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ABSTRACT 

The Brownie tag-recapture model analyses multi-year tag recovery data to derive 

estimates of natural and fishing mortality that can be used to estimate population 

abundance.  However, it makes several assumptions about the behaviour of tagged fish, 

tagging-induced mortality, tag retention, emigration, tag reporting, and timing of the 

fishery.  I evaluate performance of the Brownie model when individual assumptions are 

violated, using Monte Carlo simulations over a suite of scenarios with known “true” 

parameter values chosen to mimic British Columbia sablefish (Anoplopoma fimbria).  

Bias and precision are quantified by comparing parameter estimates with their known 

“true” values and by the spread in estimates from 500 Monte Carlo trials, respectively.  

Assumptions about uniform mixing, timing of the fishery, and emigration had the greatest 

effects on bias of estimates of fishing mortality and abundance.  Combining fishery-

independent survey CPUE data with tag recovery data did not substantially improve bias 

or precision of parameter estimates. 

  

Keywords:  Brownie model; tag-recapture; sablefish; maximum likelihood estimation; 
bias; Monte Carlo simulation; survey CPUE; tag reporting rate 

 

Subject Terms:  Animal populations – Mathematical models; Fish stock assessment – 
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method; Fishes – British Columbia 

 



 

 iv 

ACKNOWLEDGEMENTS 

This work would not have been possible without generous funding from the 

Canadian Sablefish Association, NSERC grants provided to Randall Peterman, an 

NSERC Industrial Postgraduate Scholarship, and scholarships from the Dean of Graduate 

Studies and Faculty of Applied Sciences at Simon Fraser University. 

I owe a huge debt of gratitude to Randall Peterman, Sean Cox, and Rob Kronlund 

for the countless hours of insightful discussions, support, and encouragement they 

provided in all stages of this work.  Thank you for such a challenging and worthwhile 

experience.   

I am grateful to Malcolm Wyeth, Rob Kronlund, and the Canadian Sablefish 

Association for providing sablefish tagging, catch and effort data. 

I wish to thank Ray Hilborn for helpful comments and Vivian Haist for 

discussions in the early stages of this project. 

My colleagues in the Fisheries Science and Management Research Group at 

Simon Fraser University provided invaluable suggestions and assistance throughout.  In 

particular, this manuscript greatly benefited from thoughtful reviews by Jaclyn Cleary, 

Kendra Holt, Carrie Holt, and Merran Hague. 

Finally, I would like to thank my husband, my parents, my brother, and my in-

laws for always believing in me and for encouraging me to follow my dreams. 



 

 v 

TABLE OF CONTENTS 

 

Approval ........................................................................................................................... ii 

Abstract ........................................................................................................................... iii 

Acknowledgements ......................................................................................................... iv 

Table of Contents ............................................................................................................. v 

List of Tables .................................................................................................................. vii 

List of Figures ................................................................................................................ vii 

1 Introduction .............................................................................................................. 1 

2 Methods ................................................................................................................... 10 
2.1 Simulation Model .............................................................................................. 10 

2.1.1 Population dynamics .................................................................................. 11 
2.1.2 Observation model...................................................................................... 12 
2.1.3 Scenarios .................................................................................................... 16 

2.2 Stock Assessment Model ................................................................................... 19 
2.2.1 Brownie model ........................................................................................... 20 
2.2.2 Index of relative abundance model ............................................................. 25 
2.2.3 Overall objective function .......................................................................... 27 

2.3 Simulation Framework ...................................................................................... 28 
2.4 Performance Measures....................................................................................... 28 

3 Results ..................................................................................................................... 30 
3.1 Base Case and Realistic Case ............................................................................ 30 
3.2 Parameter Estimates .......................................................................................... 31 
3.3 Abundance Estimates......................................................................................... 32 
3.4 Effect of Adding Survey CPUE Data ................................................................ 32 

4 Discussion ................................................................................................................ 34 
4.1 Major Conclusions............................................................................................. 34 

4.1.1 Objective 1: Violations of individual Brownie assumptions....................... 34 
4.1.2 Objective 2: Incorporation of survey CPUE data ....................................... 35 

4.2 Implications of Selected Brownie Assumptions ................................................ 38 
4.2.1 Assumption 1 - Incomplete mixing ............................................................ 38 
4.2.2 Assumption 8 - Assuming that the timing of the fishery is known 

correctly and all catch is taken instantaneously at the beginning of 
the year ....................................................................................................... 38 

4.2.3 Assumptions 2 and 3 - Tag loss and tagging-induced mortality ................. 40 
4.3 Estimation of Tag Reporting Rates.................................................................... 41 



 

 vi 

4.4 Recommendations to Scientists and Managers .................................................. 43 
4.5 Contributions of this Research........................................................................... 45 

4.5.1 Theoretical research in combining data sources ......................................... 45 
4.5.2 Contributions to science and management of BC sablefish ........................ 45 

4.6 Future Directions ............................................................................................... 46 
4.6.1 Resolve issues of combining survey CPUE with tagging data ................... 46 
4.6.2 Evaluate costs of violating Brownie assumptions in a management 

context ........................................................................................................ 48 

References....................................................................................................................... 51 

Appendix A – Details of the Simulation Model............................................................ 56 

Appendix B – Assumption of Equilibrium between Vulnerable and 
Invulnerable States ................................................................................................. 61 

 
 
 
 



 

 vii 

LIST OF TABLES 

 
Table 1: Number of tag recoveries, grouped by release year, in a three-year 

tagging experiment. .................................................................................... 63 
Table 2: Simulated scenarios. ................................................................................... 64 

LIST OF FIGURES 

 
Figure 1: Simulated data from 500 Monte Carlo simulations of a “realistic” 

scenario (scenario 8) in which no assumptions of the Brownie model 
are met (except 4 and 7) (box plots), plotted along with (a) true BC 
sablefish landings (open circles), and (b) survey CPUE data (open 
circles) reported by Haist et al. (2005)........................................................ 65 

Figure 2: Parameter and abundance estimates for the base case (scenario 1) 
over 500 Monte Carlo trials. ....................................................................... 66 

Figure 3: Same as Figure 2 except for a “realistic” case (scenario 8) over 500 
Monte Carlo trials....................................................................................... 67 

Figure 4: Parameter estimates over 500 Monte Carlo trials for scenarios 2-7............ 68 
Figure 5: Abundance estimates from 1991 through 2003 over 500 Monte 

Carlo trials for scenarios 2-7....................................................................... 69 
Figure 6: Parameter estimates: Improvement in (a) median percentage bias 

and (b) precision of parameter estimates by combining the survey 
CPUE with tag recovery data over 500 Monte Carlo trials......................... 70 

Figure 7: Abundance estimates: Improvement in (a) median percentage bias 
and (b) precision of abundance estimates by combining the survey 
CPUE with tag recovery data over 500 Monte Carlo trials......................... 71 

Figure 8: Likelihood profiles for the tagging and survey CPUE negative log 
likelihood functions. ................................................................................... 72 

 
 



 

 1 

1 INTRODUCTION 

Estimates of fish population abundance are critical for effective management of 

fisheries, yet reliable estimates are extremely difficult to obtain.  A variety of tagging 

methods have been developed over the last 200 years to address this problem (Manly et 

al. 2005).   These methods involve the capture and marking of animals at one time and 

the subsequent recapture of tagged and untagged animals at future times.  Analysis of tag 

release and recovery data can provide estimates of mortality rates and abundance for the 

population.  However, such analyses require relatively strong assumptions about the 

behaviour and availability of tagged animals, mortality impacts due to tagging, tag loss, 

and reporting of recaptures.  Violating any of these assumptions may increase bias and/or 

decrease precision of abundance estimates from tagging experiments. 

In this paper, I develop a simulation-estimation approach for evaluating the 

statistical properties of estimates of fishing mortality, natural mortality, and abundance 

derived from tagging studies that violate several important assumptions.  Although the 

approach I describe intends to mimic tagging studies for British Columbia (BC) sablefish 

(Anoplopoma fimbria), both the simulation and estimation frameworks can be 

generalized to other tag-recapture programs where a time series of tag recovery data is 

available. 

Sablefish is a long-lived, deep-dwelling groundfish species that is harvested 

commercially along the west coast of North America (Heifetz and Fujioka 1991; 

Hanselman et al. 2005).  It is one of the most economically important species fished in 
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British Columbia, with landings of 3800 metric tonnes valued at CAD$29 million in 2000 

(DFO 2005).  The fishery is co-managed by Fisheries and Oceans Canada (DFO) and the 

Canadian Sablefish Association (CSA), which is an industry association of license 

holders in the sablefish longline trap and longline hook fisheries (CSA 2006).  Through a 

collaborative agreement with the DFO, the CSA makes significant contributions towards 

fishery management by sponsoring fishery-independent survey monitoring, an extensive 

coast-wide tagging program, scientific stock assessments, and enforcement.  DFO and 

CSA-contracted scientists collaboratively develop annual scientific assessments of 

sablefish stock status using both commercial and fishery-independent data (Haist et al. 

2004; Haist et al. 2005).  Fishery managers consider these results along with social and 

economic factors when setting total allowable catch (TAC) quotas each year (DFO 2006).  

The data sources typically available for sablefish stock assessments include: (1) 

fishery-independent survey catch-per-unit-effort (CPUE), measured as the average 

number of fish or total mass (kg) of fish caught per trap; (2) tag releases and recoveries 

since the sablefish tagging program began in 1991; (3) dockside landings from 

commercial fisheries; and (4) geo-referenced commercial catch and effort from vessel 

logbooks (Wyeth and Kronlund 2003; Haist et al. 2005).  Data required to calculate the 

CPUE index are collected annually during the fishery-independent trap survey at the 

same time that sablefish are tagged and released (Wyeth and Kronlund 2003).  This 

standardized trap survey (1990 – present) is conducted for research and assessment of 

sablefish each fall (October-November) at nine fixed localities along the BC coast (the 

ninth locality was added in 1994) (Wyeth and Kronlund 2003; Haist et al. 2004).  Each 

year, the number of fish caught per trap is averaged over all localities, producing a coast-
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wide CPUE index of relative abundance (Wyeth and Kronlund 2003), hereafter referred 

to as “survey CPUE”.   

Tag releases and recoveries comprise a central part of the BC sablefish stock 

assessment program.  An average of 5673 fish of fork-length greater than 60 cm were 

tagged and released from the offshore survey localities each year from 1991 to 2004 

(Haist et al. 2004; Haist et al. 2005).  Sablefish are tagged with T-bar anchor tags (Floy 

tags) inserted at the base of the first dorsal fin (Wyeth and Kronlund 2003).  Tagged fish 

are recovered throughout the year by directed sablefish fishing and by the trawl gear 

sector, which is allocated 8.75% of the commercial quota (DFO 2006).  Other recoveries 

of tagged fish may occur from various hook and line fisheries where sablefish are 

intercepted as bycatch (DFO 2006).  Numerous reward incentives are in place to 

encourage tag reporting from all sectors (Haist et al. 2004).  Analysis of the tagging data 

to estimate abundance has formed the core of many BC sablefish stock assessments in 

recent years (e.g., Haist and Hilborn 2000; Haist et al. 2001; Kronlund et al. 2002; Wyeth 

and Kronlund 2003; Haist et al. 2004; Haist et al. 2005).  In this paper, I evaluate the 

performance of a stock assessment model that uses these data to estimate abundance and 

fishing mortality. 

