,,

,,

)( ++=
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BACIP Monitoring Framework 

I used a Before-After-Control-Impact-Paired series (BACIP) design (Stewart-

Oaten et al. 1986) as the monitoring framework. This design pseudo-replicates 

samples in time; more years of sampling increase statistical power. The paired 

BACIP differences for each year before and after treatment were estimated as: 

(3) ( ) ( ) )()(
,,,,,,,,

,,
ννεε= −+−+−

pjiajipjiaji
aji S 

P 
Ln

S 
P 

LnD
pj,i,

ji,  

and the average ji ,D , jD , estimated the true average differences, jD , across 

years for each period (i.e., Before ( BD ) and After ( AD ) treatment). I used the 

average and variance of the paired differences in Ln(P/S) for the baseline data to 

estimate the true average and variance for BD  and also for AD  in the absence of 

any treatment effect (Table 1, bottom box). I used a two-tailed t-test to test for a 

difference in the Before and After means because I was not certain of the 

direction of response in Ln(P/S) to aggressive habitat restoration relative to the 

passive action, even though I expected it to increase egg-to-parr survival rate 

more quickly. The statistical hypothesis for the two-sample two-tail t test was: 

(3a) ,: ABo DDH =      or    0=− AB DD  

(3b) ,: ABA DDH ≠    or    0≠− AB DD   i.e. there is some difference, either 

positive or negative.  

At the end the experiment, I assumed a decision was made based on the 

outcome of the t-test to either apply the aggressive treatment to a wider range of 

candidate streams, or to stop application of the aggressive treatment and focus 

on other restoration methods. I assumed the following decision rule: if the null 
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hypothesis was rejected, the treatment effect was in the direction expected for a 

faster increase in the egg-to-parr survival rate for the aggressively treated stream 

relative to the passive one. If the t-test and BACIP assumptions were met, I 

concluded that the aggressive habitat restoration action was more effective than 

the passive restoration action and should be applied more widely. 

Pairing Treatment and Control sites 

A major assumption of the BACIP design is that pairing treatment and 

control streams that show high temporal correlation in Ln(P/S) will decrease 

variance in jD  and increase statistical power (Stewart-Oaten et al. 1986). 

Chinook stocks of the Snake River basin, including the three stocks whose data I 

used in this analysis, show a high degree of correlation in their temporal patterns 

of spawner abundance (Walters et al. 1989, Botsford and Paulsen 2000). 

However, covariance in spawner abundance data does not necessarily justify 

pairing of treatment-control streams based on the performance measure used 

here, Ln(P/S), because factors driving covariation in spawner abundance (S) 

could occur in one or more of the many life stages that occur between eggs and 

resulting adult spawners (e.g., Korman and Higgins 1997). Therefore, I evaluated 

covariation in the egg-to-parr life stage by first fitting the transformed model of 

parr production (eq. 2) to the data for each of the three candidate streams to 

remove the spawner effect. I then correlated the residuals to assess the degree 

of similarity between them following the example of Peterman et al. (1998) (I.J. 

Parnell, unpublished data). Sulphur Creek was selected to represent the “control” 

(passively restored) stream because it had the highest correlation with Bear 
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Valley/Elk Creek (correlation of 0.64 vs. 0.34 for Marsh Creek vs. Bear Valley/Elk 

Creek, Table 1, middle box). 

Model of the costs of experimenting 

Cost of Experimenting 

The costs of experimenting included four basic components: 

implementation of aggressive treatment, maintenance of the treatment, 

monitoring in the aggressively treated and passively treated streams, and 

analysis of data at the end of the experimental period. Implementation costs 

include project management, design, and application of treatment (Table 2). 

Application of treatment includes the one-time costs of materials, labor, and 

equipment. Maintenance costs cover the annual cost of maintaining treatment 

(e.g., inspection and repair of roads and culverts). The monitoring component 

covers the costs of collecting parr density and spawner abundance data using 

summer snorkel counts and redd counts respectively. Although not explicit to this 

analysis, I also included the cost of monitoring the physical response of the 

system to treatment (e.g., %sand and cobble embeddedness indices) because 

this would also be necessary information for making inference about sediment 

reduction actions. The costs of analysis are incurred at the end of the 

experimental period. A general model combines these components in terms of 

present economic value: 

(4)   ∑ ××+××+×+×=
=

n
]ët)Cnnm2(

n
[)ëna()Cn(C

A

1t
mainpairspairs

A
AimppairsiE,  



 16

where CE,i is the total cost of experiment i, npairs is the number of paired 

treatment-control watersheds (one here), nA is the total length of the experiment 

after treatment in years, Cimp is the implementation cost, Cmain is the annual 

treatment maintenance cost, m is annual monitoring cost per stream, a is the 

cost of analysis at the end of the experimental period, and λ is the discount factor 

(1/[1+r]) used to convert costs to present value, where r is the discount rate. r 

was set to 5% for base-case calculations and was varied in sensitivity analyses. 

Equation 4 is an adaptation of cost models presented by Keeley and Walters 

(1994) and Antcliffe (1992). A summary of these symbols and other symbols 

discussed later is presented in Table 3. 

An important consideration in the design of management experiments is to 

identify the conditions that might lead to choosing a more expensive, higher-

power design over a less expensive, lower-power design (e.g., MacGregor et al. 

2002). To explore this, I modeled both lower- and higher-cost BACIP-type 

monitoring programs. The lower-cost program combines a low-sampling-intensity 

parr sampling design similar to the IDFG GPM program (Hall-Griswold and 

Petrosky 1996) and the “Index stock spawner abundance program” described by 

Beamsderfer et al. (1997). The higher-cost sampling program combines a higher 

sampling intensity parr sampling program similar to that used in the IDFG Idaho 

Supplementation Studies (ISS) program (Bowles and Leitzinger 1991) and a 

spawner abundance program assumed to increase the precision and accuracy of 

spawner abundance estimates relative to that used for the low-cost program. I 

assumed that the more extensive ISS-type program would be preferred, given 
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sufficient funding. The low-cost program is the base-case. The detailed 

components of these costs are described below (Table 2). 

To estimate costs for each of the lower- and higher-power monitoring 

designs, I made the annual monitoring cost (m) a function of the number of 

stream sections sampled in parr monitoring and the cost of estimating spawner 

abundance: 

(5) )]([ secdim SCCCCm sampledtionbasespawnerentse ×+++=  

where for each stream Csediment is the cost of sediment sampling, held constant 

across all designs, Cspawner is the cost of estimating spawner abundance, Cbase is 

a base travel cost associated with parr sampling that is incurred regardless of the 

number of stream sections sampled, Csection is the average sampling cost per 

stream section, and Ssampled is the number of stream sections sampled during 

parr surveys. I used equation 5 to shift from lower- to higher-cost monitoring by 

increasing Ssampled from the average cost observed under the GPM monitoring 

program for the Middle Fork Salmon River streams to the average cost observed 

for an ISS-type monitoring program that provides more precise estimates of 

mean parr abundance. I also increased the cost of estimating spawner 

abundance (Cspawner) (Table 2).  
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Table 2. Estimated costs for components of experimental design. 

Cost component Cost ($) Source 
One time costs 

Initialization: 
 
Design 
Implementation 

 
 
$23,000 
$205,000 
 

 
 
Adapted from Andrews 1988 

Analysis  $50,000 Estimate 
Annual costs 

Project management $25,247 
 

Adapted from Andrews 1988 
 

Maintenance 
 
Monitoring: 
Parr density 
Low-sampling-intensity 
Bear Valley/Elk Creek 
Sulfur Creek 
 
High-sampling-intensity 
Bear Valley/Elk Creek 
Sulfur Creek 
 
Spawner abundance 
Inexpensive 
Expensive 
 
Sediment sampling 

$4,000 
 
 
 
 
$2,290 
$1,527 
 
 
$8,439 
$5,490 
 
 
$2,290 
$6,870 
 
$20,413 

Adapted from Andrews 1988 
 
 
 
 
D. Nemeth, IDFG pers. comm.,1998. 
 
 
 
ISS estimate 
ISS estimate 
 
 
Estimate 
Estimate (3 x inexpensive) 
 
Adapted from Andrews 1988 
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Table 3. Summary of base-case parameter values. For those parameters varied 
in sensitivity analyses, the range is noted in the “Definitions” column. 

