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Abstract

Understanding how environmental forcing governs the productivity of marine and anadromous
�sh populations is a central, yet elusive, problem in �sheries science. In this thesis, I use a cross-
system comparative approach to investigate how environmental forcing pathways could link cli-
matic and ocean processes to dynamics of Paci�c salmon (Oncorhynchus spp.) populations in the
Northeast Paci�c Ocean. I begin by showing that phytoplankton phenology and ocean current pat-
terns are both strongly associated with inter-annual changes in salmon productivity, suggesting
that two alternative environmental pathways may contribute to changes in salmon productiv-
ity: one mediated by vertical ocean transport and subsequent phytoplankton dynamics and the
other mediated by horizontal ocean transport and subsequent advection of plankton into coastal
areas. The relative importance of these pathways, however, may vary over large spatial scales
because the magnitude and direction of the estimated environmental e�ects on productivity were
conditional on the latitude of juvenile salmon ocean entry. I then use a probabilistic network
modeling approach to show that changes in climatic and ocean processes can impact salmon pro-
ductivity via multiple concurrent environmental pathways, including multiple pathways origi-
nating from the same climatic process. Finally, I use policy analysis to demonstrate why e�orts
to integrate highly migratory species, such as Paci�c salmon, into ecosystem-based management
policies need to explicitly account for mismatches between the scale of ecosystem services pro-
vided by these species and the scale at which human activities and natural processes impact those
services. Collectively, my thesis provides empirical evidence that accounting for spatial hetero-
geneity and the relative importance of simultaneously operating environmental pathways may be
critical to developing e�ective management and conservation strategies that are robust to future
environmental change.

Keywords: Paci�c salmon; population dynamics; productivity; environmental change; spatial
non-stationarity; ecosystem-based management
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Chapter 1

Introduction

Environmental forcing can have profound impacts on ecosystem services generated by marine and
coastal ecosystems. Yet, fundamental uncertainties about the connections among climate patterns,
physical and biological oceanographic processes, and productivity1 of higher-trophic-level species
limit our ability to anticipate or quickly detect impacts of changing environmental conditions on
commercially valuable species. These uncertainties contribute to risks that have implications for
conservation, harvest management, and users of living marine resources. E�ectively reducing
uncertainties about the links among di�erent ecosystem components requires a quantitative un-
derstanding of how perturbations in large-scale climatic and atmospheric conditions propagate to
regional and local scale changes in the population dynamics of exploited species. In this thesis, I
aim to add to that quantitative understanding by applying a cross-system comparative approach
to examine environmental forcing pathways linking climatic and ocean processes to dynamics of
Paci�c salmon (Oncorhynchus spp.) populations in the Northeast Paci�c Ocean.

1.1 Large-scale environmental change

Environmental change in marine and coastal ecosystems can arise from anthropogenic sources
or natural environmental stochasticity and can manifest as gradual or abrupt changes in mean
conditions or changes in the frequency or distribution of extreme events (Jentsch et al. 2007). For
example, gradual changes in climate systems over the past �ve decades due to increased carbon
dioxide concentrations in the atmosphere have resulted in warmer mean atmosphere and ocean
temperatures, decreased snow and ice pack, rising sea levels, changes in precipitation patterns, in-
creased ocean acidi�cation, and increased frequency of extreme temperature events (IPCC 2013).

1Throughout this thesis, the term productivity refers to the per capita growth rate for a population. For Paci�c
salmon, productivity is estimated as the number of recruits produced per spawner.

1



CHAPTER 1. INTRODUCTION 2

The inter-decadal rate of change for many of these abiotic ecosystem components is unprece-
dented, with equally rapid changes also being observed for biological processes including shifts in
phenology, species distributions, and �sh stock productivity (IPCC 2013; Taylor 2008; Pinsky et al.
2013; Peterman and Dorner 2012).

Concurrent with climate and ecosystem changes from anthropogenic forcing are changes
resulting from natural climate variability. In the Northeast Paci�c, large-scale climate patterns,
e.g., the Paci�c Decadal Oscillation and North Paci�c Gyre Oscillation, at least partially control
the dynamics of marine and coastal ecosystems. Fluctuations in these patterns, often referred to
as regime shifts, can substantially alter the structure and function of ecosystems that comprise the
Northeast Paci�c (Chavez et al. 2003). For instance, a rapid ecological shift occurred in the North-
east Paci�c in response to a climatic regime shift in 1976/1977 (i.e., the Paci�c Decadal Oscillation
shifted from a “cool regime” to a “warm regime”), which resulted in a taxonomic reorganization
in the Northeast Paci�c, where the abundances of wild adult sockeye salmon (O. nerka) and pink
salmon (O. gorbuscha) increased by more than 65% (Ruggerone et al. 2010; Anderson and Piatt 1999;
Mueter and Norcross 2000).

For Paci�c salmon, e�ects of environmental change due to perturbations in large-scale cli-
matic conditions are mainly hypothesized to in�uence survival of pre-recruit life stages. In partic-
ular, the �rst year of marine residency for Paci�c salmon is considered a critical period; mortality
during this life-stage can have a disproportionately large a�ect on overall stock productivity com-
pared to other life-stages (Parker 1968; Peterman 1985; Beamish and Mahnken 2001; Wertheimer
and Thrower 2007). Although both bottom-up2 and top-down3 forcing likely contribute to mor-
tality during this critical period, two pieces of evidence suggest that processes controlling food
resource availability are particularly important. First, juvenile salmon mortality during the early
marine life-stage is size selective, with larger juveniles tending to survive to adult life-stages in
higher proportions than smaller juvenile salmon (Parker 1971; Holtby et al. 1990; McGurk 1996;
Moss et al. 2005; Howard et al. 2016). Second, growth rates during the early marine life-stage
are strongly and positively associated with overall marine survival rates (Cross et al. 2008; Du�y
and Beauchamp 2011; Farley et al. 2007b). Together, this evidence suggests that large-scale climatic
perturbations likely have a strong impact on Paci�c salmon year class strength through bottom-up
forcing pathways (Perry et al. 1996; Armstrong et al. 2005).

2The term ‘bottom-up forcing’ is used throughout this thesis to describe regulation of ecosystem structure and
function through processes that a�ect the base of the food chain, such as nutrient supply and primary production.

3The term ‘top-down forcing’ is used throughout this thesis to describe regulation of ecosystem structure and func-
tion occurring through predation.



CHAPTER 1. INTRODUCTION 3

1.2 Environmental forcing pathways

A prevailing bottom-up forcing hypothesis in marine ecosystems posits that vertical ocean trans-
port processes mediate the e�ects of climate variability on phytoplankton dynamics in coastal
ecosystems and subsequently, food resource availability for juvenile Paci�c salmon (Fig. 1.1; Di Lorenzo
et al. 2013b; Rykaczewski and Checkley 2008; Ware and Thomson 1991). In particular, atmospheric
and ocean processes controlling water column stability and the near surface nutrient supply are
frequently cited as key elements driving phytoplankton dynamics in coastal Northeast Paci�c
ecosystems (Henson 2007; Gargett 1997). For example, in coastal upwelling areas, winds drive
surface waters o�shore through Ekman dynamics, causing nutrient rich subsurface water to up-
well into the euphotic zone, providing necessary nutrients for primary production (Huyer 1983). In
turn, this primary production provides grazing opportunities for copepods and other zooplankton,
which are a critical food resource for juvenile Paci�c salmon during their early marine residency
(Armstrong et al. 2008; Beauchamp et al. 2007; Brodeur et al. 2007a). Over the past two decades,
considerable evidence has indicated strong connections between climate variability, vertical ocean
transport processes, and phytoplankton dynamics (Chenillat et al. 2012; Polovina et al. 1995; Hen-
son 2007; Henson and Thomas 2007; Stabeno et al. 2004; Weingartner et al. 2002). However,
postulated relationships between lower-trophic-level processes (e.g., phytoplankton dynamics in
coastal ecosystems) and productivity of Paci�c salmon populations largely remain untested as-
sumptions. In chapter 2, I investigate the vertical transport hypothesis by asking whether the
phenology or intensity of the spring phytoplankton bloom can explain inter-annual variability in
productivity of 27 North American pink salmon stocks.

Recently, evidence for an alternative bottom-up forcing pathway has emerged, suggesting
that horizontal ocean transport may be as important as vertical transport in mediating the e�ects
of climate variability on higher-trophic-level species (Di Lorenzo et al. 2013b). This horizontal
transport hypothesis proposes that the quantity (or quality) of food resources available to juve-
nile salmon in coastal ecosystems is driven by climate-induced changes in horizontal transport
processes, e.g., ocean currents or eddies, that cause zooplankton or other weakly/passive drifters
to be advected into or out of coastal areas (Fig. 1.1). For example, o� the central Oregon Coast,
research has indicated that the negative phase of the Paci�c Decadal Oscillation is associated with
increased advection of large-bodied lipid-rich zooplankton into the region from northern areas,
which in turn is associated with increased marine survival of coho salmon (O. kisutch; Keister
et al. 2011; Bi et al. 2011a). Beyond the Northern California Current area, however, the e�ects of
variability in horizontal ocean transport on Paci�c salmon productivity are largely untested. In
chapter 3, I investigate the horizontal transport hypothesis by examining the e�ects of two modes
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Climate processes
PDO, NPGO, ENSO

Horizontal transport
along-shore and cross-shelf,

currents, eddies

Vertical transport
upwelling, wind mixing, 

tidal mixing, stratification

Lower-trophic-level processes
primary and secondary production, 

zooplankton composition

Higher-trophic-level processes
growth rates, abundance, productivity

Figure 1.1: Schematic of two environmental forcing pathways linking large-scale cli-
mate patterns, ocean processes, and higher-trophic-level species.
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of variability in horizontal ocean transport in the Northeast Paci�c on productivity of 163 North
American pink, chum (O. keta), and sockeye salmon stocks.

Although the vertical and horizontal transport hypotheses are individually appealing ex-
planations of how climate forcing may downscale to a�ect regional and local scale dynamics of
higher-trophic-level species, these hypotheses are not mutually exclusive and likely have additive
or multiplicative e�ects on salmon productivity. In particular, regional-scale vertical and horizon-
tal transport processes are both hypothesized to mediate the e�ects of large-scale climate vari-
ability on lower- and higher-trophic-level species. Thus, perturbations to climatic systems from
anthropogenic or natural sources may simultaneously in�uence regional-scale vertical and hori-
zontal transport pathways. Indeed, the Paci�c Decadal Oscillation has been shown to in�uence
ocean current patterns in the Northern California Current ecosystem and a�ect the magnitude of
upwelling-favorable winds in the region (Keister et al. 2011; Chhak and Di Lorenzo 2007). Estimat-
ing the cumulative e�ects and relative importance of these simultaneously operating pathways
is likely a necessary component of understanding how environmental change impacts higher-
trophic-level species. In chapter 4, I use a novel quantitative method, probabilistic networks, to
estimate the joint e�ects and relative strengths of these di�erent pathways on productivity of coho
salmon in the Northern California Current.

1.3 Managing for environmental change

A better understanding of how environmental forcing impacts salmon populations is a necessary
but not su�cient condition for maintaining viable and productive salmon stocks. We also need to
develop a parallel understanding of how these impacts interact with other anthropogenic distur-
bances, such as commercial harvesting, and how this information can be incorporated into man-
agement decisions (Link 2002). Increasingly, management of living marine resources is moving
toward ecosystem-based approaches that shift the focus of management from a single species to
maintaining critical components of ecosystem structure and function (Grumbine 1994; Murawski
2007; Long et al. 2015). A necessary element of this shift toward ecosystem-based management
is de�ning boundaries that delimit the spatial extent of the system being managed (Engler 2015;
Ya�ee 1999). However, for highly migratory marine and anadromous �sh species, impacts from
human or natural sources can occur across a continuum of spatial scales that frequently extend
beyond the boundaries of the ecosystem-based management area (Dallimer and Strange 2015). For
example, management actions in locations that are geographically distant from the ecosystem-
based management area, such as decisions to increase commercial harvests, may strongly im-
pact the supply of ecosystem services provided by a migratory species within the bounds of the
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ecosystem-based management area. In chapter 5, I examine challenges associated with integrat-
ing highly migratory Paci�c salmon into regional and local scale ecosystem-based management
policies that arise from mismatches between the scale of management and the biology of Paci�c
salmon and discuss potential strategies to overcome the identi�ed challenges.

1.4 Statement of interdisciplinarity

The research presented in this thesis includes two levels of interdisciplinarity. First is the incorpo-
ration of research ideas, perspectives, and approaches from both oceanography and �sheries. Al-
though both �elds are �rmly rooted in the natural sciences, the research approaches and the types
of questions important to researchers in each �eld have diverged over time (Platt et al. 2007). In
chapters 2–4, I attempt to bring together some of the knowledge and research questions important
to both �sheries scientists and oceanographers. The second level of interdisciplinarity involves a
bridge between the natural and social sciences. One-quarter of the research presented in this the-
sis is focused on this bridging by taking a policy perspective to examine potential strategies to
more e�ectively integrate multi-scale information about natural and anthropogenic disturbances
into ecosystem-based management programs.