One possible way to use the tag recovery and commercial catch data to estimate 

sablefish abundance ( jA ) in year j is to employ the well-known relationship between 

catch ( jC ) and exploitation rate ( ju ): 
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(1) jjj uCA ˆ/ˆ =  , 

where the carat symbol “^” represents an estimated quantity.  The exploitation rate, ju , is 

defined as the fraction of fish alive at the beginning of year j that is harvested during the 

year.  Assuming that all catch is taken instantaneously at the beginning of the year, ju  

can be estimated from the instantaneous rate of fishing mortality ( jF ) as  

(2) )exp(1ˆ jj Fu −−=  . 

The “Brownie” tag-recapture model provides a way to estimate the annual fishing 

mortality rate ( jF ) along with a combined natural mortality-emigration parameter (M*) 

and an average tag reporting rate ( λ ) from observed tag recovery data (Seber 1970; 

Youngs and Robson 1975; Brownie et al. 1985; Pine et al. 2003; Hoenig et al. 2005).  

This model has been the primary method for analysing tag recovery data to estimate total 

mortality rates in wildlife studies (Taylor et al. 2006).  Annual estimates of abundance 

jA  can then be derived by substituting the Brownie estimates of jF  into equation 2 and 

the estimated value of ju  into equation 1.   

The Brownie model is applicable to capture-recapture programs in which there is 

only one recovery event because the animal is harvested upon its first recapture (Pollock 

et al. 1994).  The Brownie model estimates annual total mortality rates for each release 

cohort from an JI ×  matrix of observed tags recoveries, where I is the number of release 

cohorts and J is the number of recovery years (Pollock 1991).  Table 1 shows an example 

of such a tag recovery matrix for three years of releases and recoveries ( 3== JI ).  Total 

mortality is estimated from the rate at which tags from successive annual tag release 
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cohorts disappear from the observed recoveries (Pollock et al. 2001; Hoenig et al. 2005; 

Polacheck et al. 2006).  For example, suppose that an equal number of tags are released 

in two successive years, i = 1 and i = 2.  The number of tags released in year 1 and 

recovered in a subsequent recovery year j, r1j, is less than r2j because the fish tagged in 

year 1 were subject to an additional year of mortality not experienced by fish tagged in 

year 2.  If information on the seasonal pattern of fishing effort is available in addition to 

the tag recovery matrix, then the Brownie estimate of total mortality can be subdivided 

into its fishing mortality (F) and natural mortality (M) components (Hoenig et al. 1998a).  

In addition, tag reporting rates can also be estimated directly from the matrix of tag 

recovery data, although Hoenig et al. (1998a) found that the Brownie model did not 

estimate these reliably.  In their analysis, they fit the Brownie model to 10 years of tag 

recovery data for lake trout in Cayuga Lake, New York.  They repeated their analysis 

using all possible subsets of the data consisting of three or more consecutive years of tag 

recoveries.  Their estimates of λ  varied widely depending on which subset of years of 

tag recovery data they used to fit the model (Hoenig et al. 1998a). 

A challenge of applying the Brownie model to estimate fishing and natural 

mortality rates for BC sablefish is that the capture-recapture design for this fishery likely 

violates most assumptions of the model.  These assumptions include (e.g., Pollock et al. 

1994; Brooks et al. 1998; Latour et al. 2001a; Pollock et al. 2001; Pollock et al. 2002; 

Hoenig et al. 2005; Leigh et al. 2006):  

1. The tagged sample is representative of the population (i.e., tagged and untagged fish 
are uniformly mixed);  

 
2. Tags are not lost;  
 
3. Tagging does not affect survival rates (i.e., no tag-induced mortality);  
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4. Tags are reported in the year that they are recovered;  
 
5. The fate of each tagged fish is independent of other fish (i.e., fish do not clump or 

aggregate);  
 
6. There is no emigration; and  
 
7. All tagged fish within a release cohort have the same annual survival and recovery 

probabilities (i.e., there is no age- or size-selectivity).   
 

Assumption 6 is not usually cited as an assumption of the Brownie model, but it is 

implicitly assumed because emigration is not distinguished from natural mortality.  

Finally, the implementation of the Brownie model investigated in this study also requires 

the assumption that:  

8. All catch is taken instantaneously at the beginning of the year. 
 

Assumption 8 arises because estimates of exploitation rates ( jû ) are derived from 

estimates of fishing mortality using equation 2, which makes this assumption.  However, 

Hoenig et al. (1998a) present two alternative formulations of ju  that can be used instead 

of equation 2 if assumption 8 does not hold and if information is available on the seasonal 

timing of the fishery. 

Violations of any Brownie model assumptions may degrade the performance of 

the estimator in terms of bias and precision of parameter estimates, which can ultimately 

have implications for fisheries management advice.  Although several researchers have 

developed structural modifications to the Brownie model to relax various assumptions 

(e.g., Leigh et al. 2006; Latour et al. 2001b; Brooks et al. 1998; Hoenig et al. 1998b), to 

my knowledge, the effect of violations of the individual assumptions on the performance 

of the estimator has yet to be quantified using simulations.  Results from such simulation-
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estimation trials would better inform analysts and fishery managers of the potential 

pitfalls of the Brownie model. 

Although the Brownie model requires only tag recovery data to estimate mortality 

rates, Hoenig et al. (1998a) speculated that it might be possible to combine an index of 

abundance as well as catch-at-age data with the model.  Indeed, Polacheck et al. (2006) 

did the latter and showed that incorporating catch-at-age data with the Brownie model 

decreased bias in estimates of natural mortality and improved precision in estimates of 

annual fishing mortality.  However, to my knowledge, combining an index of relative 

abundance with a Brownie capture-recapture model has not yet been evaluated via 

simulations.  Therefore, in this study I fit the Brownie model to simulated tag recovery 

data for BC sablefish, and quantify the potential improvements in bias and precision of 

parameter estimates by combining the tag recovery data with an index of relative 

abundance for the species.  This is a useful approach because (1) it provides insights on 

the integration of an index of abundance with the Brownie model, and (2) it evaluates a 

novel way of analysing two important data sources in the BC sablefish fishery – tagging 

data and survey CPUE data.  Although these two data sources have been combined in tag 

recovery models for sablefish over the past several years (e.g., Haist et al. 2004; Haist et 

al. 2005), the statistical properties of the past models have not been evaluated.  In 

addition, the Brownie model has not been previously applied to BC sablefish data. 

Given empirical evidence for sablefish movement into BC waters (Heifetz and 

Fujioka 1991; Kimura et al. 1997; Haist et al. 2001), the Brownie model may confer an 

advantage over the closed-population Petersen-type tag recovery models that have 

previously been applied to BC sablefish (e.g., Haist and Hilborn 2000; Haist et al. 2001).  
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This is because immigration does not bias mortality estimates from the Brownie model, 

since total mortality is estimated using only the observed tag recovery data and there is 

no term for abundance in this model. 

A major challenge facing stock assessment scientists in the past has been the 

unknown properties of parameter estimators because true abundances and parameter 

values are unknown.  However, in the last decade, numerous researchers have illustrated 

the evaluation of stock assessment models using simulated data with known true 

parameters before applying the models to actual data (e.g., de la Mare 1996; Butterworth 

and Punt 1999; Peterman et al. 2000; Punt 2003b; Chen et al. 2005; Labelle 2005; Wang 

et al. 2005).  In fact, the evaluation of stock assessment models using simulation methods 

comprises one component of a full management strategy evaluation (MSE) for fisheries 

(Punt 1992; de la Mare 1998; Punt 2003a).  In this study, I perform a preliminary analysis 

of the feasibility of using the Brownie model for stock assessment as part of ongoing 

MSE work for BC sablefish.  This was achieved by using Monte Carlo simulation-

estimation procedures to quantify: 

1. The effects of violations of assumptions of the Brownie model on its 

performance, as measured by bias and precision of estimates of parameters and 

abundance; and  

2. The potential improvement in performance of the Brownie model when an index 

of relative abundance, namely CPUE data from the sablefish survey, is combined 

with Brownie tag recovery data. 

In the former case, particular attention is given to estimates of population 

abundance since these quantities are most relevant for fisheries management.  Although 
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the use of simulation trials does not guarantee that all possible behaviours of the model 

can be accounted for, the methods illustrated in this study represent one way to quantify 

potential model outcomes over a range of plausible scenarios. 
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2 METHODS 

The Monte Carlo simulation-estimation approach used in this study involved 

generating simulated data sets with known “true” parameters and then obtaining 

parameter estimates by fitting the Brownie model to the simulated data.  Performance of 

the estimator was quantified by (i) the bias of the estimates relative to their true values, 

and (ii) the precision of the estimates from 500 Monte Carlo cycles of simulation and 

estimation.  As much as possible, values of the “true” parameters used to generate the 

simulated data were based on empirical data for BC sablefish. 

2.1 Simulation Model 

A model was developed to simulate population dynamics of BC sablefish from 

1991 through 2003 (details provided in Appendix A).  The model generates three types of 

simulated data for each set of known “true” input parameters: (1) an observed index of 

relative abundance (survey CPUE), (2) observed tag recovery data, and (3) commercial 

catch data.  The simulation model has two components, both of which run on monthly 

time steps.  The first is a deterministic population dynamics model for total abundance, 

i.e., there is no process error.  The second is an observation model that includes two 

sources of observation error, namely, random variability in the recovery of tagged fish 

and in the generation of survey CPUE. 
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2.1.1 Population dynamics 

The population dynamics model is a discrete-time state space model that 

calculates the number of fish present in each state at each monthly time step.  It includes 

recruitment, natural mortality, fishing mortality, emigration, tagging, tag shedding, and 

exchange of fish between vulnerable and invulnerable sub-populations.  All fish exist in 

one of two vulnerability states, vulnerable (V ) and invulnerable (V ′ ).  At each time step, 

a proportion ( VV ′→θ ) of vulnerable fish transfer to the invulnerable state and another 

proportion ( VV →′θ ) of invulnerable fish transfer to the vulnerable state.  An example of 

this exchange process is a case in which a fish spends some of its time inhabiting steep-

sided canyons which are not fished effectively by trap gear (i.e., invulnerable state), and 

some time making forays into flat plateaus where trap gear is typically deployed (i.e., 

vulnerable state).  Parameters { VV ′→θ , VV →′θ } thus represent transition probabilities for 

moving between these two states. 