Symbol Base-case value Definition 
nB 8 years Baseline monitoring period, constant. 

nA 6 and 12 years Post-treatment experimental period over which the 
costs of experimenting are accumulated. 

nw 10 
Number of candidate watersheds to which the 
aggressive treatment is applied when the inference is 
that it is better than passive treatment. 

T 20 years Management period (Post-treatment + Post-
Inference) 

T-nA Calculated Duration of the post-inference period over which the 
costs of outcomes are accumulated. 

α 0.05, 0.1, 0.2 Level of statistical significance, i.e. probability of Type 
I error 

β Probability of Type II error 

1-β 
Function of s2, ∆, α, 
and nA Statistical power 

∆ 

Instant: ∆ =1.37 
Trend: 
At nA = 6, ∆ = 1.7 
At nA= 12, ∆ = 3 

Effect size; natural-log of the net increase in egg-to-
parr survival rate between the aggressively and 
passively treated streams. Implemented either as an 
instantaneous net 4-fold increase, or as a time-trend 
of a 4-fold increase over 5 years. 

BD  -2.71 Mean of paired differences in Ln(P/S) over the 
baseline period for BVC and SCR. 

2
Bs  1.34 Variance of the paired differences in the baseline 

period. 

AD  BD +Ln(∆) Mean of paired differences in Ln(P/S) over the 
experimental period. 

2
As  Low $: 

2
As = 

2
Bs  

High $: CV = 15% 

Variance of paired differences over the experimental 
period. Equal to baseline variance under lower-cost 
monitoring (Low $). Coefficient of variation (CV) 
maintained at 15% for higher-cost monitoring (High 
$). 

PHo 0.50 Probability of the null hypothesis (varied from 0 to 1 in 
sensitivity analyses) 

r 5% Discount rate (%) (varied from 0% to 10% in 
sensitivity analysis) 

A priori statistical power analysis 

I used a priori power analysis to calculate the statistical power of different 

experimental designs to detect some specified effect size using the analytical 

methods of Cohen (1988): 
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where β is the probability of Type II error, Z1-b is the percentile of the unit normal 

curve which estimates power, Z1-a is the percentile of the unit normal curve for 

the significance criterion (for two-tail tests a = α/2), d is the Standardized Effect 

Size (derived below), and nTotal is sample size (nTotal = nB + nA, where nB is the 

baseline number of years of monitoring). Statistical power is 1-β. I included 

modifications recommended by Cohen (1988) to account for unequal sample 

sizes between the Before and After periods, a necessary requirement because 

the length of the post-treatment period (nA) varies between experimental designs. 

I also accounted for unequal population variance between the Di,j in the Before 

and After periods. Statistical power is a function of four components: (1) the level 

of statistical significance (α), (2) post-treatment sample size (nA) (3) the effect 

size of interest (∆), and (4) sample variance (s2).  

Level of statistical significance (αα) 

The level of statistical significance (α) is commonly set to 0.05. However, 

this is often too stringent for environmental monitoring (Mapstone 1995), 

especially when monitoring low-abundance stocks at higher risk of extinction 

from even small further declines (e.g., Rhodes et al 1994). I therefore also set α 

to 0.1 and 0.2. 
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Sample size (nA) 

I considered two specific base-case post-treatment periods (nA) of 6 and 

12 years. The baseline (pre-treatment) sample size (nB) remains constant at 8 

years because it is based on pre-existing data (Table 1). Six years provides a 

reasonable number of parr/spawner data points while twelve years would provide 

the same number of data points for R/S should further ancillary analyses be 

required. These periods are in the range of the 3-, 5-, and 8-year “check-ins” 

proposed by NMFS (2000) for evaluation of the effectiveness of proposed 

“Reasonable and Prudent Alternatives” to dam breaching for recovering ESA-

listed salmon stocks. 

Effect size (∆∆) 

The effect size is related to the change in the mean of the paired 

difference in pre-treatment Ln(P/S), BD ,that is important to detect from a 

decision-maker’s point of view, or based on other judgments. Connecting a 

change in BD  to an effect size of biological interest required three steps: (1) 

determining the change in the egg-to-parr survival rate (∆) that is important to 

detect from a recovery perspective, (2) expressing it as a change in BD , and (3) 

expressing this change as the standardized effect size (d) used to calculate 

statistical power. 

Step1: Biological Effect Size (∆∆) 

I assumed a net 4-fold increase in survival for the biological effect size (a 

multiplicative increase (∆) in the egg-to-parr survival rate), based on the following 
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considerations. First, I estimated the maximum possible increase in the survival 

rate as the difference between the estimated egg-to-parr survival rate for an 

impacted stream (i.e., 1.2% in Bear Valley/Elk Creek) and a pristine stream (i.e., 

21.8% in Marsh Creek), an approximate 17-fold increase (Table 1, I.J. Parnell, 

unpublished data). Second, I estimated the expected magnitude and timing of an 

increase in survival under passive treatment. Rhodes et al. (1994) cite an 

observed 10-fold increase in survival-to-emergence, an index of egg-to-fry 

survival rate, over 15 years under a passive form of restoration (cessation of 

logging) after a massive sediment influx to the South Fork Salmon River, Idaho. 

A 10-fold increase from the estimated current egg-to-parr survival rate in Bear 

Valley/Elk Creek is about 12.3%. To justify wider application of the aggressive 

treatment, the increase in survival for the aggressively treated stream must be 

higher than that achieved under passive treatment. I assumed managers would 

want to achieve close to the 17-fold maximum increase in the egg-to-parr survival 

rate, or a net 4.8-fold increase in survival relative to the passively treated stream 

over 15 years. I assumed that a slightly more conservative net 4-fold increase 

would be satisfactory. 

I applied this biological effect size using two different scenarios. For base-

case conditions, I assumed that the 4-fold increase was instantaneous and 

constant across all nA. I then tested the sensitivity of base-case results to a more 

realistic but slower trend of a net 4-fold increase over 15 years in the egg-to-parr 

survival rate of the aggressively treated stream. Under this approach there was a 
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1.7-fold increase in egg-to-parr survival rate at nA = 6 and a 3-fold increase at nA 

= 12. 

Step 2: BACIP effect size (Ln(∆∆) = BD  - AD ) 

I converted increases in the egg-to-parr survival rate to changes in the 

BACIP statistic as follows: 

(7) )()( ][ ∆=∆+−=−=
•

LnLnD DDDD BBAB  

where 
.
D  is the average difference between periods, BD is estimated from the 

data and ∆ is the multiplicative change in the egg-to-parr survival rate derived 

above. 

Step 3: Standardized Effect Size (d) 

The standardized effect size, d (Cohen 1988), is,  

(8) 
spooled

||D
d

•

=  

where 
.
D  is the BACIP statistic estimated using equation 7 and spooled is the 

pooled standard deviation estimated by equation 9. 
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s2 and n are the sample variance and sample size for BD  and AD  as indicated by 

subscripts. s2 for BD  is estimated from the baseline data and s2 for AD  is 

estimated as described next.  



 24

Sample variance (s2) 

I estimated the base-case variance of BD for the Before period ( 2
Bs ) from 

the paired-differences in Ln(P/S) between the treatment and control streams 

(Table 1). The variance in AD for the After period ( 2
As ) was either equal to 

2
Bs under lower-cost monitoring, or adjusted downward to maintain the Before 

period CV of 15% (Table 1, bottom box) under higher-cost monitoring. I assumed 

that the correlation between the two streams did not change in the After period 

and that the higher cost monitoring program reduced 2
As by reducing the 

measurement error component of equation 1.  