1.5 Contributions

I am the sole author of chapters 1 (Introduction) and 6 (Conclusion) and these chapters are written
in the �rst-person singular. Chapters 2–5 are derived from either published manuscripts or sub-
mitted manuscripts with co-authors and these chapters are written in the �rst-person plural. For
each of the chapters deriving from multi-authored manuscripts (chapters 2–5), I am the �rst author
of the work and performed the data analysis and wrote the �rst draft of the text. These chapters,
however, bene�ted greatly from discussions, editing, and comments from the co-authors. The
published versions of these chapters are cited at the beginning of each chapter. The initial ideas
for chapter 2 were developed by me, Randall Peterman, Franz Mueter and Sean Cox. Chapter 3
builds on ideas originally presented in an unpublished manuscript by Randall Peterman, Franz
Mueter, and Brigitte Dorner. The main idea for chapter 4 came out of discussions between Randall
Peterman and me following a presentation on using Bayesian networks for ecological research by
Catherine Michielsens. The ideas presented in chapter 5 were developed by me, Murray Ruther-
ford, and Sean Cox.



Chapter 2

Linking phytoplankton phenology to
salmon productivity along a north-south
gradient in the Northeast Paci�c Ocean1

2.1 Abstract

We investigated spatial and temporal components of phytoplankton dynamics in the Northeast
Paci�c Ocean to better understand the mechanisms linking biological oceanographic conditions
to productivity of 27 pink salmon (Oncorhynchus gorbuscha) stocks. Speci�cally, we used spatial
covariance functions in combination with multi-stock spawner-recruit analyses to model rela-
tionships among satellite-derived chlorophyll-a concentrations, initiation date of the spring phy-
toplankton bloom, and salmon productivity. For all variables, positive spatial covariation was
strongest at the regional scale (0–800 km) with no covariation beyond 1500 km. Spring bloom tim-
ing was signi�cantly correlated with salmon productivity for both northern (Alaska) and southern
(British Columbia) populations, although the correlations were opposite in sign. An early spring
bloom was associated with higher productivity for northern populations and lower productivity
for southern populations. Furthermore, the spring bloom initiation date was always a better pre-
dictor of salmon productivity than mean chlorophyll-a concentration. Our results suggest that
changes in spring bloom timing resulting from natural climate variability or anthropogenic cli-
mate change could potentially cause latitudinal shifts in salmon productivity.

1A version of this chapter appears as Malick, M.J., S.P. Cox, F.J. Mueter, R.M. Peterman. 2015. Linking phytoplankton
phenology to salmon productivity along a north-south gradient in the Northeast Paci�c Ocean. Canadian Journal of
Fisheries and Aquatic Sciences 72:697–708. http://doi.org/10.1139/cjfas-2014-0298.

7
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2.2 Introduction

The dynamics of marine �sh populations are often characterized by large inter-annual and inter-
decadal variability in abundances. For Paci�c salmon (Oncorhynchus spp.), the �rst year of ocean
residence is widely viewed as a critical period that can strongly in�uence stock abundance (Peter-
man 1985; Parker 1968; Wertheimer and Thrower 2007). During this period, climatic and oceano-
graphic conditions are believed to strongly a�ect salmon productivity (i.e., the number of adult re-
cruits produced per spawner), yet the ecological pathways connecting environmental variability to
upper trophic levels of marine food webs are not well understood (Drinkwater et al. 2010; Ottersen
et al. 2010). Evidence suggests that salmon mortality during the early marine life stage is inversely
related to body size, indicating that bottom-up forcing mechanisms that a�ect prey resources may
be an important part of these ecological pathways (McGurk 1996; Du�y and Beauchamp 2011; Far-
ley et al. 2007b).

Several bottom-up forcing mechanisms have been proposed to explain productivity varia-
tion in marine �sh stocks, including salmon (Cushing 1990; Gargett 1997). For example, the “opti-
mal stability window” hypothesis suggests that changes in water column stability may be a critical
component linking changes in large-scale climate patterns and salmon productivity (Gargett 1997).
However, this hypothesis assumes a strong link between phytoplankton dynamics (e.g., productiv-
ity or total biomass) and salmon productivity, which is largely untested beyond a few local-scale
studies (Mathews and Ishida 1989; Chittenden et al. 2010). Accounting for both spatial and tem-
poral variability of lower-trophic-level processes is a key challenge to testing the optimal stability
window hypothesis on large spatial scales.

In the coastal Northeast Paci�c, seasonal biomass of phytoplankton follows a well-known
pattern de�ned primarily by the spring bloom (Henson 2007; Waite and Mueter 2013), which is
mainly driven by large-scale climate patterns combined with regional and local-scale physical
environmental conditions (Sverdrup 1953; Ware and Thomson 1991; Polovina et al. 1995; Henson
2007). In the coastal Gulf of Alaska, the spring bloom initiation date is strongly correlated with the
onset of water column stability, which is at least partially controlled by the strength of the Aleu-
tian Low Pressure system (Henson 2007). In that region, an earlier spring bloom is also associated
with a more intense bloom, suggesting that both the phenology of the spring bloom and over-
all production during the bloom may be important components of bottom-up forcing pathways.
Indeed, features of the spring bloom such as initiation date and total phytoplankton biomass are
correlated with yield and productivity of certain marine �sh populations (Platt et al. 2003; Ware
and Thomson 2005; Koeller et al. 2009).

In this paper, we asked whether the spring bloom initiation date and average chlorophyll-
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a (chl-a) concentrations (a surrogate for phytoplankton biomass) can explain spatial and inter-
annual variability in pink salmon (O. gorbuscha) productivity, which we estimated using spawner-
recruit data for 27 stocks. Establishing a plausible mechanistic link between the spring phyto-
plankton bloom and salmon production �rst requires evidence that the two processes operate at
similar spatial scales; that is, spatial covariation of lower-trophic level processes should approxi-
mately match the spatial scale of covariation observed in the salmon productivity data that they
are being used to explain (Bjørnstad et al. 1999; Koenig 1999). In the Northeast Paci�c Ocean, pro-
ductivity of salmon stocks exhibit spatial synchrony at the scale of 100 to 1000 km (Mueter et al.
2002b) with positive correlations being greatest at distances less than 500 km (Pyper et al. 2005).
Therefore, we hypothesized that features of the spring phytoplankton bloom operate at similar
regional spatial scales as salmon productivity.

We used spatial covariance analyses to determine the spatial extent of synchrony in the
timing of the spring phytoplankton bloom and mean chl-a concentrations along the Northeast Pa-
ci�c coast, as well as to determine the scale of spatial averaging that should be used on data for
these variables. We then used a hierarchical, multi-stock statistical modeling approach to estimate
relationships between pink salmon productivity and inter-annual variability in spring bloom ini-
tiation date, as well as mean chl-a concentration during spring and late summer. Compared to
single-stock analyses, our multi-stock modeling approach can help reduce uncertainty associated
with the biological processes that underpin the dynamics of salmon populations and reduce the
chance of �nding spurious relationships by using di�erent salmon stocks as replicates within the
analysis (Myers and Mertz 1998; Myers et al. 1999).

2.3 Methods

2.3.1 Pink salmon data

We estimated annual indices of productivity (in units of adult recruits per spawner) for 27 wild pink
salmon stocks from British Columbia (B.C.) and Alaska (AK) using data on spawner abundance and
total recruitment (catch plus escapement). The 27 spawner-recruit data sets (Table 2.1) represent
aggregations of escapement and catch of adjacent salmon stocks. The aggregation helped ensure
that catches were attributed to the correct spawning stocks and was primarily based on jurisdic-
tional management units, although in some cases aggregation occurred at a larger scale because of
di�culty allocating catch into individual management units (e.g., Prince William Sound). Hatch-
ery returns were excluded from all estimates of catch and escapement. Estimation methods for
spawner abundances varied among stocks, but in general, southern stocks (B.C.) were estimated
using expansions of foot surveys, while northern stocks (AK) were estimated using expansions of
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aerial surveys (personal communication from data sources listed in footnotes of Table 2.1). Annual
recruitment varied widely among stocks with long-term averages ranging from 0.12 million pink
salmon for Chignik Bay to 33.31 million for southern southeast Alaska (Table 2.1).

Table 2.1: Summary of pink salmon stock-recruit data sets. Brood years indicate the
temporal range of spawning years; N is the number of non-missing years within that
range; R is the annual average recruitment (catch plus escapement) in millions across
all brood years; S is the average number of spawners in millions across all brood years;
α and β are maximum likelihood estimates of the intercept (i.e., stock productivity at
low spawner abundances) and slope (i.e., density-dependent e�ect), respectively, of
the single-stock Ricker models (eq. 2.1).

Stock #a Jurisdiction Stock Brood years N R S α β

1 BC Southern BCb 1953-2008 56 2.02 1.09 0.90 -0.49
2 BC Statistical Area 9 1980-2008 29 0.46 0.41 0.13 -0.50
3 BC Statistical Area 8 1980-2008 29 3.28 2.36 0.36 -0.19
4 BC Statistical Area 7 1980-2008 29 0.53 0.38 0.50 -1.05
5 BC Statistical Area 6 1980-2008 29 2.76 1.33 0.45 -0.01
6 BC Statistical Area 5 1982-2008 27 0.45 0.31 0.79 -1.28
7 BC Statistical Area 4 1982-2008 27 5.93 2.57 1.19 -0.29
8 BC Statistical Area 3 1982-2008 27 1.50 0.80 1.31 -0.78
9 AK S SEAKc 1960-2008 49 33.31 13.47 1.15 -0.02
10 AK N SEAK Outsided 1960-2008 49 3.98 2.37 1.31 -0.17
11 AK N SEAK Insidee 1960-2008 49 16.48 7.62 1.21 -0.05
12 AK Prince William Sound 1960-2009 50 10.12 4.40 0.95 -0.06
13 AK S Cook Inletf 1976-2009 34 0.13 0.09 0.98 -10.67
14 AK Outer Cook Inletg 1976-2009 34 0.53 0.23 1.36 -2.30
15 AK Kamishak Districth 1976-2009 34 0.38 0.32 1.15 -2.82
16 AK Afognak District 1978-2009 32 1.85 0.75 2.69 -2.38
17 AK Westside Kodiak 1978-2009 32 10.00 4.13 1.20 -0.06
18 AK Alitak District 1978-2009 32 3.14 1.58 1.65 -0.61
19 AK Eastside Kodiak 1978-2009 32 4.47 2.16 0.68 -0.02
20 AK Mainland Kodiak 1978-2009 32 1.84 1.36 1.16 -0.77
21 AK Chignik Bay 1962-2009 43 0.12 0.03 1.15 -6.49
22 AK Central Chignik 1962-2009 48 0.32 0.17 1.12 -1.68
23 AK Eastern Chignik 1962-2009 48 0.64 0.50 0.73 -0.98
24 AK Western Chignik 1962-2009 48 0.48 0.16 1.57 -2.97
25 AK Perryville 1962-2009 48 0.32 0.15 1.37 -8.73
26 AK AK Peninsulai 1962-2009 48 4.94 1.76 1.55 -0.29
27 AK SW Unimak 1962-2009 48 2.05 0.83 1.37 -0.64
Continued on next page . . .
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Table 2.1 Continued.
a Sources of data by stock number: 1: Pieter Van Will, Fisheries and Oceans Canada (DFO), Port Hardy,

BC; 2–8: David Peacock, DFO, Prince Rupert, BC; 9–11: Steve Heinl, Alaska Department of Fish and
Game (ADFG), Ketchikan, AK and Piston and Heinl (2011); 12: Steve Mo�tt, ADFG, Cordova, AK;
13–15: Ted Otis, ADFG, Homer, AK; 16–20: Matt Foster, ADFG, Kodiak, AK; 21–25: Charles Russell,
ADFG, Kodiak, AK; 26–27: Matt Foster, ADFG, Kodiak, AK.

b Includes statistical areas 11–16; Excludes Fraser River
c Includes districts 101–108
d Includes districts 109–112, 114, 115
e Includes district 113
f Sum of Humpy Creek and Seldovia Bay data sets
g Sum of Port Chatham, Port Dick, Rocky River, Windy Creek, and South Nuka data sets
h Sum of Bruin River, Sunday Creek, and Brown’s Peak Creek data sets
i Sum of Southeast and Southcentral districts data sets

2.3.2 Chlorophyll-a data

We used satellite-derived chl-a concentration estimates (measured as mg m-3) from the Sea-viewing
Wide Field-of-view Sensor (SeaWiFS) and the Moderate Resolution Imaging Spectroradiometer
(MODIS-Aqua) from the Goddard Space Flight Center (http://oceancolor.gsfc.nasa.gov). Level-3
processed data were downloaded for 1998–2010 (but only 2003–2010 had complete MODIS data)
in their original 9 km2, 1-day-resolution. We converted the data to a 1◦x1◦ resolution and subsetted
the resulting grid to 46◦–61◦N and 167◦–125◦W, including only grid cells adjacent to the coast (Fig.
2.1). We excluded grid cells in the Bering Sea because all salmon stocks in our data set enter the
ocean in the Gulf of Alaska.