All fish in the population dynamics model are either tagged (G ) or untagged 

(G′ ).  There are no age-structure dynamics, so fish of all ages are subject to the same 

population dynamics and exploitation rates at each time step.  Additionally, a certain 

proportion of fish, κ , emigrate from the population at each time step.  The simulation 

model does not incorporate a relationship between spawning stock and recruitment 

mainly because stock productivity is irrelevant to evaluating the Brownie capture-

recapture model.  Instead, population production is controlled by estimates of annual 

production derived by Haist et al. (2005) which are supplied as inputs to the population 

dynamics model.  Production inputs are added to the simulated population in the month 

corresponding to January of each year (i.e., months 1, 13, 25…).  No recruits are added in 
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the other months.  The numbers of sablefish in each vulnerability and tagging state are 

simulated monthly from 1991 through 2003 given these deterministic population 

dynamics. 

2.1.2 Observation model 

The observation model generates three types of data: (1) stochastic survey CPUE, 

(2) stochastic tag recoveries, and (3) commercial catch comprised of both deterministic 

catches of untagged fish and stochastic tag recoveries. 

Let ab
vtN  represent the number of fish in each vulnerability state a, tagging state b, 

release month v, and monthly time step t.  The vulnerability state a may be either 

vulnerable or invulnerable: { }VVa ′∈ , .  The tagging state b may be either tagged or 

untagged: { }GGb ′∈ , .  The lower case subscripts v  and t  refer to the absolute month of 

tag release and to the current month, respectively.  They range from 1 through 156, 

representing absolute indices for each month from January 1991 through December 2003.  

Note that the value 0 is used as a placeholder for the tag release month v  when fish are 

untagged (i.e., when Gb ′= ).  A dot (·) in the place of any index represents summation 

over all possible states for that index.  Also, let the lower case subscripts i and j refer to 

the absolute year of tag release and to the current year, respectively.  They range from 1 

through 13, corresponding to the years 1991 through 2003, and are related to the month 

indices v and t as follows: ⎡ ⎤12vi =  and ⎡ ⎤12tj = . 

Although the simulation model runs on monthly time steps from month 1=t  

(January 1991) through month 156=t  (December 2003), survey CPUE data are only 

generated in October of each year.  Thus, the survey CPUE index in year j ( jY ) is 
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calculated by multiplying a catchability coefficient q by the total number of fish alive in 

October of year j ( ••

•tN , where t is the absolute index of month 10 of year j).  Observation 

error in the survey CPUE is introduced by applying lognormal residuals )exp( jη  to the 

expected linear relationship between CPUE and abundance (Schnute and Richards 1995):  

(3) ))100/1ln(,0(~);exp( 2CVNqNY jjtj += ••

•
ηη  . 

The coefficient of variation (CV) for the survey CPUE is set to 30% in equation 3, which 

corresponds to the value typically assumed in sablefish stock assessments (e.g., Haist et. 

al. 2004; Haist et.al. 2005), and represents the effects of both within-year trap-to-trap 

variation and year-to-year variation in the number of fish caught per trap.  The simulated 

survey index jY  is calculated in October of each year because this is the month in which 

the standardized sablefish survey is usually conducted (Wyeth and Kronlund 2003; Haist 

et al. 2005).  For example, from 1992 through 2003, the earliest start date for the 

sablefish survey was September 24, 1998 and the latest end date was November 11, 2000 

(Wyeth and Kronlund 2003). 

The second type of simulated data is tag recoveries.  These are generated each 

month by applying a fixed monthly exploitation rate, tu , to the number of vulnerable 

tagged fish alive in month t, VG
tN

•
.  Values used for tu  were input to the simulation model 

as driving variables, and were set equal to Haist et al.’s (2005) monthly estimates of 

exploitation rates for BC sablefish.  Since Haist et al. (2005) began their estimates of 

exploitation rates in 1992, I set monthly tu  values for 1991 equal to the 1992 estimates 

derived by Haist et al. (2005). 
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I considered two alternative forms of observation error for the tag recoveries: 

binomial and overdispersed binomial.  I used the binomial distribution because it is the 

simplest distribution describing the two potential fates of a tagged fish in response to a 

monthly fishing event: either it is caught, or it escapes capture.  Thus, I assumed that each 

tagged fish has a capture probability equal to the monthly exploitation rate, namely 

(4) ),(~ VG
vtt

G
vt NuBinC  , 

where G
vtC  is the number of tagged fish caught in month t that were released in month v, 

and VG
vtN  is the total number of vulnerable tagged fish present in month t that were 

released in month v. 

Overdispersed binomial tag recoveries represent a case where the probability of 

catching a vulnerable tagged fish in month t ( tu ) is a stochastic random variable.  

Overdispersion arises when random variables (e.g., tag recovery data) exhibit more 

variability than expected from the underlying distribution (Kitada et al. 1994; Polacheck 

et al. 2006).  An example of a situation in which tag recoveries might be overdispersed 

rather than strictly binomial could arise as follows.  Suppose a vessel fishes the same 

fishing grounds in two consecutive months.  The probability of capturing a vulnerable 

tagged fish in the second month may be less than in the first month if a substantial 

fraction of the tagged cohort migrates away from the fishing grounds.  Overdispersion 

could reflect a violation of assumptions 5 and/or 7 of the Brownie model (Table 2). 

To implement overdispersion, tu  was modelled as a random variable drawn from 

a beta distribution, which is the natural distribution of the binomial parameter tu :  
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(5) ),(~* βα tt Betau  , 

where *
tu  denotes a random draw from the beta distribution with shape parameters α  and 

β .  The mean ( µ ) of the beta distribution (Hogg et al. 2005 pg. 155) is  

(6) 
βα

αµ
+

=  . 

Monthly tα  values were calculated using equation 7 that define a beta distribution with 

mean equal to tu  by solving equation 6 for α  and substituting tu  for µ : 

(7) 
t

t
t u

u
−

=
1

βα  . 

The average of the monthly exploitation rates ( tu ) input to the simulation model 

over all 156 years was 0.008.  I searched for a “reasonable” value of β  using trial and 

error and found that 800=β  resulted in approximately 90% of the random draws of *
tu  

from equation 5 to lie between 0.006 and 0.010, which I deemed reasonable.  I 

substituted *
tu  for tu  in equation 4 to generate the “simulated” number of overdispersed 

binomial tag recoveries.  These steps generated the number of tagged fish that were 

released in month v and caught in month t ( G
vtC ) for both the binomial (equation 4) and 

overdispersed binomial (equations 4 through 7) error distributions. 

The number of reported tag recoveries was calculated by multiplying the number 

of “true” tagged recoveries, G
vtC , by an average reporting rate λ : 
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(8) G
vt

G
vt CX λ=  , 

where G
vtX  is the reported number of tagged fish that were released in month v and 

recovered in month t.  The reported tag recoveries G
vtX  form the tag recovery matrix that 

is input as observed data to the Brownie model (e.g., Table 1, “Observed Recoveries”).  

The “true” simulated tag reporting rate, λ , is fixed at 0.8 in all simulated scenarios.  Note 

that I treated λ  as deterministic rather than as stochastic, as it really is. 

 The last type of simulated data is commercial catch.  Deterministic fishery catches 

of untagged fish in month t, G
tC ′ , were generated by multiplying the monthly exploitation 

rate, tu , by the number of vulnerable untagged fish present in month t, GV
tN ′ : 

(9) GV
tt

G
t NuC ′′ =  . 

The total commercial catch each month, •

tC , is the sum of the tagged and untagged 

catches calculated in equations 4 and 9: 

(10) G
t

G
tt CCC ′+=

•

•  . 

 

2.1.3 Scenarios 

I simulated data sets consisting of survey CPUE, tag recovery, and catch data for 

the eight scenarios listed in Table 2.  These include a base case where the data satisfied 

all assumptions of the Brownie model (scenario 1), six scenarios that each violate a 

particular assumption of the Brownie model (scenarios 2 – 7), and a “realistic” scenario 

(scenario 8) that violates all assumptions except 4 and 7, which I did not test.  As much as 
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possible, I chose simulation parameter values to correspond with their estimates for BC 

sablefish data.  I inferred reasonable values for simulation parameters for which no 

sablefish data were available.  In all scenarios, the number of tags released was set to the 

actual number of BC sablefish tag releases in each historical year. 

Scenario 2 violates assumption 8, that all catch occurs instantaneously at the 

beginning of the year, i.e., the fishery is an annual pulse fishery.  The BC sablefish 

fishery violates this assumption because it is open year-round and catches are taken 

throughout the year, though a large component of the catch is taken during the winter 

(November – March) (Haist et al. 2004).  I approximated such a fishery in scenario 2 by 

applying Haist et al.’s (2005) estimates of monthly exploitation rates in month t to the 

vulnerable population in month t using equation 9.  In the remainder of the scenarios 

meeting assumption 8, I summed Haist et al.’s (2005) estimates of monthly exploitation 

rates to obtain annual exploitation rates for each year j ( ju ), and applied these annual 

exploitation rates to the vulnerable population in the month after tagging to generate 

simulated data for the year.  Thus, in both the monthly and annual cases, I applied the 

same total exploitation rate over the course of the year.  However, the catches obtained 

from the monthly fishery were less than from the annual fishery because in the monthly 

case, the exploitation rate was applied to a population that had already been reduced by 

natural mortality over the course of the year. 

Scenario 3 violates assumption 1 of the Brownie model, that the tagged sample is 

representative of the population (Table 2).  This assumption is violated if tags are not 

distributed evenly across the region and do not mix uniformly with untagged fish 

(Pollock et al. 1994).  I implemented this by simulating subpopulations of sablefish that 
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are either vulnerable (V ) or invulnerable (V ′ ) to the trap fishery.  In this case, only 

vulnerable fish can be harvested or tagged, so the tagged sample is not representative of 

the population because there are no invulnerable fish in the sample.  In scenario 3, the 

proportional rates of exchange between vulnerable and invulnerable states were set to 

1.0=′→VVθ  and 9.0=→′ VVθ .  With these exchange probabilities, approximately 4.4% of 

the population is invulnerable when the two vulnerability states are in unfished 

equilibrium with each other (Appendix B), representing a case of incomplete mixing and 

thus a violation of assumption 1.  In all other scenarios the assumption of a fully mixed 

population is met by setting  00001.0=′→VVθ  and 99999.0=→′ VVθ , so only a negligible 

5107.8 −× % of the total population is invulnerable at equilibrium (Appendix B). 

Scenarios 4 and 5 violate Brownie assumptions 2 and 3, that there is no tag loss 

and no tag-induced mortality, respectively (Table 2).  Haist and Hilborn (2000) estimated 

an instantaneous annual rate of tag loss of 0.0366.  The corresponding proportion of fish 

losing tags each month is 0.003, which I applied each month to simulate tag loss in 

scenario 4 (Table 2).  In scenario 5, I simulated initial tag-induced mortality by applying 

an initial tag survival-retention rate of 0.856 to newly tagged fish.  This value was 

inferred by Haist et al. (2005) based on estimates of the rates of initial and subsequent tag 

loss estimated by Haist and Hilborn (2000).  In all other scenarios where the assumptions 

of no tag loss and no tag-induced mortality were met, I used 0 for both the monthly tag 

loss rate and for the initial tag survival-retention rate. 