Decision analysis 

Formal decision analysis has eight basic components (e.g., Peterman and 

Anderson 1999). The decision tree (Figure 1) is a graphical summary of the 

decision framework.  
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Probability of
the null

hypothesis
(Ho )

Probability of
error in
inference

Probabilities and uncertain states of nature
Experimental

design
(E = 1 to 12)

Action
Costs of post-

experiment
outcomes

Outcomes

nA = 6, low $, αα = 0.1

nA = 6, low $, αα = 0.05

nA = 6, low $, αα = 0.2

nA = 12, high $, αα = 0.05

nA = 12, high $, αα = 0.1

nA = 12, high $, αα = 0.2

E1, CE1

E12, CE12

C4,1

PHo 1

1-PHo 1

1- αα  (Retain Ho)

1-ββ  (Reject Ho)

ββ  (Retain Ho)

C1,1

C2,1
C3,1

Ho1True

Ho1False

αα  (Reject Ho)

 

Figure 1. Decision tree for calculating the expected total costs of alternative 
management actions (i.e. BACIP experiments) for determining whether an 
aggressive habitat restoration action is better than a passive action. Management 
actions emerging from the (square) decision node are alternative experimental 
designs; each action is a single combination of post-treatment monitoring period 
(nA), monitoring method (high $ or low $), and level of statistical significance (α) 
and is associated with a specific cost, CE. Uncertain states of nature (emerging 
from the circles) are (1) either the null hypotheses is true that there is no 
difference between aggressive and passive actions, or the null is false and the 
alternative hypothesis is true that the aggressive action is better, and (2) the 
errors in inference associated with the null (Type I error) or the alternative (Type 
II error) hypothesis, or the correct inferences. Probabilities for each of these 
alternative states of nature are symbolized, respectively, as PHo, 1-PHo, α, β, 1-α, 
and 1-β. The C symbols at the terminal branches of the decision tree (far right) 
represent the total post-experiment cost associated with each management 
action and state of nature. The dashed lines plus arrow indicate that some 
designs are not shown, but Table 4 lists the full set. 

 

The management objective: The primary objective for the decision 

analysis is to select the experimental design that minimizes social costs, as 

indexed by the expected total cost of an experimental design. Because this 
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objective may lead to a different chosen action than a statistically based selection 

of experimental designs, I also examined an alternative objective to choose the 

design that most quickly achieves an acceptable statistical power (i.e. ≥ 0.8) to 

detect treatment effects. 

The alternative management actions: There are twelve alternative 

management actions (i.e. BACIP experimental designs) representing alternative 

combinations of sample size (years of post-treatment sampling), monitoring 

methods (low or high cost), and level of statistical significance (α) (Table 4). The 

alternative management actions are represented by the lines leaving the square 

node in Figure 1. 

Table 4. Alternative management actions (BACIP experimental designs) 
considered in this analysis. Sampling cost is the cost of the annual monitoring 
program used to estimate Ln(P/S), α is the level of statistical significance, and nA 
is the number of years of post-treatment monitoring. 

Design 
Number 

Sampling 
cost 

αα  Sample size           
(nA) 

1 Low $ 0.05 6 
2 Low $ 0.1 6 
3 Low $ 0.2 6 
4 High $ 0.05 6 
5 High $ 0.1 6 
6 High $ 0.2 6 
7 Low $ 0.05 12 
8 Low $ 0.1 12 
9 Low $ 0.2 12 

10 High $ 0.05 12 
11 High $ 0.1 12 
12 High $ 0.2 12 

 

The uncertain states of nature: This analysis is set in the context of 

classical statistics hypothesis tests so the uncertain states of nature are (1) the 

null hypothesis of no difference in D between the Before and After periods, or the 
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alternative hypothesis that there is a difference; and (2) a Type I or II error in 

inference, or a correct inference was drawn. There are four possible states 

represented by the lines leaving the circles in Figure 1. 

The probability of each state of nature: The probabilities for the two 

possible states of the first category of uncertainty (PHo and 1-PHo) are not known 

prior to the experiment; therefore, I set PHo to 0.5 for base-case runs and varied it 

in sensitivity analyses. There are four states for the second category of 

uncertainty (Figure 1, Table 5).  If the null hypothesis is the true state of nature, 

the outcome of the statistical test will be either a Type I error in inference 

(committed with probability equal to α) or the correct inference (with probability 

equal to1-α) that there is no difference between the aggressive and passive 

treatment. When the alternative hypothesis is the true state of nature, the 

outcome of the statistical test will be either a Type II error in inference (committed 

with probability equal to β), or the correct inference (with probability equal to 1-β, 

or statistical power) that the aggressive treatment is better than the passive 

treatment. I set α to 0.05, 0.1 and 0.2 and calculated β (eq. 6) for each case. 

Table 5. Four possible outcomes for classical inference. Adapted from Peterman 
1990. 

Decision States of nature 
Reject Ho Retain Ho 

Ho True Type I error (α) 
 
Cost = C1,i 

Correct (1-α) 
 
Cost = C2,i 

Ho False Correct (1-β) power 
 
Cost = C4,i 

Type II error (β) 
 
Cost = C3,i 
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The model of outcomes expresses results in terms of the expected total 

cost of an experimental design for society, E(CT): 

(10) )) ,,, CE(CCE( iOiEiT +=  

where CE,i is the cost of experimental design i (eq. 4) and E(CO,i) is the weighted 

sum of the four possible costs of outcomes, each weighted by its probability of 

occurrence. 

(11) ][] ,4,3,2,1, )1()1()1() CCPCCPCE( [ iiHoiiHoiO ×β−+×β×−+×α−+×α×=  

If the null hypothesis is the true state of nature (i.e. the aggressive action 

is not better than the passive action), then the costs of outcomes are either C1,i 

(Type I error) or C2,i (correct) (Table 5). C1,i included the unjustified costs of 

expanding the aggressive treatment to more watersheds. I assumed that both 

outcomes led to stock extinction because expanded treatment under a Type I 

error is ineffective and passive actions continued under the correct decision are 

too slow to stem declines in population. Therefore, C1,i and C2,i also included the 

cost of extinction as an index of the lost existence value of the fish. However, it is 

possible that the correct decision here would result in the initiation of research 

actions that might be successful in preventing stock extinction, which would 

reduce C2,i. 

If the alternative hypothesis is the true state of nature (i.e. the aggressive 

action works better than the passive action), the costs of outcomes will be either 

C3,i (Type II error) or C4,I (correct, power) (Table 5). C3,i also included the lost 

existence value of the fish (cost of extinction) for the same reason as for C1,I, as 
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well as the cost of implementing recovery actions that were unsuccessful (were 

too late) when the Type II error was discovered. C4,i included the cost of 

justifiably expanding the aggressive treatment to candidate watersheds. Although 

not considered in this analysis, the correct decision here is also associated with 

potential future benefits such as revenue from future salmon harvests. 

I used representative costs to estimate the order-of-magnitude for C1,i to 

C4,i in the context of the ESA-listed stocks whose data I used for this analysis 

(Table 6). I calculated treatment expansion costs using a modified version of the 

experimental cost model (eq. 4). 
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where nW is the number of candidate watersheds that treatment is applied to (10 

for this analysis), Cimp is as for eq. 4 except that is does not include annual 

project management costs, m is the annual cost of monitoring each watershed, T 

is the duration of the management period (20 years for this analysis) (Figure 2), 

T-nA is the duration of the post-experimental period, Cmaint is as for eq. 4, and λ is 

the discount factor. The number of candidate watersheds (nW), or universe of 

inference (Walters and Green 1997) are all those watersheds in the region of the 

Middle Fork Salmon River where sedimentation has been identified as a 

production constraint for spring chinook that could conceivably be addressed 

through aggressive restoration actions. During Columbia Basin system planning, 

sedimentation was identified as a production constraint for spring chinook in 34 
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subbasins of the Salmon River watershed (IDFG 1990), of which the Middle Fork 

Salmon is a tributary. Many of these watersheds are nested within others also 

listed as being sediment impacted and so could likely be treated at the same 

time, therefore 10 seems a reasonable base-case value for nW. A management 

period (T) of 20 years falls in the range of management periods that have been 

considered by other researchers exploring the optimal design of salmon 

enhancement experiments (e.g., MacGregor et al. 2002, 15-20 years; Keeley and 

Walters 1994, 30 years). I assumed managers would continue to allocate funds 

to monitoring of all treated watersheds because they are aware of the potential 

for errors in inference. I assumed no further periodic analysis costs, though such 

analysis would be required to process monitoring data and evaluate stock status. 

I did not consider possible economies of scale that might reduce implementation 

and monitoring costs over a larger number of watersheds. 

The cost of implementing ineffective alternative actions upon detecting a 

Type II error was incurred as a discounted lump sum at the end of the 

management period. 