All analyses were performed using 8-day composite chl-a data because these had less miss-
ing data across all years compared to 1-day and 5-day composites (Supporting materials Fig. 2.7).
In addition, the SeaWiFS data set had numerous large gaps during the spring and summer for
years 2008–2010, which made these years of SeaWiFS data unsuitable for our study (Supporting
materials Fig. 2.7). We evaluated the feasibility of concatenating the SeaWiFS and MODIS data sets
into a single continuous data set that would provide an additional three years of data (compared
to using SeaWiFS data alone) by comparing the two data sets over the �rst �ve overlapping years
(2003–2007; Supporting materials 2.7.1). We estimated correlations, root mean squared log10 error
(RMSE), and log10 bias to quantify di�erences between the two chl-a data sets. The SeaWiFS and
MODIS data sets were highly correlated (average correlation of 0.87 across all grid cells). In ad-
dition, over all years and grid cells RMSE (0.16) and log bias (0.012; Supporting materials Fig. 2.8)
were consistent with other studies comparing SeaWiFS and MODIS data products over a similar

http://oceancolor.gsfc.nasa.gov
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study region (Waite and Mueter 2013). Based on these minimal di�erences, we concatenated the
SeaWiFS (1998–2002) and MODIS (2003–2010) data sets without further processing.
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Figure 2.1: Study area indicating the grid cells used to compute the bloom initiation
date and mean chl-a concentrations (green squares) and the locations of ocean entry
points for the pink salmon stocks (solid black triangles). Solid line indicates break
point identi�ed by the intervention model (see text) between northern and southern
stock groupings.

Inter-annual variability in phytoplankton standing stock and phytoplankton phenology were
quanti�ed using mean monthly chl-a concentration and the spring-bloom initiation date, respec-
tively, which we derived from the 8-day composite chl-a estimates for each grid cell (Fig. 2.1).
We linearly interpolated data points in chl-a time series for each grid cell between gaps less than
3 data points (4.1% of all chl-a data points were interpolated). This procedure was done prior to
estimating annual spring bloom initiation date and mean chl-a concentrations. We estimated the
spring bloom initiation date as the �rst 8-day period in a given year when the chl-a concentration
was more than 5% above the median chl-a concentration of the entire multi-year data set for a
particular grid cell (Siegel et al. 2002; Henson 2007). In addition, we log10 transformed the chl-a
averages to help normalize the chl-a values.

2.3.3 Spatial covariation analysis

We constructed cross-correlation matrices to quantify spatial covariance patterns for (1) pink
salmon stock productivities, (2) spring-bloom initiation dates, and (3) monthly mean chl-a con-
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centrations. For salmon stocks, pairwise correlation coe�cients were computed between time
series of productivity for each of the 27 stocks. For the spring bloom initiation date, correla-
tion coe�cients were computed between each pair of grid cells using time series of the estimated
annual spring bloom initiation date for years 1998–2010. For chl-a concentration, we calculated
correlations across grid cells using time series of the monthly mean chl-a concentration. To ac-
count for potential changes in spatial patterns across seasons, we calculated correlations for chl-a
concentration for each month (February-October) separately.

We estimated annual salmon productivity using residuals from a Ricker spawner-recruit
model, which removed potential within-stock density-dependent e�ects (Pyper et al. 2001; Mueter
et al. 2002a; Ricker 1954). The Ricker model for each stock was of the form,

loдe (Ri,t/Si,t ) = αi + βiSi,t + ϵi,t , (2.1)

where Ri,t is total pink salmon recruits for the ith stock in brood year t , Si,t is the spawning stock
two years earlier, αi is the maximum loge recruits-per-spawner, βi is the coe�cient of density-
dependence, and ϵi,t is the residual.

We �t the Ricker models (eq. 2.1) to two partitions of the data – one including all available
brood years and the second including only brood years 1997–2009 (Table 2.1). The latter partition
corresponds to the years available for the bloom initiation date and chl-a variables. Because juve-
nile pink salmon enter the ocean the year following spawning (i.e., brood year + 1), we o�set the
phytoplankton variables one year to correspond with the ocean entry year for pink salmon (e.g.,
2006 brood year was lined up with 2007 phytoplankton variables).

To test whether spatial covariation was present in each of the variables, we �rst performed
Mantel tests using matrices of the cross-correlations and a matrix of great-circle distance (com-
puted using the haversine formula) between all pairs of grid cells or stocks (Legendre and Legendre
1998; Koenig 1999). Statistical signi�cance of Mantel statistics were determined using randomiza-
tion tests with 1000 permutations. We then determined the spatial scale of covariation for each
signi�cant Mantel test by �tting a smooth non-parametric covariance function (Bjørnstad and
Falck 2001) between the correlation coe�cients for a given variable and the distance separating
correlated grid cells or ocean-entry points of salmon stocks. Con�dence intervals (CI) for each
covariance function were computed by bootstrapping the estimation procedure 1000 times.

Covariance functions were summarized using two distance metrics: (1) the y-intercept of
the covariance function, which provides an estimate of the correlation at zero distance (CZD), and
(2) 50% correlation scale (D50). The CZD was estimated by extrapolating the �tted covariance
function to zero distance to �nd the y-axis intercept. The D50 was estimated as the distance at
which the covariance function falls to 50% of its observed maximum value, which provides a useful
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metric of how much the correlation declines with increasing distance between salmon stocks or
grid cells (Mueter et al. 2002b).

2.3.4 Salmon productivity models

We used a combination of single-stock linear models and multi-stock linear mixed-e�ects models
to investigate relationships among temporal averages of mean chl-a concentrations (spring and
late summer), spring bloom initiation date, and pink salmon productivity. The single-stock model
analysis had two purposes. First, we used the values of �tted coe�cients for di�erent stocks to
inform construction of the multi-stock models and to help evaluate the multi-stock model assump-
tions. Second, we used the single-stock analysis along with intervention analyses to break up the
data sets spatially to provide the best �ts of the multi-stock models. For both single-stock and
multi-stock models, only pink salmon brood years 1997–2009 were used.

The bloom initiation date and both chl-a covariates included in the models represented spa-
tial and temporal (for chl-a) averages of conditions experienced by juvenile pink salmon during
their early marine life phase. The bloom initiation covariate was calculated for each salmon stock
as the average of grid cell speci�c anomalies (i.e., a grid cell’s value minus the long term mean
for that grid cell) over all grid cells whose centers were within 250 km of the stock’s ocean en-
try point. For chl-a, we calculated April–May averages to capture variability in phytoplankton
biomass during the spring bloom and July–September averages to index chl-a variability during
the late summer, which is believed to be a critical period for juvenile salmon survival (Beamish
and Mahnken 2001; Moss et al. 2005). For both time periods, we �rst averaged chl-a values over
the speci�ed months for each grid cell and then averaged over all grid cells within 250 km of the
stock’s ocean entry point.

Single-stock models

The single-stock Ricker models took the form (Adkison et al. 1996),

loдe (Ri,t/Si,t ) = αi + βiSi,t + γiXi,t+1 + ϵi,t , (2.2)

where Si,t is spawner abundance of pink salmon in brood year t for the ith stock, Ri,t is the total
recruitment resulting from Si,t , αi indicates stock productivity at low spawner abundances, βi
indicates the magnitude of density-dependence, Xi,t+1 is a stock-speci�c measure of either the
spring bloom initiation date or mean chl-a concentration (the latter for either the spring or late
summer), γi is the coe�cient for either the stock-speci�c bloom initiation date or mean chl-a, and
ϵi,t ∼ N (0,σ 2) is an independent and identically distributed residual term.
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Environmental variables such as sea surface temperature could have opposite e�ects on
northern and southern pink salmon stocks (Mueter et al. 2002a; Su et al. 2004); therefore we used
an intervention model with two means (Chat�eld 2004; Mueter et al. 2002a) to test for di�erences
in the e�ect of the bloom initiation date and chl-a concentration between northern and southern
stocks (Chat�eld 2004; Mueter et al. 2002a). The intervention models were �t to either the esti-
mated chl-a or spring bloom coe�cients from the single-stock models (i.e., γ in eq. 2.2) where the
coe�cients were arranged south to north based on ocean entry locations (i.e., by stock number in
Table 2.1).

Multi-stock models

We used hierarchical, multi-stock models to estimate both regional and stock-speci�c e�ects of
spring and late summer chl-a and the bloom initiation date on pink salmon productivity, while
also accounting for heterogeneity in density-dependence among stocks. The multi-stock mixed
e�ects Ricker models took the form (Myers et al. 1999; Mueter et al. 2002a),

loдe (Ri,t/Si,t ) = α + ai − βiSi,t + Xi,t+1(γX + дi ) + ϵi,t , (2.3)

where the �xed intercept α is the overall mean productivity common to all stocks and ai is the
stock-speci�c deviation from that mean, βi is the �xed stock-speci�c density-dependent e�ect,
Xi,t+1 represents either the spring bloom initiation date or mean chl-a concentration (either spring
or late summer average), γX is the overall mean e�ect of either the spring bloom initiation date
or mean chl-a concentration, дi is the stock-speci�c deviation from that overall mean for a par-
ticular chl-a variable, and ϵi,t is an independent and identically distributed residual term (i.e.,
ϵi,t ∼ N (0,σ 2)). The stock-speci�c random e�ects ai and дi are assumed to follow a joint normal
distribution with means zero, variances σ 2

a and σ 2
д , and covariance σ 2

aд .
Because the chl-a and bloom initiation variables were moderately correlated (average cor-

relations between stock-speci�c phytoplankton time series ranged from -0.50 to 0.20), the multi-
stock models were �t separately for the bloom initiation date and both chl-a metrics. For the bloom
initiation date and spring chl-a variables, we also �t multi-stock models separately for a southern
stock group (stocks 1–9 in Table 2.1) and a northern stock group (stocks 10–27 in Table 2.1), because
the single-stock analysis and intervention models suggested consistent di�erences in the e�ects
of these variables between northern and southern stock groupings (see Results). For the late sum-
mer chl-a variable, we �t a single model using all stocks because the intervention models did not
indicate a signi�cant break between northern and southern stock groupings.

In addition to the full models (eq. 2.3) for both chl-a variables and the bloom initiation date,
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we investigated two simpler nested models, (1) eq. 2.3 but without the random chl-a or bloom
e�ect (i.e., дi ), and (2) eq. 2.3 but without either the random or �xed chl-a or bloom e�ect (i.e., дi
and γX , which was the null model). Random e�ect signi�cance was determined using likelihood
ratio (L) tests among the nested models, whereas �xed e�ect signi�cance was tested using F-tests
(Pinheiro and Bates 2000). All reported parameters were estimated using restricted maximum
likelihood methods; however, for model comparisons, parameters were estimated using maximum
likelihood methods to reduce bias (Pinheiro and Bates 2000).

To compare the relative importance of the bloom initiation date and both chl-a variables,
we also calculated the small-sample Akaike Information Criterion (AICC) for all models (Hurvich
and Tsai 1989; Burnham and Anderson 2002). For the models that included late summer chl-
a, which were �t using all 27 salmon stocks, we calculated a single set of AICC values (one for
each nested model). For the models that included either the bloom initiation date or spring chl-a
variables, we calculated two sets of AICC values. First, to compare the relative importance of both
variables within the northern and southern areas, we calculated AICC values for each model �t
to the northern and southern stock groups separately. Second, to compare variable importance
with the late summer chl-a variable, we calculated an AICC value for the combined northern and
southern models. Because northern and southern models for the bloom initiation date and spring
chl-a variables were �t using identical salmon data as the late summer chl-a models, we calculated
a combined northern and southern AICC value for each variable by summing the log-likelihoods
and the number of model parameters. To more easily compare models, we also calculated the
∆AICC, i.e., the di�erence between each individual model’s AICC value and the minimum AICC

value among models. Models within three AICC units of the model with the lowest AICC value
are considered equally plausible (Burnham and Anderson 2002).

2.3.5 Sensitivity analysis

We checked the sensitivity of our results to four assumptions. First, we estimated sensitivity of
the spatial analysis results to an alternative Beverton-Holt stock-recruitment model, loдe (R/S) =
loдe (a) − loдe (1+bS)+ϵ (Beverton and Holt 1957). Second, we checked the sensitivity to the inter-
polation procedure used on the chl-a time series by re-running each analysis using spring bloom
and chl-a values that did not include interpolated data points. Third, we tested our assumption
that the error terms of the multi-stock models were temporally independent by re�tting the mod-
els with �rst-order autocorrelated errors (i.e., ϵi,t = ϕϵi,t−1 + υt , where υt ∼ N (0,σ 2)) and using
likelihood ratio tests to determine the signi�cance. Fourth, because our spawner-recruit data sets
include variability associated with both freshwater and marine life phases, we checked the sen-
sitivity of our results to the source of pink salmon data by comparing each chl-a metric to pink
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salmon marine survival rates for three Alaska hatchery stocks (Armin F. Koernig, Kitoi Bay, and
Port Armstrong) using Pearson correlation coe�cients (see Supporting materials 2.7.2 for details
of the analysis).

2.4 Results

2.4.1 Spatial analysis

Both sets of pink salmon residuals, monthly mean chl-a, and bloom initiation date all showed sig-
ni�cant spatial covariation (P < 0.01 for all Mantel tests). For both sets of pink salmon residuals
(all brood years and recent, satellite-covered years), the nonparametric covariance functions indi-
cated declining positive covariation with increasing distance between ocean entry points of juve-
nile salmon, up to approximately 800 to 1000 km where the functions approached zero correlation
(Fig. 2.2a and b). The estimated D50 was slightly larger for productivity indices �tted using all
available brood years (D50 = 305 km; 95% CI = 218–488 km) than for indices �tted using only brood
years 1997–2009 (D50 = 261 km; 95% CI = 148–628 km), although there was considerable overlap
in con�dence intervals (Figs. 2.2 and 2.3a). Correlations at zero distance (i.e., the y-intercept of the
covariance function) for both sets of productivity indices were considerably less than one (CZD
= 0.51; 95% CI = 0.41–0.62 and CZD = 0.49; 95% CI = 0.28–0.69 for all brood years and 1997–2009
respectively; Fig. 2.3b). Although the nonparametric covariance function for bloom initiation date
had a slightly larger D50 (D50 = 367 km; 95% CI = 235–776 km) than the two salmon productivity
indices, there was considerable overlap in con�dence intervals with both productivity indices (Fig.
2.3a). Correlation at zero distance for the bloom initiation date was also considerably less than one
(CZD = 0.44; 95% CI = 0.33–0.55; Fig. 2.3b).