Scenario 6 violates assumption 6 of the Brownie model, that there is no 

emigration.  British Columbia sablefish may not meet this assumption because analyses 

of tagging data provide evidence of migration of tagged sablefish from northern BC to 
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Alaska (Beamish and McFarlane 1988; Haist et al. 2001).  Thus, the simulation model 

implements emigration in scenario 6 by removing a constant proportion (0.03) of fish 

from the population each month.  I chose this value arbitrarily because there is no 

guidance in the literature for total emigration rates from BC.  The corresponding 

instantaneous annual rate of emigration is: 37.0)03.01(log12 =−− e .  In all other 

scenarios where the assumption of no emigration is met, the monthly proportion of fish 

emigrating is set to 0. 

Tag recoveries in scenario 7 follow an overdispersed binomial error structure; in 

all other scenarios they follow a binomial error structure as described in Section 2.1.2. 

Finally, scenario 8 describes a “realistic case” in which all assumptions of the 

Brownie model are violated except 4 and 7 (Table 2).  The patterns of simulated catch 

and survey CPUE in scenario 8 are compared with the actual observed BC sablefish catch 

and survey CPUE patterns in Figure 1 (Haist et al. 2005).  This figure shows that the 

observation model is a reasonable vehicle for examining the expected performance of the 

Brownie model because it is capable of generating data that are consistent with the actual 

temporal pattern of observed data for BC sablefish. 

2.2 Stock Assessment Model 

Section 2.1 described the model used to simulate the dynamics of the sablefish 

population and tag release cohorts.  In this section, I describe the stock assessment model, 

which attempts to recover the true parameters from the simulated data.  The model takes 

as inputs the survey CPUE ( jY ), reported number of tag recoveries ( G
vtX ), and the total 
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catch ( •

tC ) generated by the simulator, and provides as outputs maximum likelihood 

estimates of fishing, natural mortality, and reporting rate parameters. 

I used maximum likelihood estimation (e.g., Hilborn and Mangel 1997) to 

estimate the following 15 parameters of the simulated data: an average tag reporting rate 

λ , a combined natural mortality–emigration parameter M*, and 13 annual fishing 

mortality parameters jF  for 2003...,,1991=j .  This involved maximizing an objective 

function composed of independent likelihood functions for both the observed tag 

recoveries and observed survey CPUE data.  The objective function measures the 

agreement between simulated observations and predictions of the stock assessment model 

so that the maximum likelihood estimates (MLEs) of the parameters are those parameter 

values that generate predictions that best fit the observed data (Hilborn and Mangel 

1997).  Maximum likelihood estimation is one method for estimating parameters that 

allows the inclusion of different hypotheses about statistical error for the observed data.  

In this study, a multinomial error distribution was assumed for tag recovery data and a 

lognormal error distribution was assumed for survey CPUE data.  I assumed these error 

distributions because they have previously been applied to these types of data in the 

literature (e.g., Hoenig et. al. 1998a; Schnute and Richards 1995). 

2.2.1 Brownie model 

The Brownie model predicts tag recoveries by calculating the probability ijP  of 

recovering a tagged fish in year j that was released in some previous year i, and then 

multiplying ijP  by the number of tags released in year i.  The probability ijP  is calculated 

as:  
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(11) 
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where φ  is the probability of surviving initial tag shedding and tagging-induced 

mortality, hS  is the annual survival rate in year h, and λ  and ju  are the average tag 

reporting rate and annual exploitation rate as already defined (Hoenig et al. 1998a).  The 

product of the hS  terms in equation 11 accounts for the total survival probability to year 

1−j .  The annual survival rate in year j is modelled as a function of a combined natural 

mortality-emigration rate M* and fishing mortality jF : 

(12) )exp( *
jj FMS −−=  . 

Natural mortality and emigration are combined because these are not individually 

estimable based on observed recoveries alone.  The expected number of tags recovered in 

year j that were released in year i  ( ijR ) is then 

(13) ijiij PRE ℜ=][  , 

where iℜ  is the number of tags released in year i . 

 Predicted recoveries ijR  for each cohort of fish tagged in year i  (row i  of the tag 

recovery matrix) are assumed to follow a multinomial error structure that is independent 

of recoveries from all other tag release cohorts (Brooks et al. 1998; Hoenig et al. 1998a).  

The multinomial distribution is a generalization of the binomial, describing an 

experiment in which there is more than one possible outcome (Hilborn and Mangel 1997; 

Brooks et al. 1998).  In the context of the Brownie model, the data falling into the 
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multinomial categories for any given tag release cohort i  are the number of tags 

recovered in year ij = , 1+= ij , 2+= ij , … , Jj = .  Thus, there are 1+− iJ  possible 

outcomes for each tag cohort released in year i, corresponding to the possible years in 

which fish from this release cohort could be recaptured.  The multinomial negative log-

likelihood of the tag recovery data Tl  is 

(14) ( )∑ ∑
= =

⎥
⎦

⎤
⎢
⎣

⎡
+′′′′−ℜ−=

I

i

J

ij
ijeijiJeiJiT PrPr

1

loglogl  , 

 

where )1( ∑−=′′
J

j
ijiJ PP  is the probability that a fished tagged in year i is not recovered by 

the last recovery year J and )( ∑=′′
J

j
ijiJ rr  is the total number of fish recovered from the 

initial cohort tagged in year i (Hoenig et al. 1998a).  The summation in each term 

represents the overall probability of recovery for fish released in year i for all recovery 

years j and therefore does not sum to 1.  The subscript “T” denotes that the likelihood 

component defined in equation 14 pertains to the tag recovery data only, to distinguish it 

from subsequent contributions to the likelihood for the overall objective function 

described below.  

Hoenig et al. (1998a) present a general definition of ju , the exploitation rate in 

year j, as a function of jF , jM , and the seasonal distribution of fishing effort over the 

year, jkε :   
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Here, jkε  is the fraction of the total fishing effort that is applied in each period k of year j, 

for Kk ...,,2,1= , where year j is divided into K periods.  Thus jkε  denotes the 

distribution of fishing effort over the year (Hoenig et. al. 1998a).  The fraction of the 

population surviving to the beginning of period k in year j, jka , is 

(16) 1)1(exp(
1

0

>−∆−−= ∑
−

=

kFtkMa
k

h
jhjjjk ε . 

When there is only one fishing period ( 1=k ), 11 =ja  since all fish survive to the 

beginning of period k.  The fraction of fish dying in period k of year j, jkb , is 

(17) )exp(1 jkjjjk FtMb ε−∆−−= ,  

and the proportion of total catch taken in period k of year j, jkc , is 

(18) 
tMF

F
c

jjkj

jkj
jk ∆+

=
ε

ε
. 

If fishing effort is constant over the year, equation 15 reduces to the standard 

Baranov catch equation, and when all fishing takes place instantaneously at the beginning 

of the year, equation 15 reduces to equation 2 (Hoenig et. al 1998a).  This study assumes 

a pulse fishery so it uses equation 2, but if data on the seasonal timing of the fishery were 

available, then the Baranov catch equation or equation 15 could be used as an alternative 

formulation.     
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The annual parameter M* differs from standard definitions of M because it 

represents the additive effects of instantaneous emigration and natural mortality.  These 

parameters are confounded in the estimation procedure because the Brownie model 

cannot resolve the two sources of loss given only the data in the tag recovery matrix.  

Furthermore, I assumed that the rates of natural mortality and emigration were constant 

over time, so I estimated a single parameter M* rather than a time-dependent parameter 

*
jM .  The “true” simulated value of M* in all eight scenarios is 

(19) [ ])1(log)(log12* κ−+−= ee SM   , 

where S  is the proportion of fish surviving natural mortality each month, κ  is the 

proportion of fish emigrating each month, and the multiplier 12 converts the monthly S  

and κ  values to an annual M*.  The value of S  was set to 0.993 in all eight scenarios 

while 03.0=κ  in scenarios 6 and 8 and 0=κ  in all other scenarios. 

Assuming that there was no initial tag shedding or tagging-induced mortality, I 

considered φ  = 1.0 to be a fixed parameter in the Brownie model.  I tested the effect of 

this assumption in scenario 5, where I simulated a scenario that included initial tag 

shedding and tagging-induced mortality. 

I extended the Brownie model to derive estimates of abundance at the time of 

tagging by applying the familiar relationship between catch and exploitation rate given by 

equation 1.  The estimated exploitation rate in year j ( jû ) was derived from equation 2 

using estimates of jF  obtained from the Brownie model.  By comparing abundance 

estimates with their known “true” values from the simulations, I was able to quantify the 
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bias and precision involved in using Brownie estimates of fishing mortality parameters 

( jF ) to estimate abundance. 

2.2.2 Index of relative abundance model 

One aim of my research was to determine whether combining an index of 

abundance, such as the survey CPUE, with the tag recovery data would reduce bias and 

improve precision of parameter estimates.  This was achieved by developing a model 

with likelihood components for both tag recovery and survey CPUE data using a method 

analogous to that of Polacheck et al. (2006), who integrated catch-at-age data with the 

Brownie model. 

I assumed that a lognormal distribution characterized the random variability 

around each simulated survey CPUE observation because:  

(1) this distribution takes on only positive values (Limpert et al. 2001), 

constraining the observed survey CPUE values jY  to be positive; and  

(2) this distribution is asymmetrical and skewed (Limpert et al. 2001) so there is a 

high frequency of low numbers of fish caught per trap, which diminishes quickly in the 

long tail of the distribution, corresponding to low frequencies of bigger numbers of fish 

caught per trap.  Thus, the “observed” survey CPUE values jY  ( 20031992 ≤≤ j ) were: 

(20) ),0(~),exp(ˆ σηη NYY jjjj =  . 

The predicted survey CPUE values jŶ  are equal to a catchability coefficient q 

multiplied by the predicted number of fish in October of year j, jN̂ : 



 

 26

(21) jj NqY ˆˆ =  . 

Solving equation 20 for jη  and substituting equation 21 for jŶ , the lognormal residuals 

can be expressed as: 

(22) ( ) qNY ejjej logˆlog −=η  . 

The corresponding negative log-likelihood function ( sl ) for the lognormally-distributed 

residuals defined in equation 22 for J years of data is (Schnute and Richards 1995; 

Hilborn and Mangel 1997): 

(23) ( ) ∑+=
J

j
jes

J 2
2

2

2
1

2log
2

η
σ

πσl  . 

One complexity in minimizing sl  is the choice of values for q and 2σ .  These are 

considered nuisance parameters because they are not of direct interest, but are necessary 

for the analysis.  Conditional maximum likelihood estimates of qelog  and 2σ  can be 

obtained analytically by minimizing the negative log-likelihood (equation 23) with 

respect to these parameters (Walters and Ludwig 1994).  Substituting the conditional 

MLE for qlog  into equation 22 and for 2σ  into equation 23 and ignoring additive 

constants (which do not affect the parameter values that give the minimum), the overall 

survey negative log-likelihood is  
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(24)  ⎟⎟
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2.2.3 Overall objective function 

In section 2.2.1, I estimated the suite of 15 parameters using the Brownie model 

alone, which used only the tag recovery data.  In that case, the overall objective function 

for parameter estimation is given by equation 14. 