(13) λ×= T
newprogramfix CC  

Cnewprogram was similar in magnitude to that of the existing recovery 

programs, (e.g., the BPA 2001 budget noted above), but set slightly higher 

($50,000,000) because I assumed that the urgency of trying to reverse the Type 

II error for an ESA-listed stock would justify massive spending. 
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I represented the cost of extinction of the fish as the discounted lump sum 

of the annual sunk cost of recovery actions over the duration of the management 

period (T).  

(14) λ××= T
sunkextinction CTC  

I estimated Csunk as the FY 2001 Fish and Wildlife program budget for the 

Salmon River region ($ 31,387,793) (BPA 2001). Only about 22% of the full 

annual budget ($ 6,976,744) is specifically allocated to habitat restoration 

actions, the rest goes to other recovery related research, however, I assumed the 

full level of funding was an index of the value of these stocks to society, so it 

served as a useful proxy for the intangible costs such as the existence value of 

the fish. These costs can be very high for endangered species (e.g., Osler et al. 

1991). Because these cost are hard to quantify, I did sensitivity analyses on the 

relative magnitude of the costs of Type I and Type II errors, and the relative 

magnitude of experimental costs (CE,i) and the costs of outcomes (E(Co,i)). 
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Post-treatment (nA) Post-inference (T-nA)

Point of Inference

Experimental costs

Treatment Applied

Baseline (nB)

Management period (T)

Outcome costs

 

 

Figure 2. Time line for calculation of costs. E(CT) includes costs only over the 
experimental management period during which active experimentation and 
analysis occurs. The management period (T) includes the Post-treatment period 
during which the costs experimenting are accumulated and the Post-inference 
period during which the costs of outcomes are accumulated. The costs of 
experimenting include  the cost of treatment, monitoring, and maintenance over 
the experimental period and the cost of analysis at the Point of Inference. The 
costs of outcomes include the cost of expanding treatment to other watersheds if 
it is deemed successful, the correction of Type II errors, and the cost of 
extinction. T is the duration in years of the experimental management period, nB 
is the duration of the baseline period, nA is the duration of the post-treatment 
period and T-nA is the duration of the post-inference period. 
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Table 6. The costs of outcomes associated with post-inference decisions. 

State of Nature 1 State of Nature 2 
(inferred) 

Cost  $ value 

Type I error(CO1) 

Expansion of 
aggressive treatment 
to candidate streams 
(Cexpand) 

+ 
 
 
Existence value of fish 
(Cexticntion) 

Costs outlined in Table 1 
accumulated over the 
post-inference period (nP) 
and multiplied by the 
number of treated 
systems (ten). 

 
$ 31,387,793*T, incurred 
once at the end of the 
management period (T). 

Null Hypothesis 
True 
(aggressive 
treatment no 
better than 
passive 
treatment) 

Correct (CO2) 

Existence value of fish 
(Cextinction) 

As above 

Type II error (CO3) 

Unsuccessful recovery 
actions implemented 
to correct Type II  
error. 
(Cfix) 

+ 
 
 
Existence value of fish 
(Cextinction) 

$50,000,000, incurred 
once at the end of the 
management period (T). 
 
 

 
 
 
As above 

Null Hypothesis 
False 
(aggressive 
treatment better 
than passive 
treatment) 

Correct (CO4) 

Expansion of 
aggressive restoration 
treatment to candidate 
streams 
(Cexpand) 

As above 

 

Ranking alternative management actions: I ranked the experimental designs 

according to the primary objective of minimizing the expected total cost of the 

experiment (E(CT)) and also according to the alternative objective of most quickly 

achieving an acceptably high statistical power (i.e. >= 0.8). 

Sensitivity analyses: I performed sensitivity analyses to explore how robust 

the optimal base-case design choice (i.e. recommended experimental design) 

was to the following uncertainties: the temporal response of egg-to-parr survival 
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rate in the aggressively treated stream (instantaneous vs. time-trended), the 

probability of the null hypothesis (PHo), the discount rate (r ), the relative 

magnitude of the costs of Type I and Type II errors, and the relative magnitude of 

the cost of experimenting and the costs of outcomes. 

Results and Discussion 

Base-case Results 

For the primary objective of minimizing the expected total cost to society, 

the optimal design was #12, which was composed of 12 years of post-treatment 

monitoring, the higher-cost monitoring program, and a level of significance of 0.2 

(nA=12, High $, α = 0.2) (Table 7). For the secondary objective of most quickly 

achieving acceptable statistical power (>= 0.80), the optimal design was #6 

(nA=6, High $, α= 0.2) (Table 7, shaded row). There was a tradeoff between the 

primary and secondary objectives in terms of time (12 vs. 6 years), E(CT) 

($121.41 vs. $130.40 million) and statistical power (1.00 vs. 0.94). The 

secondary objective experiment cost more because even though it was only 6 

years long, it had lower power (higher β) and the high Type II error costs thus 

contributed more to E(CT) (eq. 11). It cost $121 million to treat one stream 

because E(CT) was composed of more than just monitoring and restoration costs, 

it also included the cost of extinction of the fish, which was very high (Table 6). 

Although higher-power experiments removed this cost from the Type II 

component of E(CT), it did not affect the probability of incurring it under PHo, 

where it was incurred for both a Type I error and a correct decision. 
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Table 7. Base-case ranking of experimental designs for the primary objective of 
minimizing E(CT). The shaded row indicates the design selected under the 
secondary objective, i.e. the shortest experimental period that achieves statistical 
power ≥ 0.8. “#” is the design number in Table 2. “Rank” indicates the rank of the 
experimental design under the primary ranking criterion of minimum expected 
total cost to society. “Monitoring $” refers to higher (High $) or lower (Low $) cost 
monitoring programs. “α” is the level of statistical significance used for hypothesis 
tests. “nA” is the number of post-treatment years, or the experimental period. 
“E(CT)” is the expected total cost to society of an experimental design. “Power” is 
statistical power. 

# Rank Monitoring $ αα nA E(CT) $ x 106 Power
12 1 High $ 0.2 12 121.41 1.00
11 2 High $ 0.1 12 122.29 0.99
10 3 High $ 0.05 12 124.52 0.97
6 4 High $ 0.2 6 130.40 0.94
9 5 Low $ 0.2 12 133.26 0.90
5 6 High $ 0.1 6 140.94 0.86
8 7 Low $ 0.1 12 145.49 0.81
3 8 Low $ 0.2 6 146.63 0.81
4 9 High $ 0.05 6 155.39 0.75
7 10 Low $ 0.05 12 160.51 0.69
2 11 Low $ 0.1 6 165.31 0.67
1 12 Low $ 0.05 6 184.76 0.53  

Sensitivity of the optimal design to a trend in effect size 

I calculated base-case results using an unrealistic assumption of an 

immediate net 4-fold increase in the egg-to-parr survival rate in the treated 

stream for both nA (6 and 12 years). To explore the sensitivity of the optimal 

design choice to this assumption, I calculated E(CT) and statistical power for the 

case where the increase in egg-to-parr survival rate followed a trend over time 

(Table 8). While there were some differences in the rank order of these results 

for the lower ranked base-case designs, design 12 was still optimal. With the 

time-trend in increasing egg-to-parr survival rate, no design met the secondary 

objective, but the highest power was achieved by the best design for the primary 

objective (design 12). Thus, the optimal decision was insensitive to a trend in 

effect size for the primary objective, but sensitive for the secondary objective. 
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The overall costs of the experiments were higher for a trend because power was 

generally lower, so the high cost of a making a Type II error (C3) contributed 

more to E(CT). The contribution of the costs of outcomes associated with a true 

null hypothesis (Type I error, C1 and correct, C2) did not change. Power was 

lower with a trend in productivity because the mean post-treatment difference in 

Ln(P/S) ( AD ) was calculated around an increasing trend from lower to higher 

values of Di,A, rather than around a constant mean difference in the egg-to-parr 

survival rate, as for the base-case. Thus, mean DA under a trend was lower than 

under the instant-increase (base-case) scenario for a given experimental period 

(nA). A lower AD  implies a lower effect size (∆) and thus lower power. For this 

analysis, without a trend in effect size, the post-treatment differences reflected a 

constant net 4-fold increase in the egg-to-parr survival rate for both nA = 6 and 

12. However, with the trend in effect size, there was only a net 1.4-fold increase 

at nA = 6 and a net 1.8-fold increase at nA = 12, even though the actual final 

increase achieved was 1.7-fold and 3-fold for nA = 6 and 12 respectively. 
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Table 8. Ranking of experimental designs for a trend in effect size. No design 
met the secondary objective of having the shortest experimental period where 
statistical power meets or exceeds 0.8. “Base-case Rank” indicates the rank of 
the design for under base-case conditions (Table 7). Other column headings are 
the same as in Table 7.  