For monthly mean chl-a concentrations, covariation decayed steeply with increasing dis-
tance over spatial scales of 0–500 km for all months (Fig. 2.4). The D50 was highest (~380 to 430
km) during the winter and spring (February–May) and declined to about 250 km during summer
and fall (June–October), which was similar to the estimated D50 for salmon productivity (Fig. 2.5).
In addition, con�dence intervals for the chl-a D50 for all months overlapped the con�dence inter-
vals for salmon productivity D50s (Fig. 2.5). The CZD for chl-a concentrations ranged from 0.56
in June to 0.76 in April, which was slightly higher than the estimated CZD for the bloom initiation
date and salmon productivity.
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Figure 2.2: Correlograms (pairwise correlations as a function of distance between
location of data pairs) of correlations among salmon productivity indices across all
brood years (top panel), salmon productivity for brood years 1997–2009 (middle
panel), and spring bloom initiation date (bottom panel). Solid curves represent the es-
timated smooth nonparametric covariance function with 95% con�dence band shown
as the blue shaded region. Solid vertical lines indicate the 50% correlation scale (D50).
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Figure 2.3: Comparison of the estimated 50% correlation scale (D50; top panel) and
y-intercept (CZD; bottom panel) for the nonparametric covariance functions �t to
pink salmon residuals using all brood years of data (“Pink all” from Fig. 2.2a), pink
salmon residuals using only brood years 1997–2009 (“Pink short” from Fig. 2.2b), and
initiation date for the spring bloom (from Fig. 2.2c). Dots indicate point estimates for
each metric and vertical lines give 95% con�dence intervals.
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Figure 2.4: Correlograms (pairwise correlations as a function of distance between
location of data pairs) of correlations among grid cells for the monthly mean chl-a
concentrations. Solid curves represent the estimated smooth nonparametric covari-
ance function with the 95% con�dence band shown as the blue shaded region. Solid
vertical lines indicate the 50% correlation scale (D50).
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Figure 2.5: The 50% correlation scale (D50) for chl-a concentration by month. Solid
vertical lines indicate 95% con�dence intervals for each month. Dotted horizontal line
indicates the 50% correlation scale for pink salmon using brood years 1997–2009; the
grey shaded region indicates the 95% con�dence interval for that pink salmon 50%
correlation scale.
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2.4.2 Single-stock models

The single-stock Ricker models indicated that pink salmon productivity was related to the spring
bloom initiation date either positively (15 stocks) or negatively (12 stocks; Fig. 2.6a). The distribu-
tion of model coe�cients (i.e., γ in eq. 2.2) ranged from -0.55 to 0.25 and was asymmetric about
zero with the majority of values between -0.2 and 0.25 (Fig. 2.6d). Productivity of all 9 pink salmon
stocks south of northern southeast Alaska (i.e., stocks 1–9 in Table 2.1) was positively related to
the spring bloom initiation date, whereas productivity of northern stocks was mostly negatively
related (12 of 18 stocks; Fig. 2.6a). The intervention model indicated a signi�cant break (P < 0.05)
in the sign of these relationships near 55.7◦N, which was between the southern southeast Alaska
stock (stock 9) and the northern southeast Alaska outside stock (stock 10; Fig. 2.1).

Pink salmon productivity was also both positively (14 stocks) and negatively (13 stocks)
related to spring chl-a concentrations (Fig. 2.6b) with the coe�cients ranging from -3.4 to 6.0 (Fig.
2.6e). Like the bloom initiation date, the intervention model indicated a signi�cant break (P <
0.05) between stocks 9 and 10 for the spring chl-a coe�cients (Fig. 2.6b). Productivity for all but
two stocks in the southern group had a negative relationship with spring chl-a concentrations,
whereas the northern group had a mix of positive and negative relationships.

For the late summer chl-a variable, productivity was consistently negatively related to chl-
a, with only 4 of the 27 stocks having a positive relationship (Fig. 2.6c). The coe�cients were
approximately normally distributed with the magnitudes ranging from -8.6 to 3.2 with a median
value of -1.9 (Fig. 2.6f). In contrast to the other two phytoplankton variables, the intervention
model did not indicate a signi�cant break in the sign of the coe�cients between northern and
southern stocks (Fig. 2.6c).

The productivity parameters (α ) for the bloom initiation date and both chl-a models were
approximately normally distributed (a requirement for the multi-stock models), but the distribu-
tion of the density-dependent coe�cients (β) had a long left tail (Supporting materials Fig. 2.9).

2.4.3 Multi-stock models

Over all pink salmon stocks we considered, productivity was signi�cantly related to spring bloom
initiation date (northern and southern models), spring chl-a concentrations (southern model only),
and late summer chl-a (γ in Table 2.2), although stock-speci�c di�erences were not signi�cant in
any models. For the bloom initiation date, regional e�ects were opposite in sign for the northern
and southern stock groups (γ in rows 2 and 5 in Table 2.2; Fig. 2.6a), suggesting that salmon
productivity for the southern stock group is higher than average when the bloom is later (positive
coe�cient), whereas productivity is higher than average for the northern stock group when the
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Figure 2.6: Estimates of the e�ects on pink salmon productivity of spring bloom ini-
tiation date (left panels), mean April–May chl-a concentration (middle panels), and
mean July–September chl-a concentration (right panels) from the single-stock and
best-�t multi-stock models. In panels a–c the ordinate gives the stock number, as
de�ned in Table 2.1, solid circles represent the estimated e�ect for either chl-a or the
bloom initiation from the single stock models (i.e., γ in eq. 2.2), and the solid vertical
line gives the estimated region-wide e�ect for either the bloom initiation or chl-a from
a multi-stock model (i.e., γ in eq. 2.3). Based on results from the single-stock analyses,
separate multi-stock models were �t to northern and southern stocks for the spring
bloom and April–May chl-a covariates, which are separated by a solid horizontal line.
Bottom panels d–f show histograms of the spring bloom and chl-a e�ects based on
single-stock models (eq. 2.2) and estimated probability density functions (smooth
curves) of the single-stock model coe�cients for northern and southern stocks.
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bloom is early (negative coe�cient). This result contrasts with those for spring (southern model
only) and late summer chl-a, where the regional e�ect was negative, implying reduced salmon
productivity when chl-a concentrations are higher (γ in rows 6 and 10 in Table 2.2). Furthermore,
the spring bloom initiation date was a better predictor of salmon productivity than mean chl-
a concentration for all subsets of data (i.e., northern stock group, southern stock group, and all
stocks; AICC values in Table 2.2).

Table 2.2: Summary of the best-�t multi-stock Ricker model coe�cients (eq. 2.3). The
Subset column identi�es the stocks included in the hierarchical model (North = stocks
1–9, South = stocks 10–27, and All = stocks 1–27). The Stocks column indicates the
number of stocks used to �t the model; N is the total number of data points across
all stocks used to �t the model; α is the intercept representing average productivity
of pink salmon at low spawner abundance (�xed e�ect; see eq. 2.3); γ is the �xed
e�ect corresponding to either the bloom initiation or mean chl-a concentration (see
eq. 2.3); and SE is the standard error for the �xed-e�ect coe�cients. AICC is the
Akaike Information Criterion, corrected for small sample size.

Subset Covariate Stocks N α SEα γ SEγ AICC ∆AICC
North Null 18 232 1.25** 0.11 566.0 5.6

Bloom Initiation 18 232 1.25** 0.11 -0.12** 0.04 560.3 0.0
Mean Chl-a (Apr–May) 18 232 1.07** 0.16 0.51 0.32 565.7 5.4

South Null 9 108 0.71** 0.15 266.6 13.8
Bloom Initiation 9 108 0.69** 0.15 0.12** 0.03 252.8 0.0
Mean Chl-a (Apr–May) 9 108 1.16** 0.28 -0.87* 0.45 265.4 12.5

All Null 27 340 1.05** 0.10 834.8 22.1
Bloom Initiation 27 340 812.7 0.0
Mean Chl-a (Apr–May) 27 340 830.7 17.9
Mean Chl-a (July–Sept) 27 340 1.65** 0.18 -1.69** 0.43 820.3 7.5

* Signi�cantly di�erent from zero at P < 0.05
** Signi�cantly di�erent from zero at P < 0.01

Estimates of the regional e�ect of the spring bloom initiation date on salmon productivity
were signi�cantly di�erent than zero for both northern and southern multi-stock models (γ in
rows 2 and 5 in Table 2.2), but the models were not signi�cantly di�erent than the full model (eq.
2.3), which included both the regional and stock-speci�c e�ects (L = 0.03, P > 0.1). The estimated
region-wide e�ect of spring chl-a concentrations on salmon productivity of southern stocks and
late summer chl-a on productivity of all stocks were signi�cantly di�erent from zero (γ in rows
6 and 10 in Table 2.2). However, for both models and chl-a variables, there was no evidence of
stock-speci�c e�ects based on likelihood ratio tests comparing the full models to a model without
the random chl-a e�ects (L = 0.001, P > 0.1 for both spring and late summer chl-a). In addition,
for the northern stock group there was no support for either a regional or stock-speci�c e�ect of
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spring chl-a (row 3 in Table 2.2; L = 0.001, P > 0.1).
In both the northern and southern areas, the bloom initiation date had a stronger e�ect on

pink salmon productivity than spring chl-a concentrations as shown by the ∆AICC of 5.4 between
the best �t models for chl-a and the bloom initiation for the northern stock group and 12.5 for the
southern stock group (Table 2.2). The bloom initiation date also had the highest relative impor-
tance (∆AICC = 0) when the northern and southern models were combined with an AICC value
considerable less than late summer chl-a, spring chl-a, and the null model (rows 7–10 in Table 2.2).
Between the two chl-a variables, the late summer chl-a average had a higher relative importance
(i.e., lower AICC value) than the average spring chl-a concentration as indicated by the 10 unit
di�erence between AICC values (rows 9 and 10 in Table 2.2).

2.4.4 Sensitivity analysis

Our estimates of the spatial covariation in pink salmon productivity were not sensitive to the form
of stock-recruit model because residuals from the Ricker and Beverton-Holt models were highly
correlated (average correlation across stocks = 0.97). The D50 and CZD values were nearly identi-
cal between models �t using the Ricker and Beverton-Holt residuals. Similarly, the spatial analyses
were not sensitive to the interpolation of data points in the chl-a time series. Di�erence between
D50 values for the interpolated and non-interpolated spring bloom series was 10 km, with almost
complete overlap of the con�dence intervals. In addition, changes in D50 for monthly chl-a with-
out interpolation values ranged from 0 km to 10 km across months with almost complete overlap
of the con�dence intervals. Coe�cients of the multi-stock Ricker model were also insensitive to
the interpolation of missing data.

The results from the multi-stock models were not sensitive to our initial assumption of un-
correlated errors. Speci�cally, the single-stock models did not indicate strongly autocorrelated
errors, and adding an autocorrelated error term to the best-�t multi-stock models did not signif-
icantly improve the �ts for any of the models, which is consistent with other research on pink
salmon productivity (Pyper et al. 2001). In addition, comparisons between the three chl-a met-
rics and hatchery marine survival rates broadly agreed with the results of the multi-stock models
(Supporting materials 2.7.2 and Fig. 2.10).

2.5 Discussion

We investigated two indices of phytoplankton dynamics, spring bloom initiation date and mean
chl-a concentration, to better understand the potential mechanisms linking biological oceano-
graphic conditions to Paci�c salmon productivity. Our results indicated that (1) spatial covariation
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patterns for the spring bloom initiation date, average chl-a concentration, and pink salmon pro-
ductivity were similar, with strongest positive covariation at the regional scale (0–800 km), (2)
there were opposing e�ects of the spring bloom initiation date on northern and southern pink
salmon stock productivity with an early bloom initiation date being associated with higher north-
ern stock productivity and a late bloom being associated with higher southern stock productivity,
(3) phytoplankton biomass during the late summer (July–September) was more strongly associ-
ated with salmon productivity than phytoplankton biomass during the spring (April–May), and
(4) the spring bloom initiation date was a better predictor of salmon productivity than mean chl-a
concentration for both southern and northern stocks.

Spatial synchrony for all three variables was strongest at regional spatial scales and declined
rapidly with increasing distance. For the bloom initiation date and chl-a concentration, this sug-
gests that physical processes operating on relatively small spatial scales (e.g., summer sea surface
temperature and sea surface salinity) drives the spatial variability, rather than larger-scale atmo-
spheric processes such as the Paci�c Decadal Oscillation (Mueter et al. 2002b). For pink salmon
productivity, our results suggest that both phytoplankton biomass and the bloom initiation date
could be factors driving the regional-scale covariation. Furthermore, the match in spatial syn-
chrony between both phytoplankton variables and salmon productivity supports the inclusion of
these variables in the single-stock and multi-stock models and also lends support for the observed
correlations between pink salmon productivity and both phytoplankton variables.