In section 2.2.2, I estimated the same suite of 15 parameters using both the tag 

recovery and the survey CPUE data.  The standard method of combining likelihoods for 

two or more independent sources of data is to multiply them or to add their negative log-

likelihoods (e.g., Hilborn and Mangel 1997, Schnute and Richards 1995, Polacheck et al. 

2006).  Thus, the overall objective function (l ) that I minimized when combining the tag 

recovery and survey CPUE data was: 

(25) sT lll +=  . 

  I implemented the parameter estimation model using the AD-Model Builder 

(ADMB) software package (Otter Research 1999).  This package calculates exact 

analytical derivatives of the objective function using automatic differentiation and 

provides very efficient function minimization (Otter Research 1999).  The ADMB 

package uses a pre-compiled C++ library called AUTODIF, which provides very 

efficient and stable function minimization because (1) it has pre-compiled derivatives for 

the commonly used array and matrix operations, and (2) it uses automatic differentiation, 

rather than the finite difference approximation, to calculate derivatives of other functions 

(Maunder 2004). 
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2.3 Simulation Framework 

For each scenario listed in Table 2, I conducted a Monte Carlo experiment with 

500 simulation-estimation trials.  Each experiment involved the following four steps:  

1. Simulate 500 sets of tag recovery, survey CPUE, and catch data with known 
parameters appropriate to the scenario; 

 

2. Fit the parameter estimation model to each of the 500 simulated data sets to obtain 

estimates of F1991 - F2003, M*, and λ (15 parameters in total) using (a) the tag-

recapture data and the Brownie model (equation 14), and (b) the tag-recapture plus 

survey CPUE data and the integrated model (equation 25); 

 

3. Apply equations 1 and 2 to calculate 13 abundance estimates from 1991 through 2003 

using the values of F1991 through F2003 estimated in step 2;   

 

4. Compute the relative percentage bias for each of the 15 parameter estimates and 13 

abundance estimates: 

(26) %100% ×⎟
⎠
⎞

⎜
⎝
⎛ −

=
true

trueestimate
bias  . 

 

2.4 Performance Measures 

I used median percentage bias and inter-quartile range of percentage bias to 

summarize the bias and precision, respectively, of parameter estimates obtained from the 

500 Monte Carlo trials.  The inter-quartile range is bounded by the 25th and 75th 

percentiles of the distribution of parameter estimates.  I used rank statistics such as 

median and inter-quartile range as measures of bias and precision to reduce sensitivity of 

the results to outliers.   
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For each estimated quantity Q, the improvement in the median value of 

percentage bias from including the survey CPUE data ( *b ) was computed using  

(27) TST bbb −=* , 

where Tb  is the median percentage bias of Q estimated using the tag recovery data only, 

and TSb  is the median percentage bias of Q estimated using both the tag recovery data 

and the survey CPUE data.  A positive value for *b  indicates that including the survey 

CPUE data decreased the median value of the parameter estimate, resulting in a reduction 

in bias.  Similarly, I computed the improvement in precision of estimates of each quantity 

Q ( *p ) obtained by including the survey CPUE data as: 

(28) TST ppp −=*  . 

In equation 28, Tp is the inter-quartile range of parameter Q estimated using the tag 

recovery data only, and TSp  is the inter-quartile range of parameter Q estimated using 

both the tag recovery and survey CPUE data. 
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3 RESULTS 

3.1 Base Case and Realistic Case 

When all assumptions of the Brownie model were met (scenario 1; Table 2), all 

parameters were estimated extremely well (Figure 2a) with median percentage biases 

from 500 Monte Carlo trials within 1% of true values.  The median estimated abundance 

also matched very closely with the simulated numbers of fish (Figure 2b); biases of the 

median abundance ranged from -1.3% in 2003 to -0.01% in 1995.  The precision of 

abundance estimates as measured by the inter-quartile range improved as the number of 

years of data increased (Figure 2b). 

In the “realistic” scenario in which all assumptions were violated (scenario 8; 

Table 2), medians of the estimates of annual F parameters were biased low by 1.5% to 

7.1% in all years except 2002, when the median estimate of 2002F  was biased high by 

6.2% (Figure 3a).  The average tag reporting rate parameter λ was underestimated by 

37%, and the combined natural mortality-emigration rate parameter M* was 

overestimated by 4.6%.  However, the inter-quartile range for all parameters overlapped 

the 0% bias reference line (Figure 3a).  Abundances were estimated surprisingly well for 

the realistic case given that no assumptions (except 4 and 7) were met: the median of 

abundance estimates ranged from an underestimate of 25% in 1994 to an overestimate of 

48% in 1997 (Figure 3b). Additionally, the “true” abundance was within the inter-quartile 

range of abundance estimates every year except 1997 (Figure 3b).  The median of the 
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abundance estimates was biased high in 4 years out of 13, and was biased low in the 

remaining 9 years (Figure 3b).   

3.2 Parameter Estimates 

The largest bias in parameter estimates occurred when the following two 

assumptions were violated: (1) all catch is taken instantaneously at the beginning of the 

year (assumption 8, violated in scenario 2) and (2) the fish are completely mixed and the 

tagged sample is representative of the population (assumption 1, violated in scenario 3).  

In scenarios 2 and 3, estimates of F1999 through F2001 were mostly biased low by about 2-

6% and 10%, respectively (Figure 4a). 

Most parameters were estimated to within 2.2% of their true values for scenarios 

4 through 7 (Figure 4a).  Tag loss (scenario 4) resulted in approximately the same bias as 

the base case for most parameters except M*, which was overestimated by 42% and is 

off-scale of Figure 4a.  Tagging-induced mortality (scenario 5) resulted in consistent 

overestimates of annual F parameters by about 1%, while λ and M* were underestimated 

by 15% (again, off-scale of the figure) and 1%, respectively.  Emigration (scenario 6) 

also resulted in patterns similar to the base case, except the estimate of λ, which was 

biased low by about 4%.  Overdispersed binomial tag recoveries (scenario 7) yielded a 

pattern opposite to that observed for tag-induced mortality.  In this case, annual F 

parameters were all underestimated by about 1%, while λ and M* were overestimated.   

Precision of parameter estimates for scenarios 2-7 was similar to that of the base 

case for all scenarios except scenario 6 (emigration) and scenario 7 (overdispersed 

binomial tag recoveries) (Figure 4b).  In these latter two scenarios, the inter-quartile 
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range statistics were on average 1.5 and 2 times greater than the base case, respectively 

(Figure 4b).  The precision of annual fishing mortality parameters was greatest for years 

in the middle of the time series; i.e., for F1996 – F1998, and grew worse towards the earliest 

and latest years in the time series (Figure 4b).  Note that M* was estimated with 

unusually high precision (inter-quartile range = 8%) for the emigration scenario (Figure 

4b); this parameter was also estimated with very little bias (-0.1%) under that scenario 

(Figure 4a). 

3.3 Abundance Estimates 

Annual abundance from 1991 to 2003 was estimated to within about 6% of the 

“true” simulated abundance for all scenarios (Figure 5a).  The bias of abundance 

estimates was most affected in scenarios 2 (monthly exploitation) and 6 (emigration) 

(Figure 5a).  In most years in scenario 2, abundances alternated between being 

overestimated and being underestimated from year to year after 1994 (Figure 5a).  In 

general, abundance was more often underestimated than overestimated (9 out of 13 years) 

(Figure 5a). 

The precision of abundance estimates from 1991 to 2003 (Figure 5b) followed 

closely the pattern of precision of F1991 – F2003 estimates (Figure 4b) because abundance 

estimates are derived directly from estimates of fishing mortality using equations 1 and 2. 

3.4 Effect of Adding Survey CPUE Data 

Combining the survey CPUE with the tagging data did not generally affect the 

bias or precision of parameters in either direction by more than 1% and 2% respectively, 

across scenarios 2 through 7 (Figure 6).  Similar results were obtained for abundance 
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estimates; adding the survey CPUE data showed little or no consistent improvement in 

bias or precision when single Brownie assumptions were violated at a time(Figure 7a, 

Figure 7b).  However, in the “realistic” case (scenario 8), including the survey CPUE 

data increased the bias (Figure 6a) but reduced the precision (Figure 6b) of estimated 

parameters.    
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4 DISCUSSION 

4.1 Major Conclusions 

4.1.1 Objective 1: Violations of individual Brownie assumptions 

The objective of this study was to assess the feasibility of using the Brownie 

model as a stock assessment tool for BC sablefish.  Specifically, my first aim was to 

quantify the effects of violations of the individual Brownie model assumptions on 

parameter estimates by sequentially violating each of the assumptions in scenarios 2 

through 7 (Table 1).  I found that the biases observed in parameter estimates for the 

“realistic” scenario (scenario 8) were dominated by violations of Brownie assumptions 1 

and 8: that the tagged sample is representative of the population (i.e., tagged and 

untagged fish are completely mixed), and that the catch is taken instantaneously at the 

beginning of the year.  This is because violations of assumptions 1 and 8 (in scenarios 3 

and 2) resulted in the greatest underestimates of fishing mortality (Figure 4a).  These 

underestimates could have arisen because fewer tagged fish are available to the fishery 

when these two assumptions are violated as compared to when they are met.  For 

example, when tagged and untagged fish are incompletely mixed (violation of 

assumption 1), some tagged fish are invulnerable to the fishery.  Similarly, when not all 

the catch is taken at the beginning of the year (violation of assumption 8), fewer tagged 

fish are available to the fishery each month because of natural losses of tagged fish over 

the course of the year.  In either case, fewer tagged fish available to the fishery means 
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that fewer tag recoveries are observed in the tag recovery matrix, resulting in 

underestimates of the actual fishing mortality.   

However, additional scenarios are needed to confirm that assumptions 1 and 8 

also have the greatest effect on bias of parameter estimates when all assumptions are 

violated simultaneously.  It appears that interactions can result in violations of certain 

assumptions amplifying or compensating for others when producing the net overall bias 

in parameter estimates.  This is because the biases in estimates for scenarios that violate 

individual assumptions do not sum to the biases observed in the realistic scenario 8, as 

would be expected if the biases were independent and additive (compare Figures 3a and 

4a).  Additional scenarios could be used to determine which combinations of assumptions 

have the most effect on biases in the realistic scenario.  For example, if biases from a 

scenario violating all assumptions except assumption 1 were compared with the biases in 

scenario 8, the effects of incomplete mixing could be quantified under the presence of 

potential interactions.  If this procedure were repeated for each Brownie assumption, the 

rank order of the relative importance of the assumptions could be more fully diagnosed.     