 

# Base-case 
Rank

Monitoring $ αα nA E(CT) $ x 106 Power

12 1 High $ 0.2 12 165.24 0.66
11 2 High $ 0.1 12 185.63 0.51
9 5 Low $ 0.2 12 194.52 0.44
10 3 High $ 0.05 12 203.49 0.37
8 7 Low $ 0.1 12 213.47 0.29
6 4 High $ 0.2 6 221.33 0.26
3 8 Low $ 0.2 6 226.71 0.22
7 10 Low $ 0.05 12 227.01 0.19
5 6 High $ 0.1 6 235.72 0.15
2 11 Low $ 0.1 6 239.39 0.12
4 9 High $ 0.05 6 244.41 0.09
1 12 Low $ 0.05 6 246.73 0.07  

Sensitivity of the optimal design to the assumed PHo 

Varying the probability of the null hypothesis (PHo) shifts the relative 

contribution of the Type I and Type II cost components to expected total cost (eq. 

11), but does not affect statistical power, which remains constant for a given 

design. I explored the sensitivity of the optimal design choice under the base-

case parameter set to PHo by varying it between 0 and 1.0, which corresponded 

to the expectation that the aggressive action was certain to work better than the 

passive action to zero probability that it would. At the extremes of this range, the 

composition of the expected outcome cost component of E(CT) shifted from 

either all Type I (PHO = 1) to all Type II (PHO = 0) related costs. I evaluated 

sensitivity by looking at how these different values of PHo affected the ranking of 

the four top-ranked base-case designs (Figure 3). Design 12 remained optimal 
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over a wide range in PHo, but lower power designs became optimal for PHo ≥ 0.9; 

as PHo increased, first design 11 and then design 10 became optimal. 

E(CT) for all four designs decreased and diverged from one another as the 

certainty that habitat treatment works increased (PHo approaches 0). E(CT) 

decreased because the contribution of the costs associated with a true null 

hypothesis decreased. The costs of the different designs diverged as certainty 

increased, with higher power designs having the lowest costs. This occurred 

because their lower Type II error probabilities weighted Type II error costs less 

and thus contributed the least to E(CT). E(CT) increased and converged as the 

certainty that habitat treatment worked decreased (PHo approached 1) because 

the costs associated with the true null hypothesis made up an increasing 

proportion of E(CT) (Figure 1). Under very low certainty (PHo > 0.9), low-α designs 

became optimal because they gave the least weight to Type I error costs and 

thus contributed the least to E(CT). 



 39

0

50

100

150

200

250

0 0.1 0.2 0.3 0.4 0.5 0.6 0.7 0.8 0.9 1
Probability of the null hypothesis, PHO

E
xp

ec
te

d
 t

o
ta

l c
o

st
 t

o
 s

o
ci

et
y,

 E
(C

T)
 x

 1
06

Design 6 Design 10 Design 11 Design 12
 

Figure 3. Sensitivity of the optimal design choice to the probability of the null 
hypothesis (PHo). PHo is the probability that there is no difference in effectiveness 
between aggressive and passive actions (PHo). The lines represent the four top-
ranked base-case designs (Table 7). At any value of PHo, the design with the 
lowest value of E(CT) is selected under the primary objective of minimizing the 
expected total cost to society. The arrow indicates the approximate value of PHo 
at which the optimal design switched from design 12 to the lower-power design 
11. 

Sensitivity of the optimal design to the assumed discount rate (r) 

I explored the sensitivity of the ranking of the four top-ranked base-case 

designs (Table 7) to discount rates (r) that ranged from 0 to 10% (Figure 4). 

Higher values of r imply that future conditions are less important for decision-
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making in the present, while lower values imply that future conditions are 

relatively more important. E(CT) declined as r increased, but design 12 remained 

optimal across all values of r explored here. Thus, there was no tradeoff between 

present and future interests for this range in r. There was very little difference in 

E(CT) for designs 10, 11 and 12 because they all have the same costs of 

outcomes (Table 9). E(CT) for design 6 was always highest because it had higher 

costs of outcomes (Table 9). The difference in E(CT) between all four designs 

generally narrowed as r increased because when higher value was placed on the 

present value of costs, the benefits of higher power experiments (in terms of 

lower expected cost) were less able to offset the large costs incurred for 

outcomes associated with a true null hypothesis (Figure 1, cost of a Type I error, 

C1, and a correct inference, C2). 
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Figure 4. Sensitivity of the optimal design choice to the assumed discount rate 
(r).The lines represent the four top-ranked base-case designs (Table 7). At any 
value of r, the design with the lowest value of E(CT) is selected under the primary 
objective of minimizing the expected total cost to society. The optimal design 
choice does not change over the range in r explored here. 

Sensitivity of the optimal design to the ratio of Type II and Type I costs 

I estimated the costs of outcomes for this analysis (Table 6), but the actual 

costs associated with a Type II error are difficult to determine, especially when 

they cannot be easily be quantified in terms of dollars alone, as is the case for 

ESA-listed species (e.g., Loomis and White 1996). To assess how uncertainty 

about the cost of a Type II error affected the ranking of experimental designs 
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under the primary objective, I varied the relative magnitude of the costs of Type II 

and Type I errors. Since the costs of outcomes changed with respect to nA (Table 

9), I kept the costs of a Type I error constant for a particular experimental period 

and varied the costs of a Type II error around them from 0.05 to 10 times their 

magnitude. Design 12 remained optimal over most of this range, but the lower-

power design 11 (nA = 12, High $, α = 0.1) became optimal at a ratio of the Type 

II to Type I costs of about 0.15 (Figure 5). This occurred because below a ratio of 

0.15, the benefits of the higher-power design 12 (nA = 12, High $, α = 0.2), in 

terms of its higher power reducing Type II costs, no longer offset the higher costs 

of a Type I error incurred through its higher probability of a Type I error relative to 

the lower-power design 11 (nA = 12, High $, α = 0.1). That is, a lower probability 

of Type I error (α) became more important than a lower probability of making a 

Type II error because it reduced the contribution of the large Type I costs to 

E(CT).  

The slopes of the four lines in Figure 5 are quite different because for each 

design, only the costs of a Type II error changed. Thus the effective slope of 

each line became equal to (1-PHo)*(β) (eq. 11). PHo is constant for all four 

designs, so lower power (higher β) designs had higher slopes and thus steeper 

lines. 
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Table 9. The costs of outcomes for the base-case parameter set. Costs of 
outcomes and the ratio of the costs of Type II and Type I errors are shown for the 
two experimental periods (nA) and the higher- and lower-cost monitoring designs 
for the four outcome of Table 5. Costs are in millions of dollars; the ratio of costs 
for Type II and Type I errors is dimensionless. The numbers prefixed by “D” are 
the designs associated with each combination of monitoring cost and nA (e.g., 
“D12” is design 12 of Table 4). 

Costs of Outcomes ($ x 106)
nA = 6 nA = 12

D4, D5, D6 D10, D11, D12

Reject Ho (Type I error) 241.32 239.32
Retain Ho (correct) 236.59 236.59
Retain Ho (Type II error) 273.91 264.44
Reject Ho (correct) 4.73 2.72
Ratio of costs for Type II and I 
errors (Type II/Type I) 1.14 1.10

D1, D2, D3 D7, D8, D9

Reject Ho (Type I error) 240.54 238.94
Retain Ho (correct) 236.59 236.59
Retain Ho (Type II error) 273.91 264.44
Reject Ho (correct) 3.95 2.34

Ratio of costs for Type II and I 
errors (Type II/Type I) 1.14 1.11

PHo False

PHo True

PHo False

States of Nature

Lower Cost Monitoring

Higher Cost Monitoring

PHo True

 

 



 44

120.85

120.95

121.05

121.15

121.25

121.35

121.45

121.55

121.65

0.
05

0.
15

0.
25

0.
35

0.
45

0.
55

0.
65

0.
75

0.
85

0.
95

1.
05

1.
15

Ratio of costs for Type II and Type I errors
(Type II/Type I)

E
xp

ec
te

d
 t

o
ta

l c
o

st
 t

o
 s

o
ci

et
y,

 E
(C

T
) 

x 
10

6

Design 6 Design 10 Design 11 Design 12
 

Figure 5. Sensitivity of the optimal design choice to the ratio of Type II and Type 
I costs. The lines represent the four top-ranked base-case designs (Table 7). The 
vertical arrow indicates the ratio at which the optimal design switches from the 
highest power design, #12, to the lower power design 11 (at a ratio of 
approximately 0.15).The base-case Type II/Type I cost ratio is 1.10 for designs 
10-12 and 1.14 for design 6 (Table 7).  