Spatial correlation of all three variables was less than one at zero distance, indicating the
presence of a “nugget e�ect”, which represents variability due to sampling error or spatial depen-
dence at smaller scales than those sampled (Cressie 1993). For pink salmon productivity, this could
be caused by errors enumerating spawner abundances. For chl-a and the bloom initiation date, the
nugget e�ect may be caused by measurement errors in the chl-a estimates and spatial averaging,
or from the presence of small-scale oceanographic features such as tidal mixing or river plumes
that can lead to large changes in the bloom initiation date and chl-a concentrations over short
distances (< 100 km; Henson 2007). The latter process could reduce the explanatory power of both
phytoplankton variables for salmon productivity because the phytoplankton variables may not
index conditions that salmon actually experience at small spatial scales.

There was a marked reduction in the D50 for monthly chl-a concentrations between May
and June. The winter and spring period (February–May) included months with both the high-
est annual chl-a concentrations (April and May) and the lowest (February and March), whereas
the chl-a concentrations during June–October were relatively constant (Supporting materials Fig.
2.11). These periods correspond to times before the spring bloom (February and March), during
it (April and May), and after it (June–October). Our results also showed that coherence in chl-a
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concentrations following the spring bloom is smaller than prior to and during the bloom, which
may result from di�erent mechanisms underlying the spatial synchrony at di�erent periods. For
example, spatial synchrony before and during the bloom may be primarily driven by regional-scale
physical oceanographic conditions such as sea surface temperature or sea surface salinity (Henson
2007). In contrast, the period after the bloom also tends to correspond to the period of peak zoo-
plankton abundances in the Northeast Paci�c, indicating that chl-a concentrations after the bloom
may be more in�uenced by top-down grazing pressure, as suggested by others (Chittenden et al.
2010; Bornhold 2000; Mackas et al. 2012).

A plausible explanation for the opposite e�ects of the bloom initiation date on productivity
of northern and southern stocks is that the spring bloom initiation date is a surrogate for other
processes that have direct e�ects on salmon productivity such as predator abundances or zoo-
plankton distributions. The dividing line between the northern and southern stocks occurred in
southern southeast Alaska, which falls in the transition zone between the northern downwelling
domain and southern upwelling domain (Ware and McFarlane 1989). In the northern region, the
spring bloom initiation date has been shown to be closely linked to the timing of water column sta-
bility, which is primarily determined by freshwater runo� in the spring (Weingartner et al. 2005;
Henson 2007). Moreover, both stability and the bloom initiation date in the northern domain
tend to occur earlier in warmer, wetter years that are associated with a more intense Aleutian
Low, higher zooplankton biomass, and increased salmon productivity (Brodeur and Ware 1992;
Mueter et al. 2002a). In the southern domain, an earlier spring bloom is also associated with in-
creased water column stability, however, stability in this region is primarily driven by increased
thermal warming and reduced upwelling-favorable winds, both of which are also associated with
a stronger Aleutian Low (Polovina et al. 1995; Henson 2007). In contrast to the northern domain,
these conditions in the south for an early bloom initiation have been shown to be associated with
increased predator abundances, reduced zooplankton biomass, and decreased salmon productivity
(Ware and McFarlane 1995; Mackas et al. 2001; Mueter et al. 2002a).

The optimal stability window hypothesis (Cury and Roy 1989; Gargett 1997) provides an-
other possible explanation for the opposite e�ects of the bloom initiation date on productivity
of northern and southern stocks. This bottom-up forcing mechanism posits that synchronous
changes in water column stability in northern and southern areas, which are driven by strength of
cyclonic circulation in the Gulf of Alaska (Gargett 1997), can lead to out-of-phase salmon survival
rates between the two areas. However, the degree to which our results support the optimal stabil-
ity window hypothesis depends on the extent to which (1) water column stability and the spring
bloom initiation date are linked, (2) water column stability has opposite e�ects on primary pro-
duction in northern and southern regions, and (3) there is a strong positive relationship between
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phytoplankton biomass and salmon productivity. Although the �rst two relationships are beyond
the scope of this research, our results indicate that there is only a weak relationship between
phytoplankton biomass during the spring and salmon productivity and a stronger but negative
relationship between phytoplankton biomass during the late summer and salmon productivity.

The latitudinal shift in the e�ect of the spring bloom initiation date on northern and south-
ern stock productivity corresponds with previous studies that showed opposite e�ects of sea sur-
face temperature on the productivity of northern and southern pink salmon, chum salmon (O. keta),
and sockeye salmon (O. nerka) stocks (Mueter et al. 2002a; Su et al. 2004). In particular, Mueter
et al. (2002a) and Su et al. (2004) indicated that warm sea surface temperatures were associated
with higher pink salmon productivity for northern stocks and lower productivity for southern
stocks with the north/south break occurring near the southern end of Southeast Alaska (~54◦N),
which closely matches the break point we identi�ed for the spring bloom initiation date (~56◦N).
This consistency in the latitude of the north/south break point across studies of di�erent environ-
mental variables further supports the idea that the opposite e�ects are driven by di�erences in
ocean conditions between the northern and southern domains.

It is not clear why a lower late summer chl-a concentration would be associated with greater
salmon productivity, but a possible explanation relates to top-down grazing pressure. Our chl-
a variable represents variability in the phytoplankton standing stock, which can be in�uenced
by both phytoplankton productivity and top-down grazing pressure. Zooplankton grazers in the
Northeast Paci�c at least partially control the standing stock of phytoplankton (Strom et al. 2001;
Frost 1987) and, in turn, are an important food source for juvenile pink salmon (Boldt and Haldor-
son 2003; Armstrong et al. 2005; Beauchamp et al. 2007). If pink salmon do not signi�cantly control
zooplankton abundance, then lower phytoplankton biomass could represent higher zooplankton
abundances available to support higher growth and survival of pink salmon. This hypothesis is
supported by observations in the Strait of Georgia, British Columbia indicating that peak zooplank-
ton biomass (in particular Neocalanus spp.) often coincides with phytoplankton biomass minima
(Bornhold 2000). Furthermore, grazing by zooplankton may also partially explain the weak posi-
tive e�ect of spring chl-a on northern stock productivity and the negative e�ect on southern stock
productivity if the seasonal timing of peak zooplankton biomass follows a north-south gradient
with later peaks in more northern areas. For example, in the north the spring chl-a variable may
index phytoplankton biomass prior to increases in zooplankton biomass, while in the south zoo-
plankton biomass may have already started to increase by the end of May (Mackas et al. 2012).

Mortality of pink salmon in the marine life phase is thought to primarily occur in coastal
environments during the �rst summer in the ocean (Farley et al. 2007a; Parker 1968; Wertheimer
and Thrower 2007). In particular, research on pink salmon in Southeast Alaska and Prince William
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Sound, AK has indicated that a considerable portion of marine mortality occurs in inside waters
prior to salmon migrating to the Gulf of Alaska (Orsi et al. 2013; Farley et al. 2007a). While the ma-
jority of these coastal environments were indexed by our satellite-derived estimates for the spring
bloom initiation date and chl-a averages (Fig. 2.1), there were a few areas that were poorly covered
(e.g., inside Southeast Alaska and the inner coast of Vancouver Island) due to missing satellite data.
For stocks in these areas, we assumed that oceanographic conditions on the outer coast were repre-
sentative of conditions experienced by juvenile salmon during their �rst few months in the ocean.
This assumption is supported by the correspondence of our estimates of the spring bloom initia-
tion date and several studies that estimated the spring bloom start date using in situ observations.
For example, the average estimate for the spring bloom initiation date for the inner SEAK pink
salmon stock group over the years 1998–2009 was the �rst week in April, which matches in situ

observations for the bloom start date in Auke Bay, AK (Ziemann et al. 1991). Likewise, the average
bloom start date for the southern BC stock was the second to third week in March, which matches
in situ observations from the inner coast of Vancouver Island (Chittenden et al. 2010). Because of
this coherence between the satellite estimates and in situ observations, we believe our assumption
about outside waters being representative of coastal environments is valid for our study region.

Although we focused on pink salmon productivity, phenology and biomass of phytoplank-
ton in coastal ecosystems may also be important factors controlling covariation in other salmon
species. For instance, productivity indices of sockeye salmon, chum salmon, and coho salmon (O.
kisutch) also tend to covary at a regional spatial scale with sockeye and coho salmon having the
most similar spatial scales of covariation to that of pink salmon (Mueter et al. 2002b; Teo et al.
2009; Peterman and Dorner 2012). In particular, our results may be most applicable to sockeye
salmon, which tend to feed at a similar trophic level as pink salmon (Johnson and Schindler 2009).

Our results suggest a link between the spring bloom initiation date and pink salmon pro-
ductivity; however, further research is needed to understand the mechanisms underlying this re-
lationship. For example, comparing the potential match/mismatch between salmon out-migration
timing and initiation of phytoplankton and zooplankton blooms could help clarify how phenolo-
gies are coupled across trophic levels. Similarly, research into the relationships between primary
productivity and salmon productivity, as opposed to phytoplankton biomass, would help in under-
standing the importance of the optimal stability window. Our spatial correlation results indicate
that such research should focus on regional-scale processes and avoid correlating large-scale cli-
mate indices with salmon productivity (Mueter et al. 2002a; Peterman and Dorner 2012).

In conclusion, our results suggest that the phenology of bottom-up biological oceanographic
processes are more important for higher trophic level species such as pink salmon than the stand-
ing stock of phytoplankton. This conclusion has important implications as the climate warms. It
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is generally recognized that a warming climate will lead to an earlier onset of spring conditions,
including earlier timing of peak zooplankton biomass and outmigration of pink salmon (Parme-
san and Yohe 2003; Taylor 2008; Mackas et al. 2012). Phenological mismatches could occur across
trophic levels if separate processes do not change in synchrony (Edwards and Richardson 2004),
potentially leading to northward latitudinal shifts in peak pink salmon productivity.
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2.7 Supporting materials

2.7.1 Comparison of SeaWiFS and MODIS chlorophyll-a data products

Lengthy periods of missing data in 2008–2010 for the SeaWiFS chl-a data set made these years
of data unsuitable for calculating an initiation date of the spring bloom (Fig. 2.7). Therefore,
we investigated the feasibility of combining the SeaWiFS and MODIS chl-a data products. We
used Pearson correlation coe�cients between the two time series of log10 transformed data, root
mean squared log10 error (RMSE), and log10 bias (mean of the absolute value of log10 transformed
MODIS chl-a values minus SeaWiFS values) to quantify the covariation and di�erences between
the SeaWiFS and MODIS data sets for the �rst �ve complete years of overlap, 2003–2007 (Gregg
and Casey 2004; O’Reilly et al. 2000; Zhang et al. 2006) . We performed two primary comparisons.
First, to assess the similarities between the data sets across the entire study region and time period,
we calculated the average of each of the three metrics (i.e., correlation coe�cients, RMSE, and
log10 bias) for all grid cells and years. Second, to assess di�erences among years, we calculated the
averages of the RMSE, as well as log10 bias metrics for all grid cells by year.

The average correlation between the MODIS and SeaWiFS chl-a data sets across grid cells
was 0.87, with correlations for individual grid cells ranging from 0.69 to 0.95. The RMSE of the
di�erences between the SeaWiFS and MODIS chl-a data sets over all years and grid cells was 0.16
and annually it ranged from 0.09 in 2007 to 0.22 in 2006 (Fig. 2.8). These RMSE values are slightly
smaller than RMSE values of the di�erences between satellite chl-a estimates and �eld sampled
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chl-a data (RMSE of 0.22; O’Reilly et al. 2000), indicating our RMSE values are within the range of
background noise of the algorithm used to produced the chl-a estimates. The log10 bias of MODIS
data compared to SeaWiFS data over all grid cells and years was 0.012 and annually ranged from
0.04 in 2004 to -0.01 in 2007 (Supporting materials Fig. 2.7) with 79% of absolute di�erences being
less than 0.1 and 90% of di�erences being less than 0.2. These log10 bias values are generally small
di�erences given the estimated chl-a values (Supporting materials Fig. 2.11). In addition, the log10

bias values indicate that the MODIS values are slightly higher than the SeaWiFS values at this
temporal composite and spatial resolution for most years.

Our comparison of the SeaWiFS and MODIS chl-a data products concurs with values re-
ported by other researchers over the same time and a similar region (Waite and Mueter 2013).
Given the strong covariation, low RMSE, and small log10 bias between chl-a data products, we
deemed it appropriate to concatenate the SeaWiFS and MODIS data products for our study region
without further data processing.

2.7.2 Hatchery pink salmon marine survival

To further test the e�ects of the spring bloom initiation date and chl-a concentrations on pink
salmon dynamics, we compared the three chl-a metrics to pink salmon marine survival rates for
three hatchery stocks located around the Gulf of Alaska (Armin F. Koernig, Kitoi Bay, and Port
Armstrong). Marine survival rates for each hatchery stock were estimated for release years 1998–
2010 by dividing the total adult pink salmon returns resulting from juveniles released in year t by
the total number of juvenile pink salmon released into marine waters in year t . To estimate the
association between each of the three chl-a metrics and marine survival, we calculated Pearson
correlation coe�cients between marine survival rates and the spring bloom initiation date, av-
erage April–May chl-a concentration, and average July–September chl-a concentration. Like the
analysis in the main text, each chl-a metric and the spring bloom initiation date were averaged
over all grid cells within 250 km of the ocean release location for each hatchery.