4.1.2 Objective 2: Incorporation of survey CPUE data 

A second aim of my research was to quantify the potential reduction in bias and 

increase in precision of parameter estimates when survey CPUE data are combined with 

tag recovery data in the Brownie model.  I found that inclusion of the survey CPUE did 

not substantially change the bias or precision of parameter or abundance estimates in 

scenarios 2 – 7 (Figure 6; Figure 7).  This is counter-intuitive because even in trials when 

the survey CPUE data showed a strong trend and might indeed have been a better index 

of the true population dynamics than the tagging data (as was the case in several of the 
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simulated Monte Carlo trials), it had little effect on the overall bias or precision of 

parameter estimates.   

To diagnose this problem, I drew profiles of the negative log likelihood functions 

for both the tagging and survey CPUE data (Figure 8).  Figure 8 was generated using the 

data set from the first Monte Carlo trial of the base case (scenario 1).  Note that the 

values of the tagging and survey CPUE likelihood functions in this figure are on quite 

different scales (between 81 000 and 87 000 for the tagging likelihood; between -2.5 and 

-1.5 for the survey CPUE likelihood).  The magnitude of the objective function value for 

each data source is determined by the number of individual data points contributing to it, 

as well as the constraints of the particular likelihood distributions assumed (e.g., 

multinomial distribution for the tag recovery data).  The overall likelihood is the product 

of the individual likelihoods over all the data points.  Since there is much more tagging 

data than survey data, the value of the tagging likelihood is far greater than the value of 

the survey likelihood.  This implies that the survey CPUE data implicitly are weighted 

less than the tagging data in the overall likelihood function (equation 25); thus, inclusion 

of the survey data had little effect on the overall bias or precision of parameter estimates. 

Additionally, Figure 8 shows that the minimum value of the survey CPUE 

likelihood occurs when M* = 0.26.  However, the “true” value of M* in scenario 1 was 

0.084.  Thus, the survey model attributes all the residual variation in the data to M* rather 

than to the jF  parameters, driving the MLE of M* away from the “true” simulation value 

of 0.084 to 0.26.  Thus, it appears that the survey CPUE data is not influencing the 

estimates of jF  parameters at all, and that estimates of fishing mortality parameters are 

informed by the tagging data alone.  This is because estimates of fishing mortality 
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derived from tagging are used to estimate abundance using equation 1, and these 

estimates are substituted into the survey model for jN̂  in equation 21.   Recall that in 

section 2.2.2 when the survey likelihood function was developed, there was no explicit 

population model for the survey CPUE data; the component of the likelihood function 

due to survey CPUE data simply fit log-normally distributed errors to the “observed” data 

points (equations 20 – 24).  Without an explicit population dynamics model, the survey 

CPUE likelihood is attempting to estimate 13 F parameters from only 12 years of survey 

data, resulting in an over-parameterized model.   

One possible remedy for this situation might be to specify a population dynamics 

model to explain the variation in the survey CPUE data independently of the F values 

derived from tagging.  Such a model would generate the predicted number of fish in 

October of year j, jN̂ .  An example of a population dynamics model that could be used to 

derive jN̂  independently of the tagging data is given in equation 29: 

(29) RCNeN jj
M

j +−= −
+ )ˆ(ˆ *

1 , 

where R  is the average annual recruitment over the time series.  In this example, the 

additional parameters to be estimated in this case are 0N  and R .  The values of jN̂  

derived from this population dynamics model would be substituted into equation 21.  The 

remaining calculations for the survey CPUE likelihood would remain the same.  In this 

formulation, M* would be the only parameter shared by both the tagging and survey 

CPUE likelihoods.  Note that equation 29 is simply an example of a possible population 

dynamics model that could be used to derive estimates of jN̂  to be used in equation 21, 
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but that equation 29 in particular might not adequately describe the residuals in the 

survey CPUE data because it has only two free parameters ( 0N  and R ).  Alternative 

structural models for deriving jN̂  independently of the tagging data should also be 

developed and tested. 

4.2 Implications of Selected Brownie Assumptions 

4.2.1 Assumption 1 - Incomplete mixing 

Results obtained for scenario 3 quantitatively verify the assertions of other 

researchers that complete mixing is a critical assumption for unbiased application of the 

Brownie model (Hoenig et al. 1998b; Latour et al. 2001b; Pollock et al. 2001).  In 

scenario 3, where about 4.4% of the total population is invulnerable at equilibrium 

( 1.0=′→VVθ  and 9.0=→′ VVθ , Appendix B), annual fishing mortality parameters ( jF s) 

were underestimated by about 10% (Figure 4a).  Presumably, these biases will grow even 

larger as VV ′→θ  increases and VV →′θ  decreases because fewer fish will be available to the 

trap fishery, resulting in the Brownie model being confronted with fewer observed tag 

recoveries.  Since the Brownie parameter estimates are only applicable to the portion of 

the population that the observed tag recoveries were caught from, analysts should be 

aware that when there is incomplete mixing, the Brownie parameter estimates only 

pertain to the vulnerable substock.     

4.2.2 Assumption 8 - Assuming that the timing of the fishery is known correctly 
and all catch is taken instantaneously at the beginning of the year  

I found that annual fishing mortality (F) parameters were generally 

underestimated when Brownie assumption 8 was violated (Figure 4a).  Scenario 2 
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violates this assumption by taking catches monthly rather than instantaneously at the 

beginning of the year.  The total exploitation rate over the course of the year was held 

constant whether catches were taken monthly or annually.  Fishing mortality was 

underestimated because in scenario 2 I applied a monthly exploitation rate to the number 

of fish alive at the start of each month.  However, this number is depleted over the course 

of the year due to fishing and natural mortality in the previous months.  Thus, the total 

number of observed tag recoveries in the tag recovery matrix is less in scenario 2 when 

compared to the situation where all fishing happens at the beginning of the year, given 

equal exploitation rates over the course of the entire year.  The Brownie model interprets 

fewer observed tag recoveries in the tag recovery matrix as less fishing pressure on the 

stock than was actually applied.  Hence, the Brownie model underestimates annual 

fishing mortality when fishing is applied monthly rather than annually.   

My result on this point contrasts with Hoenig et al.’s (1998a), who found that 

estimates of fishing mortality and natural mortality were relatively insensitive to the 

assumed timing of the fishery for a data set of tag recoveries of lake trout in Lake 

Cayuga, New York.  Subsequent literature on the Brownie model cites their study when 

claiming that the assumption about timing of the fishery is relatively unimportant to the 

estimates obtained from the Brownie model (e.g., Hoenig et al. 2005).  However, in the 

BC sablefish case, incorrectly assuming that all fishing takes place at the beginning of the 

year introduced bias in parameter and abundance estimates.  Iterating over 500 potential 

sets of simulated tag recoveries, I estimated that the bias in parameter estimates 

introduced by failing to meet the pulse fishery assumption is 2 – 6%, whereas Hoenig et 

al. (1998a) could only conclude that parameter estimates for their one data set were 
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insensitive to the assumptions about timing of the fishery.  They were not able to quantify 

bias because their study used field data for which the true parameter values were 

unknown.  Biases of 2 – 6% may or may not be important for fishery management, and 

closed-loop simulation studies including the full decision making, biological, and 

scientific assessment components of the fishery system (e.g., de la Mare 1998) can be 

used to investigate the effects of these estimation biases on the attainment of management 

objectives for the fishery.  In any case, my results show that assumptions about the timing 

of the fishery might introduce biases in parameter estimates that analysts should be aware 

of.  Thus, the effects of this assumption should not be dismissed, but rather, evaluated on 

a case-by-case basis. 

I could not estimate abundance using equations 1 and 2 when the data did not 

meet assumption 8 because equation 2 assumes that all catch is taken instantaneously at 

the beginning of the year.  Because scenario 2 violated this assumption, it was not valid 

to apply equation 2 in this case.  As a result, abundance estimates for scenario 2 appear to 

alternate somewhat erratically from one year to the next (Figure 5a).  Perhaps the easiest 

way of dealing with the implications of violating assumption 8 might be to provide the 

Brownie model with additional data on the timing of the fishery, and apply Hoenig et 

al.’s (1998a) general definition of ju  as a function of jF , jM , and the seasonal 

distribution of fishing effort over the year. 

4.2.3 Assumptions 2 and 3 - Tag loss and tagging-induced mortality 

Overall, violations of the tag loss and tagging-induced mortality assumptions 

were relatively unimportant in terms of bias of parameter and abundance estimates, since 



 

 41

the Brownie model always estimated parameters to within about 1% of their true values 

when these assumptions were violated (scenarios 4 and 5).  However, M* was 

substantially overestimated (by 42%) in scenario 4, which violated the assumption of no 

tag loss.  This bias occurred because the Brownie model has no way to distinguish among 

causes of fewer observed tag recoveries (tag loss, natural mortality, or emigration).  All 

three of these factors are manifested as fewer tags than would otherwise be expected in 

the tag recovery matrix.  Accounting for tag loss and tag-induced mortality in the 

Brownie model is relatively simple, since Hoenig et al.’s (1998a) formulation of the 

Brownie model allows the tag retention-survival rate φ  to be set lower than 1.0.  

Independent estimates of tag loss and tagging-induced mortality are available for BC 

sablefish (Haist et al. 2005), and can be substituted for φ  in the Brownie model as 

appropriate.  Doing so would most likely account for most of the bias observed in 

scenarios 4 and 5.  Alternatively, φ  could be estimated as long as it is not confounded 

with the other estimated parameters. 

4.3 Estimation of Tag Reporting Rates 

Estimates of tag reporting rates are necessary when tagging data are used to 

estimate abundance (Pine et al. 2003).  This is because if reporting rates are less than 

100%, then fewer tags will appear in the tag recovery matrix than expected, resulting in 

underestimates of fishing mortality.  Since fishing mortality and abundance are inversely 

proportional (equation 1), abundance will be overestimated when fishing mortality is 

underestimated.  This bias can be accounted for if estimates of tag reporting rates are 

available.  However, reporting rates for externally applied tags are difficult to estimate 

precisely (Pollock et al. 2001).  Methods involving high-reward tags (Pollock et al. 2001; 
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Taylor et. al 2006), fishery observers (Pollock et al. 2002), planted tags (Hearn et al. 

2003), and catch from multi-component fisheries (Taylor et. al 2006) have all been used 

for obtaining independent estimates of tag reporting rates (Pine et al. 2003; Hoenig et al. 

2005).   

The bias caused by imperfect tag reporting can also be accounted for if fish are 

tagged using recent technological innovations that allow tag detection rates to be close to 

100%.  For example, passive integrated transponder (PIT) tags (e.g., Pengilly and Watson 

1994; Gibbons and Andrews 2004), coded-wire tags (e.g., Jefferts et al. 1963), and 

genetic tagging methods (Palsboll 1999) greatly reduce the problems associated with 

estimation of tag reporting rates because tags are detected electronically or via genetic 

analysis.  Thus, tag detection does not depend on accurate reports of tag recaptures by 

fish harvesters.   