 

Sensitivity of the optimal design to the relative magnitude of the costs of 

experimenting and the costs of outcomes 

For the base-case parameter set (Table 3), minimum E(CT) is reached 

when the number of experimental years (nA) is highest, which also gives the 
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highest statistical power in all cases. This is because the large costs of outcomes 

(Table 9) relative to the costs of experimenting (Table 10) require the highest 

power design to reach the minimum E(CT) for the two conditions of nA explored 

here. However, if conditions were such that the costs of experimenting were a 

more substantial proportion of the costs of outcomes, the rank order of designs 

relative to the base-case results might change such that a lower power design 

becomes optimal. This might occur if my example costs of outcomes severely 

overestimate true costs of outcomes (e.g., inflated cost of extinction). 

Table 10. The costs of experimenting for the base-case parameter set. Costs are 
shown for the two experimental periods (nA) of 6 and 12 years for the higher and 
lower cost monitoring programs. These costs apply to the designs in the bottom 
row of the table. 

Cost of Monitoring nA = 6 nA = 12

Higher $750,568 $1,111,307

Lower $652,748 $940,493

Design # D1-D6 D7-D12

Cost of Experimenting

 

I explored the sensitivity of the ranking of the four top-ranked base-case 

designs (Table 7) to cost conditions that brought the costs of experimenting (CE) 

and the costs of outcomes (C1-C4) closer in magnitude (Figure 6). I only varied 

the cost of extinction component of the costs of outcomes since existence value 

depends on future biological conditions and social values and so is probably the 

most uncertain cost component. I assumed that the costs of experimenting, the 

costs of expansion, and the cost of correcting Type II errors were certain, though 

the latter cost could also depend heavily on future social values. 

Design 12 remained optimal over a wide range in the cost of extinction. 

The second ranked design of the four compared, design 11, only became optimal 
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when the cost of extinction was about 4.2% of its base-case value ($ 9.86 million 

vs. $ 236.6 million for the base-case).  The only difference between designs 12 

and 11 is the level of statistical significance (α = 0.2 vs. α = 0.1), which leads to a 

small difference in statistical power (power = 1 vs. power = 0.99). When the cost 

of extinction is at 4.2% of its base-case value, the benefits of the base-case 

optimal design, in terms of the lower costs incurred under a false null hypothesis 

(Ho False, Figure 1) relative to the lower-power design 11, no longer offset the 

higher costs it incurs under a true null hypothesis (Ho True, Figure 1) with its 

higher probability of incurring a Type I error.  The lines for designs 10, 11 and 12 

in Figure 5 were similar because their base-case costs of outcomes were 

identical (Table 9) and their statistical power was very similar (Table 7 ). The line 

for design 6 diverged from the lines for the other designs as the cost of extinction 

decreased because it had higher base-case costs of outcomes (Table 9), and the 

lowest statistical power of the four designs (Table 7). 

Although this analysis shows that the optimal design could change when 

the cost of outcomes became less important, in practical terms, there was no real 

difference between designs 10, 11, and 12 below 4.2% (left of the vertical line in 

Figure 6). They differed by less than 3%, and it is unlikely that the existence 

value of these stocks could be so severely overestimated. Thus, the selection of 

design 12 was robust to the magnitude of the costs of outcomes relative to the 

costs of experimenting.  

 



 47

0

20

40

60

80

100

120

140

2.
9%

3.
0%

3.
2%

3.
4%

3.
7%

4.
0%

4.
3%

4.
8%

5.
3%

5.
9%

6.
7%

7.
7%

9.
1%

11
.1

%

14
.3

%

20
.0

%

33
.3

%

10
0.

0%

% of base-case cost of extinction 

E
xp

ec
te

d
 t

o
ta

l c
o

st
 t

o
 s

o
ci

et
y,

 E
(C

T
) 

X
 1

06

Design 6 Design 10 Design 11 Design 12

Design 11 optimal  
(nA = 12, High $, αα = 0.1)

Design 12 optimal
(nA = 12, High $, αα = 0.2)

 

Figure 6. Sensitivity of the optimal design choice to the relative magnitude of the 
costs of experimenting and the costs of outcomes. The lines represent the four 
top-ranked base-case designs (Table 7). The costs of experimenting were held 
constant at their base-case values (Table 10). The costs of outcomes were 
varied by changing the cost of extinction. The vertical line indicates the point 
below which the optimal design choice switched from design 12 to design 11. At 
that point the cost of extinction and the expected (weighted average) costs of 
outcomes for the base-case optimal design were 4.2% and 5.5% of their base-
case values respectively. 
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Sensitivity of the optimal design to the number of candidate watersheds 

(nW) and the duration of the management period (T) 

I initially assumed a single value for both the number of candidate 

watersheds (nW) to which the aggressive treatment was applied after the 

experiment and the duration of the management period (T). However, the 

sensitivity analyses showed that the optimal design choice was driven by the 

high costs of outcomes, which depend on both nW and T. Therefore, I briefly 

explored the sensitivity of the optimal design to these parameters. 

I found that the optimal design (design 12) was robust to a wide range in 

nW. Increasing nW increased the cost of expanding treatment, and thus increased 

the need to avoid making a Type I error. This resulted in the lower-power (lower 

α) design 11 becoming optimal at nW = 73, well above the maximum number of 

candidate watersheds (34) for the Salmon River watershed as estimated from 

IDFG (1990). Reducing nW decreased the costs of a Type I error, making them 

less important relative to the cost of a Type II error. Thus, for nW < 10, the highest 

power design (design 12) remained optimal. 

I also found that the optimal design choice was robust to the duration of 

the management period (T). Increasing T increased the costs of outcomes, but 

also increased the influence of the discount rate (r), which offset those increased 

costs. This effect dropped the expected total cost to society E(CT) for the optimal 

design below its base-case value for T > 21 years. Within the base-case cost 

framework, increasing T increased the cost of a Type I error more than the cost 

of a Type II error and the benefits of higher power designs no longer offset the 
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growing cost of a Type I error at T ≈ 80 years. At that point the lower power 

(lower α) design 11 became optimal. The value of T where the optimal design 

switched to the lower power design decreased as r increased. For r = 10%, the 

switch occurred at T ≈ 55 years. Both of these values of T were greater than 

what might be considered a reasonable period for evaluating recovery actions for 

endangered species. Decreasing the duration of T did not affect the optimal 

design because r had less influence on the costs of outcomes over shorter 

periods. Thus, the Type II costs remained higher than Type I costs for T<20 

years and design 12, the highest power design, remained optimal. 