Marine survival rates for all three hatcheries were negatively correlated with the spring
bloom initiation date (Supporting materials Fig. 2.10), which corresponds with our hierarchical
model results that indicated a negative region-wide e�ect of the spring bloom initiation on salmon
productivity for northern stocks. The correlations between marine survival rates and spring chl-
a concentration were mostly positive with two positive correlations and a negative correlation
(Supporting materials Fig. 2.10), which corresponds with the results from our single-stock and
multi-stock models for northern stocks that indicated a weak positive region-wide e�ect. The cor-
relations for the late summer chl-a concentration diverged from our single-stock and multi-stock
model results with two positive correlations and a negative correlation (Supporting materials Fig.
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2.10), however, the correlations were weak for all three hatcheries (less than 0.35 for all hatcheries).
On average, the absolute values of correlations between marine survival and the spring bloom were
higher (average correlation = 0.34) than for the spring chl-a concentration (average correlation =
0.27) and the late summer chl-a concentration (average correlation = 0.23).

Results of the hatchery marine survival analysis broadly agreed with the results from the
single-stock and multi-stock models in the main text. In particular, the hatchery results support
our conclusions that (1) an early spring bloom timing is associated with increased productivity for
northern pink salmon stocks, and (2) the spring bloom initiation date is more strongly associated
with pink salmon productivity than phytoplankton biomass.

2.7.3 Supporting �gures
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Figure 2.7: Percent of all grid cells with missing chl-a data by year (see Fig. 2.1 of the
main text) for SeaWiFS (left panel) and MODIS (right panel) chl-a data. Green line
with closed circles indicates 1-day composites, blue line with �lled squares indicates
5-day composites, and red line with �lled triangles indicates 8-day composites.
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Chapter 3

E�ects of the North Paci�c Current on
productivity of 163 Paci�c salmon stocks1

3.1 Abstract

Horizontal ocean transport can in�uence the dynamics of higher-trophic-level species in coastal
ecosystems by altering either physical oceanographic conditions or the advection of food resources
into coastal areas. In this study, we investigated whether variability in two North Paci�c Cur-
rent (NPC) indices was associated with changes in productivity of North American Paci�c salmon
stocks. Speci�cally, we used Bayesian hierarchical models to estimate the e�ects of the north-
south location of the NPC bifurcation (BI) and the NPC strength, indexed by the North Paci�c
Gyre Oscillation (NPGO), on productivity of 163 pink, chum, and sockeye salmon stocks. We
found that for salmon stocks located in Washington (WA) and British Columbia (BC), both the
BI and NPGO had signi�cant positive e�ects on productivity, indicating that a northward-shifted
bifurcation and a stronger NPC are associated with increased salmon productivity. For the WA
and BC regions, the estimated NPGO e�ect was over two times larger than the BI e�ect for pink
and chum salmon, whereas for sockeye salmon the BI e�ect was 2.4 times higher than the NPGO.
In contrast to WA and BC stocks, we found weak e�ects of both horizontal ocean transport pro-
cesses on productivity of salmon stocks in Alaska. Our results indicated that horizontal transport
pathways may strongly in�uence population dynamics of Paci�c salmon in the southern part of
their North American ranges, but not the northern part, suggesting that di�erent environmental
pathways may underlie changes in salmon productivity in northern and southern areas for the

1A version of this chapter appears as Malick, M.J., S.P. Cox, F.J. Mueter, B. Dorner, R.M. Peterman. E�ects of the North
Paci�c Current on productivity of 163 Paci�c salmon stocks. Fisheries Oceanography. http://doi.org/10.1111/fog.12190.
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species under consideration.

3.2 Introduction

Environmental change can in�uence demographic rates of marine and anadromous �sh popula-
tions through multiple environmental pathways (Ottersen et al. 2010; Drinkwater et al. 2010). It is
often hypothesized that changes in atmospheric and physical ocean conditions in�uence higher-
trophic-level species via bottom-up forcing that is mediated by vertical ocean transport (Malick
et al. 2015b; Di Lorenzo et al. 2013b; Ottersen et al. 2010). For example, upwelling of nutrient-rich
water in coastal areas is often assumed to drive primary and secondary production, which in turn
provide food for higher-trophic-level species (Rykaczewski and Checkley 2008). However, recent
evidence from the California Current (Bi et al. 2011b; Keister et al. 2011; Sydeman et al. 2011) and
Gulf of Alaska (Stabeno et al. 2004; Combes et al. 2009; Kline 2010; Kline et al. 2008) suggests that
bottom-up forcing mediated by horizontal transport (e.g., cross-shore or along-shore transport)
may be equally important for higher-trophic-level species (Di Lorenzo et al. 2013b).

Changes in horizontal ocean transport, such as changes in ocean current patterns, could in-
�uence higher-trophic-level species production by altering foraging conditions. For Paci�c salmon
(Oncorhynchus spp.), feeding conditions and growth rates during the early marine life phase can
strongly in�uence stock productivity (i.e., the number of adult recruits produced per spawner;
McGurk 1996; Farley et al. 2007b; Du�y and Beauchamp 2011; Malick et al. 2011). During this criti-
cal period, juvenile salmon diets are largely composed of zooplankton and other weakly-swimming
or passive drifters (Armstrong et al. 2008; Beauchamp et al. 2007; Brodeur et al. 2007a). There-
fore, changes in ocean currents and subsequent advection of potential prey into coastal areas may
strongly in�uence juvenile salmon prey availability or prey quality.

Indeed, in the Northern California Current region, a large-bodied lipid-rich zooplankton
community is associated with alongshore movement of cooler water from northern areas into the
region, whereas a small-bodied lipid-poor zooplankton community is associated with the move-
ment of warmer water from southern and o�shore areas into the region (Bi et al. 2011b; Keister
et al. 2011). The lipid-rich northern zooplankton community, in particular, is associated with higher
coho salmon (O. kisutch) survival in the Northern California Current region (Bi et al. 2011a), sug-
gesting that horizontal transport may be important for salmon productivity in other regions. In
addition, horizontal transport may also be important for other salmon species, especially pink (O.
gorbuscha), chum (O. keta) and sockeye (O. nerka) salmon, which tend to feed at a lower trophic
level than coho salmon (Brodeur et al. 2007b).

In the Northeast Paci�c Ocean, circulation is at least partially controlled by the North Pa-
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ci�c Current (NPC; Ware and McFarlane 1989; Cummins and Freeland 2007), which �ows approx-
imately along 50◦N from west to east, bifurcating at the west coast of North America into the
northward �owing Alaska Current and the southward �owing California Current (Fig. 3.1a; Ware
and McFarlane 1989; Chelton and Davis 1982). On average, the NPC bifurcates near the latitude
of Vancouver, BC, but the latitudinal position varies annually from southern Southeast Alaska to
southern Washington (Cummins and Freeland 2007; Sydeman et al. 2011). In addition to variabil-
ity in the positioning of the bifurcation, there is also inter-annual variability in the strength of the
NPC, measured as volume of water transported per unit time (Freeland 2006; Cummins and Free-
land 2007). This volume is likely driven by large-scale atmospheric and oceanographic patterns
such as the North Paci�c Oscillation and the North Paci�c Gyre Oscillation (NPGO; Di Lorenzo
et al. 2008).

In this study, we asked whether variability in the NPC can explain inter-annual changes in
productivity of 163 North American pink, chum, and sockeye salmon stocks. Speci�cally, we eval-
uated the relationships between two indices of variability in the NPC and productivity of those
salmon stocks. One NPC index represented inter-annual variability in the north-south position-
ing of the bifurcation and the other represented inter-annual variability in strength. Because the
oceanography of coastal ecosystems in the Northeast Paci�c di�ers among geographic locations,
we evaluated the relationships between salmon productivity and the NPC indices separately for
three large marine ecosystems in the Northeast Paci�c: the west coast of Washington and British
Columbia, Gulf of Alaska, and Bering Sea (Sherman and Duda 1999; Longhurst 1995). We used a
Bayesian hierarchical modeling approach to estimate both stock-speci�c and ecosystem-level ef-
fects of the NPC on salmon productivity, which allowed us to leverage the large number of avail-
able salmon data sets by using the stocks as replicates within the analysis, reducing the chances
of �nding spurious relationships between salmon productivity and the NPC indices (Myers and
Mertz 1998; Thorson and Minto 2015; Mueter et al. 2002a).

3.3 Methods

3.3.1 Salmon data

We used spawner (escapement) and total recruitment data (catch plus escapement) for 163 wild
sockeye (64 stocks), pink (46 stocks), and chum (53 stocks) salmon stocks throughout their North
American ranges (Fig. 3.1). The duration of stock-speci�c data sets ranged from 12 to 56 brood years
(i.e., years of spawning) 1950–2009, with mean time series lengths of 34 years for pink salmon,
33 years for chum salmon, and 38 years for sockeye salmon. For pink and chum salmon, data
sets generally represented aggregations of adjacent salmon populations, which helped ensure that
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Figure 3.1: Study area indicating the ocean entry locations for (a) pink salmon stocks,
(b) chum salmon stocks, and (c) sockeye salmon stocks. Solid circles (red) indicate
stocks located in the West Coast ecosystem; solid squares (blue) indicate stocks lo-
cated in the Gulf of Alaska ecosystem; solid triangles (green) indicate stocks in the
Bering Sea ecosystem. Stocks are numbered consecutively from south to north for
each species. In panel (a), the thick black arrow shows the North Paci�c Current,
which �ows from west-southwest to east-northeast, and the grey arrows show the
bifurcation of the North Paci�c Current into the northward �owing Alaska Current
and southward �owing California Current.
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catch records were properly attributed to the correct spawning population. Details of the data sets
can be found in Peterman and Dorner (2012) and Malick and Cox (2016).

We organized the salmon data sets into three large marine ecosystems based on the ocean
entry locations of each stock. All stocks that enter the ocean along the west coast of Washington
and British Columbia were grouped into the West Coast ecosystem (WC). Stocks entering the ocean
in Southeast Alaska and South Central Alaska were grouped into the Gulf of Alaska ecosystem
(GOA), and Western Alaska stocks were grouped into the Bering Sea ecosystem (BS; Fig. 3.1).
Organization of the salmon data sets into three large marine ecosystems was based on two pieces
of information. First, the underlying oceanographic processes tend to be substantially di�erent
across these regions with the WC ecosystem being primarily an upwelling domain and the GOA
ecosystem being primarily a downwelling domain (Ware and McFarlane 1989). Second, several
previous studies, e.g., Malick et al. (2015a) and Mueter et al. (2002a), have indicated that regional-
scale ocean conditions can have opposite e�ects on salmon productivity in northern and southern
regions with the dividing line occurring approximately at the border between Southeast Alaska
and British Columbia.

3.3.2 North Paci�c Current indices

We used the Ocean Surface Current Simulations (OSCURS) model to compute inter-annual vari-
ability in the north-south location of the NPC bifurcation (Ingraham Jr. 1997) and the NPGO to
index broad-scale variability in the strength of the NPC (Di Lorenzo et al. 2008).

The OSCURS model simulates trajectories of surface currents in the North Paci�c by adding
wind velocity �elds (derived from daily atmospheric sea-level-pressure data) to the long-term
mean geostrophic current �elds. The resulting simulated surface current trajectories have been
shown to closely match satellite-tracked drifters in the North Paci�c (Ingraham Jr. 1997). We de-
veloped an index for the north-south location of the NPC bifurcation by generating annual trajec-
tories for 215 simulated drifters for all years between 1967 and 2010, inclusive, using a procedure
analogous to that of Watters and Bessey (2008). In our case, drifters were seeded on a 1-degree
grid in the area bounded by -140◦W longitude eastward to the coast of North America and from
40◦N to 55◦N latitude (Supporting materials Fig. 3.6). Simulated drifters were released annually on
February 1 and the daily trajectory was tracked until June 30 to re�ect ocean conditions relevant to
seaward-migrating juvenile salmon (Di Lorenzo et al. 2013a). We indexed the location of the bifur-
cation based on di�erences between the starting and ending latitude of each drifter within a year.
The annual bifurcation index (BI) was calculated as the proportion of the 215 simulated drifters
that ended south of their starting latitude in a particular year (Supporting materials Fig. 3.7).
Positive values of the index indicate a northward-shifted bifurcation (majority of drifters ending
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south of their starting latitude), whereas negative values of the index indicate a southward-shifted
bifurcation (majority of drifters ending north of their starting latitude).

The NPGO, de�ned as the second principal component of monthly sea surface height anoma-
lies in the North Paci�c over the region 25◦N–62◦N, 180◦–110◦W (Di Lorenzo et al. 2008), is thought
to represent variability in sub-polar and sub-tropical gyre strengths in the North Paci�c, where
higher NPGO values indicate a strengthening of the gyres and increased NPC transport (Chhak
et al. 2009; Di Lorenzo et al. 2009; 2008). Positive values of the NPGO are also associated with
higher nutrient concentrations (e.g., NO3), higher salinity, and higher survival of both coho and
chinook salmon (Di Lorenzo et al. 2008; 2009; Kildu� et al. 2015). Salmon survival during the early
marine life phase is believed to be the dominant driver of overall stock productivity, and ocean
conditions prior to salmon ocean entry may strongly in�uence conditions experienced by salmon
during this period (Parker 1968; Wertheimer and Thrower 2007; Yeh et al. 2011; Di Lorenzo et al.
2013a). Therefore, we averaged the NPGO over the months of December–March, which represents
the winter period just prior to ocean entry of salmon smolts.