In this study, I was able to directly estimate an average tag reporting rate 

parameter (λ ) from the observed tag recovery data.  This involved estimating λ  

simultaneously with the other estimated parameters using the Brownie model.  Hoenig et 

al. (1998a) concluded that information on reporting rates in the tag recovery data is weak, 

because they could not find stable estimates of tag reporting rates from the recovery data 

when they fit the model to fewer years of recoveries than in their full data set.  However, 

my simulation studies yielded relatively precise estimates of λ .  In fact, I found that the 

precision of estimates of λ  (as measured by the inter-quartile range of λ  estimates) was 

better than the precision of estimates of jF  and M* in some scenarios (Figure 4b).  It 

should be noted that the “true” tag reporting rate in my simulations was 0.8, while 

Hoenig et al. (1998a) assumed a true reporting rate of 0.18.  Many more tags were 
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observed with a true reporting rate of 0.8, thereby reducing the variance of the observed 

tag recovery data.  This could explain why Hoenig et al. (1998a) and I found different 

results regarding the precision of reporting rate estimates: my routine was able to 

converge because the simulated tag recovery data showed less variance than did Hoenig 

et al.’s (1998a) lake trout data.  Indeed, their estimates of reporting rate stabilized when 

they added simulated returns of high-reward tags, thus increasing their average tag 

reporting rate and number of observed recoveries (Hoenig et al. 1998a). 

In a subsequent analysis, I attempted to break λ  up into a set of annual reporting 

rate parameters jλ , and estimate these simultaneously with annual jF and M* parameters.  

This resulted in over-parameterization of the Brownie model (more parameters than 

necessary to fit the model to the data), resulting in the model chasing noise rather than 

describing the general trends in the data.  Consequently, the estimation routine did not 

converge. 

4.4 Recommendations to Scientists and Managers 

For the Brownie model to be successfully applied as a stock assessment tool for 

BC sablefish, the assumptions that have the greatest effects on estimates of abundance 

should be addressed.  Based on my results, research efforts should be directed towards 

taking both the true timing of the fishery and emigration into account, since these two 

assumptions resulted in the greatest underestimates of abundance (Figure 5a).  It is 

relatively straightforward to relax the pulse fishery assumption and use data on the true 

timing of the fishery because intensive spatio-temporal catch and effort sampling has 

been conducted since the beginning of the sablefish tagging program.  These catch and 
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effort data can be used to implement the general definition for ju  (equation 15) provided 

by Hoenig et al. (1998a) that makes no additional assumptions about the timing of the 

fishery.  However, potential gains and tradeoffs in bias and precision of abundance 

estimates from using this definition of ju  should still be quantified using simulation 

studies.  Accounting for sablefish emigration from BC may be more challenging since 

there are uncertainties concerning sablefish movement patterns (e.g., Beamish and 

McFarlane 1988; Heifetz and Fujioka 1991).  However, emigration rates from BC could 

be estimated by examining recoveries of BC-tagged fish in Gulf of Alaska and 

continental U.S. waters. 

Additionally, the incomplete mixing problem (assumption 1) must be addressed, 

because incomplete mixing has the greatest effect on parameter estimates (Figure 4a).  

Aggregation and incomplete mixing phenomena appear to affect the population dynamics 

of marine fishes such as tuna, anchoveta, herring, and mackerel (Clark and Mangel 

1979).  If, like these species, sablefish exhibit vulnerability exchange dynamics as I have 

generally defined above, this could make the Brownie model inappropriate for stock 

assessment of BC sablefish unless this assumption is accounted for.  Therefore, as a start, 

I recommend using Hoenig et al.’s (1998b) modifications to the Brownie model that 

explicitly incorporate non-mixing of newly tagged fish.  However, since their model 

refers specifically to newly tagged fish, further modifications will be necessary to take 

into account exchanges of tagged and untagged fish between vulnerable and invulnerable 

states in each time step. 
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4.5 Contributions of this Research 

This research contributes to two major topics: theoretical research in combining 

data sources, and science and management of BC sablefish.   

4.5.1 Theoretical research in combining data sources 

This paper provides insights into some complexities of combining two 

independent data sources, namely the tag recovery and survey CPUE data, in a fisheries 

estimation problem.  Although past studies have successfully combined independent 

indices (e.g., Polacheck et al. 2006), my research shows that combining data sources in 

an objective function is not trivial, especially when the values of the objective function 

for the various sources of data are on entirely different scales.  This is because different 

scales for the values of the objective function from the two data sources imply that the 

data sources are implicitly being given different weights in the overall objective function.  

I recommend further investigations of statistical methods and alternative model structures 

for combining the two data sources, as described below in section 4.6. 

4.5.2 Contributions to science and management of BC sablefish 

The Monte Carlo methods illustrated in this study are valuable given current 

research in the development of management procedures for BC sablefish.  In particular, 

by evaluating the Brownie model in a Monte Carlo framework, this study is a building 

block for an in-depth analysis of the BC sablefish fishery in the context of a holistic 

analysis of management strategies (de la Mare 1998).  The simulation model I have 

developed can be used as an operating model for evaluating assessment models and 

harvest rules over a range of scenarios against objectives for the BC sablefish fishery, and 
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thus represents a useful tool for analysing this system.  In addition, this study represents 

the first formal simulation-based analysis of the estimation properties of a potential stock 

assessment method for BC sablefish.   

4.6 Future Directions 

The results of this paper, as well as the contributions identified in section 4.5, 

suggest two major issues for future research stemming from this project.  These issues 

relate to (i) resolving how to best include survey or fishery CPUE data with tagging data 

in the objective function, and (ii) evaluating the consequences of violating the Brownie 

assumptions in a management procedure simulation. 

4.6.1 Resolve issues of combining survey CPUE with tagging data 

I recommend focusing future work on determining how to best combine survey 

CPUE and tag recovery data in the objective function.  In particular, it should be 

determined what conditions are necessary for inclusion of the survey data to improve the 

bias and precision of parameter estimates obtained from the Brownie model.  It appears 

that an investigation of alternative structural models for fitting the survey CPUE data is 

appropriate.  As a start, I suggest implementing a population dynamics model for the 

survey CPUE data, such as the one specified in equation 29.  This will allow the model 

for lognormal survey errors (equations 20 – 24) to be fit to the survey CPUE data, 

without using estimates of annual F parameters from the tagging model to derive jN̂  

values used in equation 21.   

It is reasonable to expect that including the survey CPUE data will reduce bias 

and increase precision of parameter estimates, at least in those Monte Carlo trials 
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showing a strong trend with low residual variation in survey CPUE data.  If this does not 

occur, then the model is not specified correctly, and/or survey CPUE data are not 

weighted appropriately with tagging data in the overall likelihood.  One way to ensure 

that the tag recovery data is not implicitly given undue weight due to the number of tag 

recovery data points is to modify the Brownie multinomial likelihood for the tagging data 

(equation 14).  The multinomial likelihood is quite restrictive since: (1) it only accounts 

for observation error in the tag recoveries and thus ignores possible overdispersion in the 

tag recovery data; (2) there might be correlations among tag release cohorts; and (3) the 

multinomial requires that the sum of the probabilities for recovering tags released in year 

i sums to 1.0 over all recovery years j.  The multinomial likelihood for tagging data could 

be relaxed in the following ways: 

• modify the tagging likelihood to account for overdispersion in the observed data; 

• use a negative binomial likelihood for the tag recoveries rather than the 

multinomial likelihood.  The negative binomial distribution includes a variance parameter 

related to process error, which would also be estimated. 

In addition, it would be useful to evaluate the effects on parameter estimates of 

situations in which the survey CPUE and tagging data indicate contradictory trends in the 

underlying population dynamics.  Such data may arise in situations such as the following: 

• A situation in which the population is declining while tags are deliberately being 

under-reported by fishermen at a rate proportional to abundance.  In this case, the survey 

CPUE would show a declining pattern (assuming it correctly reflected the population), 

and there may be grounds for lowering the TAC.  However, if fishermen detect the 

declining abundance (perhaps because they observe declining commercial fishery 
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CPUE), and deliberately choose to under-report tag recoveries in proportion to this 

decline, then the tagging data may incorrectly show no trend or increasing abundance 

over time because fishing mortality would be underestimated.  Note that this is different 

from a situation in which reporting rates decrease at higher abundance due to large 

catches creating difficulties with processing all the tags on-deck before the fish are 

headed because of the sheer volume of catch to be processed.  To simulate under-

reporting, the tag reporting rate parameter in the simulator should be set to a value less 

than 1.0.  If reliable estimates of the tag reporting rate are available, then under-reporting 

can be accounted for in the estimation phase. 

• Another example would be a situation in which the population is declining, fish 

are incompletely mixed, and effort is shifting away from tag release sites.  The fixed tag 

release localities for BC sablefish are at regions of historically high catches.  However, 

under a scenario of decreasing abundance, local populations may decline, forcing effort 

to shift away from these tag release sites.  If effort shifted to areas with low densities of 

tagged fish, then the number of tag recoveries would decrease, fishing mortality would be 

underestimated, and abundance would be overestimated.  Thus, under this scenario the 

tagging data would show an increasing abundance trend, while the survey CPUE data 

would show a declining trend provided that the survey correctly indexed abundance.  A 

spatially-explicit model for fishing effort could be used to generate simulated data for this 

scenario. 

4.6.2 Evaluate costs of violating Brownie assumptions in a management context 

I also recommend that the costs of violating assumptions of the Brownie model be 

evaluated in the context of the full fishery management system for BC sablefish.  This 
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involves running closed-loop simulations of all components of the fishery, including a 

decision making process, actions taken by the fishery, population dynamics, data 

collection (including observation error), stock assessment, and inputs to the decision 

making process (de la Mare 1998).  Fishery objectives are an essential component of such 

a framework, because costs of violating assumptions of the Brownie model should be 

measured relative to the objectives specified for the fishery.  For example, if assumptions 

of the Brownie model are not met, then there may be less chance of meeting fishery 

objectives, resulting in costs of over-fishing, lost fishing opportunities, or other monetary 

costs.  Fishery objectives should be developed through a collaborative process involving 

members of the Canadian Sablefish Association, management, and other stakeholders 

(Cox and Martell 2005).  Performance measures need to be calculated over the course of 

the simulation and judged against fishery objectives to evaluate the extent to which 

objectives are met under the various scenarios. 

Once such a modeling framework is developed, it can be used as a tool to 

investigate questions raised in this paper such as:  

• What is an acceptable level of bias in parameter estimates for meeting 

management objectives for the fishery?  Are biases of 2-6%, as observed in scenarios 2 

and 6 (Figure 4a; Figure 5a), important in terms of our ability to meet management 

objectives for the fishery?  If these biases do thwart the achievement of management 

objectives, then research efforts directed towards reducing them can be justified.  

• Violations of which of the Brownie assumptions have the greatest effects on the 

achievement of management objectives when more than one assumption is violated 

simultaneously?  Research and management efforts should be directed towards taking 
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these assumptions into account.  These assumptions can be identified by quantifying the 

rank order of importance of assumptions using additional scenarios that simultaneously 

violate various combinations of assumptions as described in section 4.1. 