Sensitivity of the optimal design choice to variance in AD  

I did not explicitly explore the sensitivity of the base-case optimal design to 

uncertainty about the level of post-treatment variance, other than to have higher 

and lower-variance monitoring designs. Variance is likely poorly estimated 

because there were few baseline data points (nB = 8) and the parr data were 

collected from parr populations generated at low spawner abundances (i.e., 

density-independent egg-to-parr survival rate). As stocks recover and density 

dependent effects become important, variance in Ln(P/S) can be expected to 

change. However, the robustness of the optimal design to assumptions about 

effect size, α, and the higher-cost lower variance or lower-cost higher variance 

monitoring designs suggests that it would also be robust to increased post-

treatment variance, though E(CT) would be higher because of lower power. 
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General Discussion 

Primary and secondary objectives 

The design that best met the primary management objective of minimizing 

expected total costs (E(CT)) was design 12 (nA = 12, High $, α = 0.2), which also 

had the highest statistical power over the range of designs that I considered 

(Table 7). The optimal design was robust to assumptions about the temporal 

response of wide range of assumptions about effect size (i.e. trend vs. no trend), 

although the magnitude of E(CT) and power varied in those different cases (e.g., 

Table 7 vs. Table 8). It was also robust to the assumed discount rate (r), the 

number of candidate watersheds (nw), the duration of the management period 

(T), and most likely to post-treatment variance, AD . The optimal design was less 

robust to assumptions about the probability of the null hypothesis (PHo), the ratio 

of the Type II to Type I error costs, and the relative magnitude of the cost of 

experimenting and the costs of outcomes, where in each case the optimal 

decision switched to a lower power design at some value. The switch in the 

optimal design choice to the next highest power design (design 11 in each case) 

did not affect the cost of experimenting (Table 10) because only the level of 

statistical significance changed between designs. This indicates that the 

controlling factor for the switch in each case was the pattern of change in the 

costs of making a Type I error relative to the costs of making a Type II error.  

The design that best met the secondary objective of most quickly reaching 

an acceptably high statistical power (i.e. ≥ 0.8) was not robust to the assumption 

of a trend in effect size. Under base-case conditions, design 6 was the optimal 
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design choice under this secondary ranking criterion (Table 7), but with a trend in 

effect size, no design was optimal (Table 8). However, the optimal design under 

the primary objective had the highest power and lowest expected total cost.  

These sensitivity analyses show that the optimal design changed under 

certain conditions for reasons that were both logical and consistent with the 

decision framework. More importantly, they showed that the optimal design 

choice was robust over reasonable ranges for assumptions. For this example 

then it appears that it is worth spending more time and money to do monitoring 

well. 

Factors worth further consideration 

The sensitivity analyses highlight two factors worth further consideration. 

First, although the probability of the null hypothesis cannot be known prior to the 

experiment, if managers believe the probability of the aggressive restoration 

action not working better than the passive action could be as high as 0.9, it 

becomes important to either not experiment at all and to turn to other recovery 

options, or to select experimental designs that minimize the probability of making 

a Type I error. Given the widespread application of aggressive restoration 

techniques, it seems unlikely that managers would believe the probability of Ho 

could be as high as 0.9. A second and more important consideration is the 

structure for the costs of outcomes, in particular, the very influential and large 

cost of extinction. In the context of this analysis, it seems unlikely that the costs 

of Type II errors could be 15% of the costs of Type I errors when both outcomes 

lead to stock extinction and incur that cost. Similarly, it also seems unlikely that 
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for endangered salmon stocks the cost of extinction could fall below 4.2% of that 

estimated in this analysis. However, because this cost is so influential and 

because it includes costs such as existence value that are difficult to estimate, it 

would be important to consider carefully the magnitude of the cost of extinction 

before the final selection of the experimental design, and how it might be incurred 

under different outcomes. Contingent valuation methods could be applied to 

estimate these existence values in terms of society’s willingness to pay for 

recovering endangered salmon stocks (Loomis and White 1996).  

Contingent valuation of the existence value of salmon has been done 

before in the Columbia River basin and the results provide an interesting contrast 

to my estimates of the cost of existence. Olsen et al. (1991) conducted an 

existence valuation study to estimate the willingness-to-pay and willingness-to-

accept of users and non-users (existence value only and some probability of 

future use) for a doubling of Columbia River salmon stocks. Their estimates (in 

1996 dollars) ranged from US $42,415,000 per year for existence value only to 

US $110,943,000 per year for users, over the whole Columbia River basin. 

These values imply that a lower-power design than design 12 would be optimal 

could. Although Olsen et al.’s (1991) estimates are for the whole Columbia River 

basin, their existence value estimate is already lower than the value for the cost 

of extinction at which the optimal design choice for this analysis switched to the 

lower power (lower α) design 11 (US $49 million). Additionally, the Mountain 

Snake region is only a small area of the Columbia basin, adjusting Olsen et al.’s 

(1991) existence value downward to reflect this would imply that an even lower 
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power design than design 11 could be optimal. Thus, my cost of extinction either 

severely overestimates existence value, or the annual BPA expenditure I used to 

represent existence value is confounded with other values such as use values. 

An alternative explanation for the difference between the magnitude of 

Olsen et al.’s (1991) existence costs and those I used for this analysis is that 

they reflect existence values at different scales of society. Olsen et al (1991) 

derived their costs by surveying residents of the Pacific Northwest. However, the 

BPA (2001) budget costs for the Mountain Snake region that I used to estimate 

the cost of extinction are driven in part by the requirements of the federal 

Endangered Species Act, and thus reflect the value held for endangered salmon 

at the broader scale of the entire population of the United States. 

Tradeoffs between objectives 

Within the context of the primary decision objective there was no tradeoff 

between social value and statistical power; the lowest cost occurred for the 

highest statistical power (Table 7). However, there was a tradeoff between the 

primary and secondary objectives. For the primary objective, social costs were 

minimized at $121.41 million for an experimental period of 12 years and power of 

close to 1.0 (Table 7). For the secondary objective, an acceptably high level of 

statistical power (0.94) was achieved in 6 years at an E(CT) of $130.40 million 

(Table 7). Although results would be achieved sooner for the secondary objective 

relative to the primary objective, which may be desirable when trying to evaluate 

recovery efforts for rapidly declining stocks, the higher probability of making a 

Type II error brings additional expected social costs of $8.99 million.  
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In fact, for the base-case, there is less than a 10% difference in E(CT) 

between the top and fifth ranked designs (12 and 9 respectively) a difference of 

$11.85 million (Table 7). The difference in power between these designs is 0.1 

(power = 1 for design 12 and 0.9 for design 9). Given the uncertainties not 

addressed by this analysis, the top five designs may be effectively equal with 

respect to the primary objective of minimizing E(CT), and other objectives that I 

have not considered may play a larger role in decision making.  

One such objective alluded to above is minimizing the probability of 

extinction. Minimizing the probability of extinction is likely to be an objective for 

experiments that explore recovery actions for endangered species. In this 

analysis, I have assumed that managers are risk-neutral and base their decisions 

about choice of experimental design solely on the stated primary objective of 

choosing the experimental design that minimizes social cost. Under this 

assumption, the optimal design has a duration of 12-years. However, for 

endangered stocks, longer experiments will be associated with a higher 

probability of extinction. Under these circumstances, a decision-maker may be 

risk-seeking with respect to the primary objective, that is be willing to accept 

higher social costs (accept a higher probability of a Type II error) in order to get 

experimental results more quickly and minimize the probability of extinction. For 

my base-case results (Table 7), the increase in the probability of Type II error is 

not substantial because the optimal design under the secondary objective also 

has very high power (design 6, power = 0.94). Recall, however, that for a trend in 

effect size, no design achieved a statistical power > 0.8 (Table 8). Thus, if habitat 
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recovery followed trend like that modeled in this analysis, the risk-seeking 

manager would have to accept much higher social costs, and higher probability 

of Type II error for shorter duration experimental periods.  

This example illustrates that the results of my analysis could change if 

more objectives, such as minimizing the probability of extinction, were 

considered. Performance measures for additional objectives could be included 

and multi-attribute utility analysis techniques (Keeney and Raiffa 1976) used to 

facilitate tradeoff analyses and the elicitation of stakeholder values. This would 

strengthen the decision process; therefore, including more objectives would be a 

useful extension of this analysis. 

Comparison to the experimental valuation approach of Walters and Green 1997 

Walters and Green (1997) defined a valuation framework for the selection 

of optimal experimental designs that consisted of four general components: (1) 

universe of inference, (2) treatment options, (3) impact hypotheses and baseline 

policy option, and (4) value measures. My decision framework is really a special 

case of their general approach, with some important differences with respect to 

the use of a baseline policy, the assignment of probabilities to uncertain states of 

nature, and the definition of “optimal” experimental design. 

Walters and Green (1997) recommend identifying the baseline 

management policy that would be applied in the absence of experimenting. I did 

not do this explicitly, but such a baseline non-experimental policy could be 

continuing to rely on passive habitat restoration actions to recover endangered 

stocks. The baseline total cost to society in this case would not be a weighted 
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sum over uncertain outcomes, but only the discounted cost of extinction over the 

management period (T) ($236,594,581 for T = 20), which is $115.18 million more 

than the expected cost of the optimal experimental design under the primary 

objective. In fact, the cost of the baseline policy is larger than all 12 designs 

considered in my analysis (Table 7). 