For pink and chum salmon, which enter the ocean the �rst spring following spawning, the
BI and NPGO indices were o�set by 1 year (e.g., salmon spawning in 2000 were lined up with the
BI for 2001 and the NPGO for the December 2000 to March 2001 period). For sockeye salmon,
which rear in lakes for one or two years before entering the ocean, we used a weighted average of
index values o�set by 2 years and 3 years, respectively, with the weights equal to the stock-speci�c
average proportion of juveniles entering the ocean at either age two or three (Mueter et al. 2002a).

3.3.3 Modeling the data

We modeled salmon stock productivity as a function of spawner abundance using the standard
Ricker model (Ricker 1954),

yi,t = αi + βiSi,t + ϵi,t , (3.1)

where yi,t is the loge of recruits per spawner, loдe (Ri,t/Si,t ), for stock i in year t , αi is the density-
independent stock productivity at low spawning stock sizes, βi is the coe�cient representing the
strength of density-dependence, and ϵi,t is the residual error term assumed to be normally dis-
tributed with mean 0 and variance σ 2

ϵ .
We estimated BI and NPGO e�ects on salmon productivity using a generalized Ricker model

in which the oceanographic variables were included as additional predictor variables (Quinn and
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Deriso 1999), i.e.,

yi,t = αi + βiSi,t + γBI,iBIt + γNPGO,iNPGOt + ϵi,t , (3.2)

where γBI,i is the stock-speci�c coe�cient for the BI and γNPGO,i is the stock-speci�c coe�cient
for the NPGO index. The annual value of the BI index was the same for all pink and chum salmon
stocks, as was the value of the NPGO index, but index values for sockeye salmon stocks were
stock-speci�c, as explained above. In addition, both the BI and NPGO indices were standardized
to a mean of 0 and a standard deviation (SD) of 1.

We included both the standard and generalized Ricker models in the analysis for model
comparison purposes, which allowed us to compare models with and without the NPC indices to
determine the relative importance of these terms in the model (see model comparison section for
details). Because data were not available to calculate the BI prior to 1967, we �t both the standard
and generalized Ricker models using data from brood years 1966 and after.

We included a �rst-order autocorrelation model for residuals, i.e., ϵi,t = ϕiϵi,t−1+δi,t , where
δi,t ∼ N (0,σ 2

i ) and ϕi is the �rst-order autocorrelation coe�cient for stock i (Mueter et al. 2002a;
Chat�eld 2004). For both the standard and generalized forms of the Ricker model, the autoregres-
sive process was modeled as,

yi,t =

{
ŷi,t + ϕiϵi,t−1 + δi,t for t > 1
ŷi,t + δi,t for t = 1

(3.3)

where ŷi,t is the predicted stock productivity from either the standard Ricker model (eq. 3.1) or
the generalized Ricker model (eq. 3.2).

3.3.4 Modeling the parameters

The Bayesian hierarchical modeling approach is increasingly common in multi-stock population
dynamics research, in part because allowing dependence among stock-speci�c parameters can
improve parameter estimates (Gelman et al. 2004; Thorson and Minto 2015). In particular, mod-
eling stock-speci�c parameters (e.g., αi or γBI,i ) as arising from a common prior distribution (i.e.,
assuming stocks are exchangeable units) improves the mean of parameter estimates where hyper-
parameters for the common distribution are informed by data from all stocks (Gauch 2006). In
this study, we �t species-speci�c Bayesian hierarchical models that used hierarchical prior distri-
butions for αi , γBI,i , and γNPGO,i parameters, where the hierarchical priors were further de�ned
by a set of hyperprior distributions (Gelman et al. 2004).



CHAPTER 3. HORIZONTAL OCEAN TRANSPORT AND SALMON PRODUCTIVITY 44

For each species-speci�c model, we assumed that the αi were exchangeable across all stocks
within a species and we used a normal prior distribution, i.e., αi ∼ N (µα ,τ

2
α ) with hyperparame-

ters µα and τ 2α representing the overall mean and variance, respectively. We used a di�use normal
distribution, µα ∼ N (0, 103), for the hypermean µα and an improper uniform prior for the hyper-
variance, τ 2α ∼ U (0, 25) (Gelman 2006).

We assumed that the γBI,i , and γNPGO,i parameters were only exchangeable among stocks
within the same ecosystem (WC, GOA, BS) for each of the BI and NPGO because ocean conditions
can in�uence salmon stocks in di�erent ecosystems in opposite ways (Mueter et al. 2002a; Malick
et al. 2015a). As examples of our exchangeability assumption, parameters for all pink salmon stocks
in the WC ecosystem were assumed exchangeable and were assigned one prior distribution (i.e.,
γi,WC ∼ N (µγWC ,τ

2
γWC
)), whereas all pink salmon stocks in the GOA ecosystem were assumed

exchangeable and were assigned a separate prior distribution (i.e., γi,GOA ∼ N (µγGOA ,τ
2
γGOA
)).

For a particular ecosystem and oceanographic variable, the hypermean µγ represents the mean
ecosystem-level e�ect and the hypervariance τ 2γ represents the ecosystem-level variance. Di�use
normal prior distributions, µγ ∼ N (0, 103), and uniform prior distributions, τ 2γ ∼ U (0, 25), were
used for the ecosystem-level hypermeans and hypervariances, respectively (Gelman 2006).

In contrast to the α and γ parameters, which we assumed were exchangeable across salmon
stocks within a species or ecosystem, we treated the remaining parameters, i.e., βi ,σi , and ϕi ,
as non-exchangeable (i.e., stock-speci�c) because the magnitudes of these parameters can vary
greatly among salmon stocks within a species and ecosystem (Mueter et al. 2002a; Malick et al.
2015a; Su et al. 2004). We assigned di�use independent priors for the density-dependence param-
eters, βi ∼ N (0, 103), and assigned the variances, σ 2

i , and autocorrelation coe�cients, ϕi , to be
uniform priors, σ 2

i ∼ U (0, 25) and ϕi ∼ U (−1, 1), respectively.
Because we were uncertain about the similarity of the σ 2

i and ϕi parameters across stocks
within a species, we also �t several simpler models in which σ 2

i and ϕi were shared across stocks,
i.e., they were not stock speci�c. In total, for each species we �t �ve standard Ricker models and
�ve generalized Ricker models that di�ered in their assumptions about σ 2

i and ϕi (Table 3.1).
To better demonstrate the e�ects of the NPGO and BI on salmon productivity, we also cal-

culated the percent change in productivity given a one unit change in the NPGO or BI. More
speci�cally, we used the estimated ecosystem-level e�ects of the NPGO and BI (i.e., µγ ) to calcu-
late the estimated percent change in productivity that would result from an increase in the BI or
NPGO corresponding to one SD above their respective long-term means (1967–2010).



CHAPTER 3. HORIZONTAL OCEAN TRANSPORT AND SALMON PRODUCTIVITY 45

Table 3.1: Summary of Bayesian hierarchical models �t for each species. # gives the
model number; type indicates whether the model is a standard or generalized Ricker
model; “exchange” indicates the parameters were exchangeable across all stocks;
“ecosystem” indicates the parameters were exchangeable across stocks within an
ecosystem; “same” indicates the parameter was shared (i.e., the same) across stocks
and ecosystems; “di�erent” indicates the parameter was stock-speci�c.

# Type α β σ 2 ϕ γBI γNPGO
1 standard exchange di�erent same
2 standard exchange di�erent di�erent
3 standard exchange di�erent same same
4 standard exchange di�erent di�erent same
5 standard exchange di�erent di�erent di�erent
6 generalized exchange di�erent same ecosystem ecosystem
7 generalized exchange di�erent di�erent ecosystem ecosystem
8 generalized exchange di�erent same same ecosystem ecosystem
9 generalized exchange di�erent di�erent same ecosystem ecosystem
10 generalized exchange di�erent di�erent di�erent ecosystem ecosystem

3.3.5 Model �tting and diagnostics

We estimated all model parameters using the Gibbs sampling algorithm implemented in JAGS
version 3.4.0 (Plummer 2003). For each model, we ran �ve chains with dispersed starting val-
ues. Each chain had a burn-in period of 10 000 iterations followed by 75 000 iterations that were
monitored with a thinning interval of 15, where the thinning interval was determined by moni-
toring within-chain autocorrelation. We based posterior inference on a total of 25 000 posterior
samples per parameter obtained by sampling 5 000 iterations per chain. Gibbs chain convergence
was assessed graphically (e.g., traceplots, histograms) and via the Gelman-Rubin statistic (Gel-
man and Rubin 1992; Brooks and Gelman 1998). We assessed model �ts using posterior predictive
checks, including �tted values, realized residuals, and posterior predictive distributions (Gelman
et al. 2004).

3.3.6 Model comparison

We used the Watanabe-Akaike information criterion (WAIC) for model comparison and model
selection within species (Watanabe 2010; Gelman et al. 2013). The WAIC measures the �t of a
model to the data while also accounting for model complexity. Both the “�t” and “complexity”
terms of the WAIC were readily computed from posterior samples of the parameters. The model
�t was assessed using the log-pointwise predictive density (lppd), whereas model complexity was
estimated as the e�ective number of model parameters (pD; Watanabe 2010; Gelman et al. 2013).
The WAIC was then calculated as WAIC = −2∗(lppd−pD). The model with the lowest WAIC value
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was considered the most parsimonious and models within 3 WAIC units of the minimum were
considered equally plausible. Models with WAIC values greater than 10 more than the minimum
were rejected.

3.3.7 Sensitivity analysis

We tested the sensitivity of our results to two assumptions underlying the oceanographic variables.
First, to check whether our grid of simulated OSCURS model drifters captured broad-scale surface
current patterns in the North Paci�c, we re-calculated the BI using an expanded 1-degree grid that
extended from -145◦W longitude eastward to the west coast of North America and from 35◦N to
59◦N latitude (Supporting materials Fig. 3.6). Second, we checked the sensitivity of our results
to the manner in which the BI was calculated. Speci�cally, we re-calculated the BI following the
method of Watters and Bessey (2008), where the annual index values were calculated as the sum
of the di�erences in the longitude of the drifter ensemble (i.e, all drifters released at the same
longitude) between the median starting latitude on February 1 and the median ending latitude
on June 30. This contrasts with our original BI index, which was calculated as the proportion of
drifters that ended south of their starting latitude, by summarizing the start and end latitudes of
the drifters prior to calculating the BI index. We assessed the sensitivity of our analysis to speci�cs
of BI calculation by determining strength of correlation between our original BI time series and the
alternate BI series, as well as by comparing model coe�cients and rankings for models �t using
the alternate BI time series.

We also conducted an additional sensitivity analysis to test if our grouping of salmon stocks
into three large marine ecosystems adequately captured the spatial distribution of the e�ects of
the BI and NPGO. In particular, we �t single-stock generalized Ricker models (i.e., eq. 3.2) to each
of the 163 salmon stocks separately using maximum likelihood to identify potential di�erences
among stocks within our three ecosystem groupings. Unlike the Bayesian hierarchical models
where the γi coe�cients are centered around a common mean, in the single-stock models each
stock is independent of the other stocks, which allowed us to better determine if smaller spatial-
scale patterns were evident in the γBI,i and γNPGO,i coe�cients.

3.4 Results

3.4.1 BI and NPGO indices

The BI time series indicated substantial inter-annual variability in the latitude of the NPC bi-
furcation ranging from 11% of all drifters ending south of their starting latitude in 1993 (i.e., the
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bifurcation was shifted southward) to 74% of all drifters ending south of their starting latitude in
2009 (i.e., the bifurcation was shifted northward; Fig. 3.2; Supporting materials Fig. 3.7). The BI in-
dex tended to have more inter-annual variability than the NPGO with fewer series of consecutive
positive or negative values. For example, years with a northward-shifted bifurcation were often
followed by years with a southward shifted bifurcation, such as 1982–83, 1985–86, and 2009–10.
The BI and NPGO indices were only weakly correlated (r = 0.24), suggesting that they capture
di�erent modes of NPC variability.
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Figure 3.2: Time series for the bifurcation index (BI; upper panel) and North Paci�c
Gyre Oscillation (NPGO; bottom panel). Both time series are standardized to a mean of
0 and a standard deviation of 1 (i.e., standard deviation units, SDUs). Positive values
of the BI re�ect a northward-shifted bifurcation in the NPC, whereas negative BI
values indicate a southward-shifted bifurcation. Positive values of the NPGO indicate
a stronger NPC, whereas negative NPGO values indicate a weaker NPC.

3.4.2 BI and NPGO e�ects

Hierarchical models that included the BI and NPGO indices �t the data substantially better than
models without these terms for all species, as indicated by the WAIC (Table 3.2). The best models
(i.e., models with the lowest WAIC) showed that the strongest e�ects of the BI and NPGO were on
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stocks in the WC ecosystem, where a northward-shifted bifurcation (i.e., positive BI values) and a
stronger NPC (i.e., positive NPGO values) were consistently associated with increased productivity
of pink, chum, and sockeye salmon, i.e., positive γBI,i and γNPGO,i values (Figs. 3.3 and 3.4). In
contrast, the BI and NPGO e�ects on salmon productivity tended to be weaker for stocks in the
GOA ecosystem and less consistent across species in the BS ecosystem than in the WC ecosystem
(Figs. 3.3 and 3.4).