• What is the effect of uncertainty in the values of simulation parameters driving 

the scenarios on the ability to meet management objectives?  For example, fishing 

mortality parameters were estimated to within 2% in the emigration scenario (scenario 6 

– Figure 4a).  I assumed a constant emigration rate (3% per month) in this scenario.  If a 

range of emigration rates were tested, at what threshold rate would management 

objectives be seriously compromised?  Is that threshold rate plausible for sablefish?  

Investigation of these questions will indicate whether the observed biases were due to 

violations of particular assumptions or to the specific parameter values used in Table 2, 

and whether these simulation parameter values are important from a management 

standpoint. 

• What is the value of information gained by incorporating different indices, and 

how does this offset the costs of data collection for each of these indices?  The value of 

information gained by including the survey CPUE index can be quantified by measuring 

the increased extent to which management objectives are met when the survey CPUE 

data are included, as compared to when only the Brownie tag recovery data are used.  If 

management objectives have been specified in such a way that the value of information 

can be quantified in monetary terms, then it can be compared with the costs of collecting 

the survey CPUE data. 
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APPENDIX A – DETAILS OF THE SIMULATION MODEL  

The purpose of this appendix is to specify in detail the dynamics of the simulation 

model.  The notation used is as follows.  Vulnerability states are “vulnerable” (V ) and 

“invulnerable” (V ′ ).  Tagging states are “tagged” ( G ) and “untagged” ( G′ ).  Indices 

relating to vulnerability and tag state are superscripted, while time-related indices (month 

of tag release v and current month t) are subscripted.  The release month v is set to 0 for 

untagged fish. 

A.1 Initialization 

The number of fish in each vulnerability and tagging state at the start of the 

simulation are defined in equations A.1 through A.6.  Let ab
vtN  represent the number of 

fish in each vulnerability state a, tagging state b, release month v, and monthly time step 

t.  At the first time step (month t = 1), the total number of fish, ••

•1N , is initialized to a 

deterministic unfished equilibrium among stock production, natural mortality, and 

emigration:  

(A.1) 
κ

ρ
+−

=••

• S
N

11  , 

where ρ  is average number of new fish added each month (“production”), S  is the 

proportion of fish surviving natural mortality each month, and κ  is the proportion of fish 

emigrating each month. 
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••

•1N  is divided between the vulnerable and invulnerable states according to an 

unfished equilibrium between the two vulnerability states, where VP is the proportion of 

total fish that is vulnerable: 

(A.2) ••

•

•

•
= 11 NPN VV . 

 

The value of VP  is determined by the proportional rates of exchange between the two 

vulnerability states ( VV ′→θ  and VV →′θ ) (see Appendix B).  The remaining fish are 

allocated to the invulnerable state ( GVN ′′
01 ) in equation A.3.  Note that all invulnerable fish 

are initially untagged: 

(A.3) •

•

••

•
−=′′ VGV NNN 1101 . 

 

Equation A.4 makes it explicit that there are no invulnerable tagged fish at time t = 1 

( GVN ′
11 ): 

(A.4) 011 =′GVN . 

The initial number of vulnerable tagged fish for a tagging cohort released in 

month v = 1 ( VGN11 ) is the number of tagged fish released in month v = 1 ( 1ℜ ) that remain 

after some proportion γ is lost to initial tag shedding and tagging-induced mortality: 

(A.5) γ111 ℜ=VGN . 

Finally, the vulnerable fish left after tagging are allocated to the vulnerable 

untagged state ( GVN ′
01 ): 

(A.6) VGVGV NNN 11101 −= •

•

′ . 
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A.2 State Dynamics ( Tt ≤≤2 , 11 −≤≤ tv ) 

I simulated population dynamics to generate the number of fish in each 

vulnerability and tagging state for each month t from t = 2 to t = T, where T was set to 

156 to represent the simulated population for 13 years from 1991 through 2003.  The 

number of new fish ( tρ ) in each month t of the simulation were pre-specified as input 

parameters to the simulation model, and were set equal to monthly production estimates 

from Haist et al. (2005).  The following processes comprise the population dynamics in 

each month t: the release of newly tagged fish, natural mortality, fishing mortality, 

emigration, tag shedding, exchange between vulnerable and invulnerable states, and stock 

production (addition of new fish to the population) (Figure A.1).   

 

Figure A.1: Assumed timeline and order of processes taking place in each time step t. 

 

 

 
 

Equations A.7 through A.10 describe the number fish present at the beginning of 

month t in each of the following states, respectively: invulnerable untagged ( GV
tN ′′

0 ), 

vulnerable untagged ( GV
tN ′

0 ), invulnerable tagged ( GV
jtN ′ ), and vulnerable tagged ( VG

jtN ).  

time 
t 1t +

Application of 
new tags to 
vulnerable 
untagged fish 

Natural mortality 
and fishing 
removals 

Emigration 

Tag shedding 

Transfer between 
vulnerable and 
invulnerable 
states 

Production 

••
vtN ••

+1,tvN
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These numbers are calculated sequentially by applying the processes shown in Figure 

A.1.  Equations A.7 and A.8 describe the monthly state dynamics of untagged fish 

( Gg ′= ), while equations A.9 and A.10 describe the dynamics of tagged fish ( Gg = ).     

(A.7) ( ) 111101100 )1()1()1()1( −−−
′

−−
′→′′

−
→′′′ ++−ℜ−−+−−= tt

V
t

GV
tt

VVGV
t

VVGV
t IPSNuSNN ρκθκθ  

(A.8) ( ) 11101100 )1()1()1)(1()1( −−
′

−−
′→′′

−
→′′ −+−ℜ−−−+−= t

V
t

GV
tt

VVGV
t

VVGV
t IPSNuSNN κθκθ  

(A.9) δκθδκθ )1()1()1()1( 111 −−+−−= −−
′→′

−
→′′ SNuSNN VG

vtt
VVGV

vt
VVGV

vt  

(A.10) δκθδκθ )1()1)(1()1( 111 −−−+−= −−
′→′

−
→′ SNuSNN VG

vtt
VVGV

vt
VVVG

vt . 

The additional symbols in these equations are: tu , the exploitation rate in month t; tℜ , 

the number of tags released in month t; and δ , the fraction of fish retaining tags each 

month. 

Not all of the processes shown in Figure A.1 are applicable to all states of fish in 

every month.  For example, new fish ( ρ ) are only added to the invulnerable untagged 

state (equation A.7).  I specified all stock production to be added in January of each year 

by setting tρ  = 0 for all months where t was not January.  New fish join the population as 

invulnerable, untagged individuals (equation A.7); thus, I assume that all new fish are 

invulnerable.  For example, they might by small enough to squeeze through the escape 

rings in sablefish traps, thus being invulnerable to trap gear.  New fish ultimately become 

vulnerable through exchange between the vulnerable and invulnerable states.   

Tag shedding reduces the number of fish in the tagged state according to δ , the 

proportion of fish retaining tags each month (equations A.9 and A.10).  I assumed that the 

number of fish that lose tags and rejoin the untagged state is negligible with respect to the 
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size of the untagged population.  Thus, equation 10 does not include any terms for the 

contribution of untagged fish that were previously tagged but became untagged through 

the tag shedding process. 

Fish that are newly tagged in the current month tv =  ( tℜ ) are added to the 

tagged population according to equation A.11:   

(A.11) ⎥
⎦

⎤
⎢
⎣

⎡
ℜ

=⎥
⎦

⎤
⎢
⎣

⎡ ′

γtVG
vt

GV
vt

N

N 0
 . 

The model assumes that all newly tagged fish are vulnerable, so GV
jtN ′  is assigned 0.  The 

number of newly tagged fish that remain after initial tag shedding and tagging-induced 

mortality (γ ) is assigned to VG
jtN .  The processes depicted in Figure A.1 are applied to 

newly tagged fish in the next time period, in equations A.9 and A.10.  Thus, I assume that 

newly tagged fish do not experience natural mortality, emigration, transfer between 

vulnerability states, or fishing mortality in the time period that they are tagged. 
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APPENDIX B – ASSUMPTION OF EQUILIBRIUM 
BETWEEN VULNERABLE AND INVULNERABLE STATES 

The purpose of this appendix is to derive an equilibrium between the vulnerable 

and invulnerable states.  Assume a dynamic system composed of fish that are either 

vulnerable to fishing gear or invulnerable to it.  Let invulnerable fish become vulnerable 

at an instantaneous rate k1, and let vulnerable fish become invulnerable at an 

instantaneous rate k2. 

 

At equilibrium, the rates of change between the two states are equal.  That is,  

(B.1) 21 kNkN VV =′ , 

where VN ′  and VN  are the total number of invulnerable and vulnerable fish, respectively.  

Since N, the total number of fish in the population, is 

(B.2) VV NNN += ′ , 

we can rewrite B.1 as 

(B.3) 21)( kNkNN VV =− . 

Solving for VN , 

(B.4) N
kk

k
N V

21

1

+
= . 

Invulnerable Vulnerable 
k1 

k2 



 

 62

Thus, the proportion of total fish, N, that are vulnerable to the fishery ( VP ) is: 

(B.5) 
21

1

kk
k

PV

+
= . 

The monthly proportions of invulnerable fish becoming vulnerable ( VV →′θ ) and of 

vulnerable fish becoming invulnerable ( VV ′→θ ) can be expressed in terms of the 

instantaneous rates k1 and k2 using equations B.6 and B.7: 

(B.6) 11 kVV e−→′ −=θ ; 

(B.7) 21 kVV e−′→ −=θ . 

Solving for k1 and k2, 
 
(B.8)    ( )VVk →′−−= θ1ln1  and 
 
(B.9)    ( )VVk ′→−−= θ1ln2 .  
 
 
Substituting B.8 and B.9 into B.5 and dividing by -1, the proportion of vulnerable fish is 
 

(B.10)     
( )

( ) ( )VVVV

VV
VP ′→→′

→′

−+−
−

=
θθ

θ
1ln1ln

1ln
. 

 
The proportion of invulnerable fish VP ′  is  
 
(B.11)    VV PP −=′ 1 . 
 
 
In scenario 3, when 9.0=→′ VVθ  and 1.0=′→VVθ  (Table 2), VP = 0.956 and VP ′ = 0.044. 
 
In all other scenarios, 99999.0=→′ VVθ  and 00001.0=′→VVθ  (Table 2).  Accordingly, 

VP = 0.9999991 and VP ′ = -7108.69 × . 
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Figure 1: Simulated data from 500 Monte Carlo simulations of a “realistic” scenario (scenario 8) 
in which no assumptions of the Brownie model are met (except 4 and 7) (box plots), plotted along 
with (a) true BC sablefish landings (open circles), and (b) survey CPUE data (open circles) reported 
by Haist et al. (2005).   
Box plots of simulated catch are extremely narrow because stochastic catches of tagged fish come 
from a binomial distribution with very large N  and thus have a low variance (equation 4), and 
catches of untagged fish are deterministic in the simulator.  The bottom and top of the boxes indicate 
the first and third quartiles of the estimates over 500 trials, while the heavy central lines indicate the 
median estimate.  The whiskers extend 1.5 times the inter-quartile range.   
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