Walters and Green (1997) also recommend using a range of hypotheses 

of about the response of the experimental system to experimental actions (the 

effect size), each linked through models to a specific set of future biological and 

socio-economic benefits and costs. Thus, there can be many branches to the 

uncertain state of nature (effect size). Bayesian techniques would be used to 

calculate the posterior probability of each hypothesis and weight their outcomes 

in the calculation of the expected value over all hypotheses. In contrast, my 

analysis considered only the probability of detecting a single pre-specified effect 

size using classical statistical techniques for which there are only four uncertain 

states of nature (Figure 1). This could bias E(CT) because it does not include the 

costs associated with small differences from the effect size of interest. This may 

be especially influential when there are large differences in value for the costs of 

Type I and Type II errors (MacGregor et al 2002), but that is not the case here 

(Table 9). 

Walters and Green’s (1997) definition of optimal design differs from that 

used for this analysis. Walters and Green (1997) note that optimum designs for 

their valuation equation will occur where the rate of increase in long-term value 

with the number of experiment units and/or number of years of monitoring (the 
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design variables) just balances the rate of loss in short-term value. Thus, they 

discuss a “global” optimum across those design variables for a specific 

parameter set. My cost function (eq. 10) is similar in structure to their valuation 

equation and for a single set of parameters (single experimental design) will also 

produce an optimum (minimum E(CT)) when the rate of increase in experimental 

costs (CE) balances the rate of decline in the expected (weighted average) costs 

of outcomes (E(CO)), both rates with respect to the number of years of 

experimental monitoring (nA). However, in this analysis, I only evaluated E(CT) at 

two points (nA = 6 and 12) for six discrete design categories (combinations of α 

and monitoring cost). Thus, the “optimal” design in this case is only optimal with 

respect to this set of 12 discrete designs. 

Comparison with results from of other research 

My results contrast with those of others besides Walters and Green 

(1997). Keeley and Walters (1994) and MacGregor et al. (2002) found that 

optimal experimental designs can occur at levels of statistical power considerably 

less than 0.8. However, my sensitivity analyses showed that the optimal base-

case design under the primary objective could switch from a higher-power to a 

lower-power design when the cost of extinction and consequently the expected 

(weighted average) costs of outcomes became closer in magnitude to  the costs 

of experimenting. A switch from the base-case optimal design 12 to the lower-

power design 11 occurred when the cost of extinction was roughly 4.2% of its 

base-case value (Figure 6). At this point the benefits of the base-case optimal 

design, in terms of reduced social costs relative to lower-cost lower-power design 
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(design 6), no longer offset the higher costs for a Type I error that it incurred 

under a true null hypothesis. 4.2% of the base-case cost of extinction for design 

12 was  $9,858,108. The expected (weighted average) total costs were about 

5.5% of their base-case value ($6.61 million vs. $122.29 million). The total cost of 

experimenting (capital costs + monitoring costs + maintenance costs + analysis 

costs) was $1,111,307 (Table 10). The ratio of experimental to expected 

(weighted average) costs of outcomes was about 0.17, a 19-fold increase from 

the ratio of 0.009 for base-case conditions.  

For their optimal designs, MacGregor et al. (2002) and Keeley and 

Walters (1994) also appear to have high ratios of experimental to expected 

(weighted average) costs of outcomes. Using as an example MacGregor et al.’s 

(2002) Scenario F with an optimal monitoring design of 9 systems for 2 years and 

a high-cost monitoring program (at CDN $80,000 per system per year) and per-

treated system capital costs of CDN $91,525, the total costs of experimenting 

would be CDN $2,263,725. The expected net present value (ENPV) for Scenario 

F was CDN $672,560. Since ENPV includes benefits less the costs of 

experimenting, I assumed that a crude analogy of the weighted costs of 

outcomes that I use (E(Co)) is the sum of the ENPV for Scenario F and its costs 

of experimenting (CDN $2,936,285). The ratio of the cost of experimenting and 

crude expected (weighted average) outcomes for Scenario F was 0.77, much 

higher than the ratio of 0.009 for my optimal design under base-case conditions.  

Similarly, I replicated Keeley and Walters’ (1994) approach and found for 

their base-case cost conditions an optimal design of 8 streams (4 treatment 
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control pairs) and 4 years of monitoring. The costs of experimenting (the sum of 

capital costs, monitoring, and maintenance costs) for this design were CDN 

$18,000,000 while the ENPV (less experimental costs) was CDN $62,196,392. In 

this case, I was able to calculate ENPV separately from the costs of 

experimenting. The ratio of the costs of experimenting to ENPV was 

approximately 0.29, again much higher than the ratio for my optimal design of 

0.009. Thus, the costs of experimenting for both MacGregor et al (2002) and 

Keeley and Walters (1994), make up a larger proportions of the expected 

(weighted average) costs of outcomes than for my base-case result (ratio of 

0.009), but are similar in proportion to that for which my base case design 

switched to a lower power design during sensitivity analyses (0.17%). Indeed, my 

analysis showed that lower power designs will be optimal too as the costs of the 

experimenting begin to make up a larger proportion of the expected (weighted 

average) costs of outcomes. 

These conditions would be more likely to occur over the experimental 

periods I considered in this analysis for net-value models that consider both 

benefits and costs. This is because the benefits that accrue under the different 

outcomes will help offset their costs and reduce the overall magnitude of the 

expected value of outcomes relative to the magnitude of the costs of the 

experimenting. For example, there could be future benefits from fishery openings 

on these populations. Such benefits would reduce the magnitude of costs when 

the aggressive action was better than the passive action by offsetting some of 

the expansion costs associated with the correct decision (power). This would 
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increase the rate of decline in E(CO) with respect to nA so that lower power, 

experiments would be more likely to be optimal within the range of experimental 

periods considered here (6 to12 years). Similarly, a correct decision when the 

aggressive action was not better than the passive action (occurring with 

probability 1-α) could also be associated with a delayed accumulation of benefits 

if future actions helped recover the stocks. 

I could not use a net value (benefit minus cost) approach because it is 

difficult to estimate the intangible benefits the existence of endangered species 

hold for society. While such values can be roughly inferred for the present and 

past from money spent on recovery actions, future benefits are less clear. They 

cannot be indexed by the commercial value of the fish because there is no tribal, 

recreational, or commercial harvest of ESA-listed stocks. Under the current low 

spawner abundance conditions, it is not likely that these stocks could recover to 

abundances able to support harvest during the management period used for this 

analysis even if the aggressive habitat restoration action was successful. 

However, if appropriate, a benefit-cost model could more quickly bring the 

expected value of outcomes closer in magnitude to the cost of experimenting, 

making lower-power and lower-cost experiments optimal. 

Tendency to overestimate the expected total cost to society 

My base-case optimal result would overestimate the expected total cost of 

the experiment if the future cost structure changed. For example, this could 

happen if the value that society places on the existence of wild salmon declines 

in the future. I assumed a constant annual application of the full 2001 Salmon 
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River research budget (about $ 31 million/year, Table 6) over the management 

period and applied this as a cost under decisions where stocks went extinct, 

which implies an enormous social value associated with preserving wild salmon 

stocks. If this value instead declined in the future (e.g., a weakened Endangered 

Species Act, or a critical need for cheap electricity), the expected (weighted 

average) costs of outcomes would decline, bringing them closer in magnitude to 

the costs of experimenting. In that situation, lower power designs would more 

likely become optimal. 

Utility of decision analysis 

Decision analysis was useful for determining an optimal BACIP 

experimental design based on an index that incorporated both biological 

uncertainty and socio-economic costs. It provided a framework for exploring 

quantitatively the robustness of the base-case results to explicit assumptions 

about the components of statistical power, the costs of experimenting, and the 

costs of outcomes. The results of these sensitivity analyses highlighted important 

factors that should be considered further. This example framework could be 

easily adapted and applied to more complex BACIP decision problems 

incorporating more detailed biological and statistical models, a broader range of 

objectives, as well as socio-economic models with a more refined structure for 

the costs of experimenting and the costs of outcomes. 
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