Table 3.2: Model selection quantities for each �tted model. # gives the model number
as de�ned in Table 3.1; Np gives the nominal number of parameters in a model; pD
gives the e�ective number of parameters; and ∆WAIC gives the WAIC value for each
model relative to the model with the minimum WAIC value.

Pink Chum Sockeye

# Np pD ∆WAIC Np pD ∆WAIC Np pD ∆WAIC

1 95 71 260.0 109 89 292.1 131 104 589.0
2 140 115 51.7 161 133 180.2 194 164 287.8
3 96 71 254.1 110 85 156.8 132 102 328.0
4 141 113 42.6 162 134 48.0 195 164 6.0
5 186 152 101.0 214 175 22.6 258 218 16.1
6 199 98 224.4 227 119 266.4 271 148 556.8
7 244 135 10.8 279 155 156.1 334 204 248.7
8 200 97 214.4 228 115 148.7 272 138 322.7
9 245 134 0.0 280 156 29.7 335 189 0.0
10 290 174 57.2 332 198 0.0 398 250 3.2

For pink and chum salmon stocks in the WC ecosystem, the estimated median ecosystem-
level e�ect (i.e., µγ ) for the NPGO was 2.4 times higher than the BI for pink salmon and 2.5 times
higher for chum salmon (Table 3.3; Fig. 3.4). Similarly, the estimated median stock-speci�c e�ects
(i.e., γi ) for the NPGO (which are centered around the mean ecosystem-level e�ect) were consis-
tently higher than for the median stock-speci�c e�ects of the BI (Fig. 3.3; pink salmon: γNPGO

range = 0.22–0.29 vs. γBI range = 0.06–0.13; chum salmon: γNPGO range = 0.12–0.15 vs. γBI range
= 0.03–0.08). An increase in the NPGO by one SD above the long-term mean (1967–2010) in any
given year would be expected to result in 28.5% and 15.1% higher recruits-per-spawner for pink and
chum salmon, respectively (Fig. 3.5).

In contrast to pink and chum salmon, sockeye salmon productivity in the WC ecosystem
was more strongly related to changes in the BI than the NPGO, indicating that the location of the
bifurcation has a stronger e�ect on sockeye salmon productivity than NPC strength. The estimated
median ecosystem-level e�ect of the BI on WC sockeye salmon productivity was 2.4 times higher
than for the NPGO (Table 3.3; Fig. 3.4). Furthermore, the median stock-speci�c e�ects of the BI
on sockeye salmon productivity (i.e., γBI range = 0.09–0.13) were consistently higher than stock-
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Figure 3.3: Posterior medians and 95% credible intervals for the stock-speci�c bifurca-
tion index (BI) and North Paci�c Gyre Oscillation (NPGO) e�ects, γBI,i and γNPGO,i ,
respectively, as derived from the best-�t models (9 and 10 in Table 3.1). Coe�cients (in
standard deviation units) are shown for pink salmon (panel a), chum salmon (panel
b), and sockeye salmon (panel c). Within each panel, stock-speci�c estimates are
grouped by ecosystem and stocks are ordered south (left) to north (right) where the
stock number (x-axis) corresponds to the numbers in Fig. 3.1. Solid circles (black) in-
dicate γBI,i median values and dashed black lines indicate the 95% credible intervals
for the BI e�ect. Solid squares (red) indicate γNPGO,i median values and dashed red
lines indicate the 95% credible intervals for the NPGO e�ect. Solid horizontal lines
indicate posterior medians for the ecosystem-level e�ects, µγ .
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Figure 3.4: Posterior distributions for the ecosystem-level e�ects, µγ , of the bifurca-
tion index (BI) and North Paci�c Gyre Oscillation (NPGO) in standard deviation units.
Distributions are shown for pink salmon (top row), chum salmon (middle row), and
sockeye salmon (bottom row), as well as for the West Coast ecosystem (left column),
Gulf of Alaska ecosystem (middle column) and Bering Sea ecosystem (right column).
Solid lines (black) indicate distributions for the ecosystem-level BI e�ect and dashed
lines (red) indicate distributions for the NPGO ecosystem-level e�ect.
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speci�c e�ects of the NPGO (γNPGO range = 0.02–0.08; Fig. 3.3c). This stronger e�ect of the BI on
sockeye salmon productivity corresponded to an 11.7% increase in productivity given a one SD-unit
increase in the BI compared to a 4.8% increase in productivity given a one SD-unit increase in the
NPGO index (Fig. 3.5).

In the GOA ecosystem, there was no evidence for consistent stock-speci�c or ecosystem-
level e�ects of either the BI or NPGO on productivity of all three species (Figs. 3.3 and 3.4; Table
3.3). The 95% credibility intervals for stock-speci�c e�ects included zero for all species, stocks,
and both the BI and NPGO indices (Fig. 3.3). Similarly, the posterior distributions for the GOA
ecosystem-level e�ects of the BI and NPGO on salmon productivity were close to zero for all
species (Fig. 3.4; Table 3.3).

In the BS ecosystem, the e�ects of the BI and NPGO on salmon productivity were quite
variable across species. For BS pink salmon, the e�ects of the NPGO were close to zero, and the
e�ects of the BI were consistently positive (γBI range = 0.08–0.54), although there was considerable
uncertainty associated with the pink salmonγi parameter estimates (Figs. 3.3 and 3.4; Table 3.3). In
contrast, for BS chum salmon the estimated e�ects of the NPGO were consistently positive (γNPGO

range = 0.08–0.12), but the BI e�ects were close to zero (γBI range = -0.06–0.002). For sockeye
salmon in the BS ecosystem, the posterior distributions for the stock-speci�c and ecosystem-level
e�ects of the BI and NPGO were both near zero (Figs. 3.3 and 3.4; Table 3.3), indicating neither
index has strong e�ects on productivity of sockeye salmon in the Bering Sea.

Table 3.3: Ecosystem-wide e�ects (i.e., µγ ) for the BI and NPGO indices from the best-
�t models (9 and 10 in Table 3.1). Values are in standard deviation units and show the
median for µγ with 95% credible intervals given in parentheses.

Species Ecosystem µγ ,BI µγ ,NPGO
Pink WC 0.104 (0.025, 0.186) 0.251 (0.162, 0.339)

GOA -0.024 (-0.086, 0.036) 0.036 (-0.028, 0.099)
BS 0.283 (-0.257, 0.864) -0.031 (-0.415, 0.383)

Chum WC 0.057 (-0.001, 0.117) 0.141 (0.075, 0.204)
GOA 0.013 (-0.043, 0.075) -0.007 (-0.077, 0.060)
BS -0.025 (-0.091, 0.044) 0.096 (0.003, 0.186)

Sockeye WC 0.111 (0.052, 0.170) 0.047 (-0.032, 0.128)
GOA -0.029 (-0.080, 0.023) 0.026 (-0.049, 0.094)
BS 0.012 (-0.083, 0.096) 0.038 (-0.051, 0.126)

Model selection results indicated that for all three species there were no alternative models
with a WAIC within three units of the minimum WAIC (Table 3.2). In addition, for pink and chum
salmon, no models had a WAIC within 10 units of the minimum WAIC, whereas sockeye salmon
had two models that had WAIC values within 10 units of the minimum (models 4 and 10; Table 3.2).
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Figure 3.5: Percent change in productivity given a one unit increase in either the
bifurcation index (BI; grey) or North Paci�c Gyre Oscillation (NPGO; red) for stocks
in the (a) West Coast ecosystem, (b) Gulf of Alaska ecosystem, and (c) Bering Sea
ecosystem. Vertical bars indicate the 95% credible interval for the estimated percent
change.
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Models that included a stock-speci�c autocorrelation term tended to �t the data better for chum
salmon, whereas for pink and sockeye salmon there was more support for an autocorrelation term
shared across stocks (Table 3.2). For all three species, there was also greater support for models that
included a stock-speci�c variance term compared to models that only included a shared variance
term (Table 3.2). Furthermore, all models showed a lower number of e�ective parameters compared
to the nominal number of parameters, suggesting considerable borrowing of information across
stocks within the models (Table 3.2).

3.4.3 Sensitivity analysis

Estimated BI e�ects on salmon productivity were mostly insensitive to the methods we used to
calculate the index. For instance, our original BI index was highly correlated with the alternative
index calculated using a larger grid of drifters (r = 0.94) and with the index calculated using the
methods outlined in Watters and Bessey (2008) (r = 0.94). For the index calculated using a larger
grid of drifters, the rank order of the �tted models did not change compared to the models �tted
using the original BI index for all three species (Supporting materials Table 3.4). For the index
based on Watters and Bessey (2008), the rank order of models did not change for pink and chum
salmon, but were moderately sensitive for sockeye salmon (Supporting materials Table 3.5). In
particular, the top three models were the same for sockeye salmon for both indices, although the
order was di�erent, with a model without the BI or NPGO having the lowest WAIC when the
alternate Watters and Bessey (2008) BI index was used (model 4; Supporting materials Table 3.5).
In addition, the single-stock model analysis did not indicate substantial di�erences in the e�ects
of the BI and NPGO across stocks at smaller spatial scales than those of the three large marine
ecosystems (Supporting materials Fig. 3.8).

3.5 Discussion

In this study, we estimated the e�ects of two modes of variability in the NPC on productivity of
163 pink, chum, and sockeye salmon stocks to better understand how horizontal ocean transport
pathways could in�uence population dynamics of Paci�c salmon. We found that indices of north-
south positioning of the NPC bifurcation and the NPC strength both had strong estimated e�ects
on pink, chum, and sockeye salmon productivity and were included in the best-�t hierarchical
models for each species. We also found that the most consistent e�ects of the BI and NPGO were
on salmon stocks in the WC ecosystem. There, a northward-shifted bifurcation and increased
NPC strength was associated with increased salmon productivity. Finally, we found that neither
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index was correlated with salmon productivity for stocks in the Gulf of Alaska, and there were
less consistent e�ects for salmon stocks in the Bering Sea than in the West Coast ecosystem.

Our result that variability associated with the NPC is an important driver of changes in Pa-
ci�c salmon productivity, particularly for stocks in the WC ecosystem, is consistent with the results
of several previous studies that have indicated that horizontal transport pathways can strongly in-
�uence coastal marine ecosystems in the Northeast Paci�c (Kildu� et al. 2015; Sydeman et al. 2011;
Batten and Freeland 2007). In particular, our �nding that a stronger NPC (i.e., a positive NPGO) is
associated with increased salmon productivity in the WC ecosystem corresponds with the result
of Kildu� et al. (2015), which showed that the dominant modes of variability for hatchery coho
and chinook salmon survival rates along the west coast of North America are signi�cantly and
positively related to the NPGO index. Although the mechanisms linking variability in the NPGO
and salmon productivity are not clear, several studies have indicated that broad-scale variability
in the strength of the sub-polar and sub-tropical gyres, as indexed by the NPGO, is linked with
changes in salinity, nutrients, and chl-a concentrations in coastal ecosystems in the Northeast Pa-
ci�c (Di Lorenzo et al. 2008; Chenillat et al. 2012). This suggests that the e�ects of the NPGO
on salmon productivity may be mediated by changes in physical and biological oceanographic
conditions that a�ect prey availability in those ecosystems.

Our results further suggested that a northward-shifted positioning of the NPC was associ-
ated with increased salmon productivity in the WC ecosystem. This is consistent with previous
research that indicated that the majority (~64%) of variability in biological productivity in the
Northern California Current is related to the north-south location of the NPC bifurcation, with
higher productivity being associated with a northward-shifted positioning of the NPC (Sydeman
et al. 2011). One possible explanation for this result is that shifts in the location of the NPC may
in�uence the advection of zooplankton communities into coastal ecosystems, which are a key food
resource for juvenile salmon (Armstrong et al. 2008; Beauchamp et al. 2007; Brodeur et al. 2007a).
For example, Keister et al. (2011) and Bi et al. (2011b) indicated that changes in along-shore trans-
port can strongly in�uence zooplankton communities in the Northern California Current with the
transport of cooler water from northern areas into the Northern California Current being associ-
ated with a more lipid-rich copepod community.

Alternatively, the location of the bifurcation may also have indirect e�ects on high-trophic-
level species by altering physical or biological oceanographic conditions such as inorganic nutrient
concentrations, water column stability, or thermal regimes (Di Lorenzo et al. 2009; Sydeman et al.
2011; Keister et al. 2011). These indirect e�ects may be particularly important for salmon stocks that
enter the ocean in areas sheltered from coastal currents. For example, within the WC ecosystem,
the Salish Sea (which includes the Strait of Georgia east of Vancouver Island, B.C. and Puget Sound,
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Washington) is largely isolated from coastal ocean currents and the oceanography of this region
is strongly in�uenced by freshwater discharge from the Fraser River, which brings land-derived
nutrients into coastal waters and can in�uence water column stability (Hickey and Banas 2008).
Despite this di�erence in oceanographic conditions in the Salish Sea compared to other parts of
the West Coast ecosystem, we found that the single-stock e�ects of the BI and NPGO did not di�er
substantially between stocks that �rst enter salt water in the Salish Sea and stocks that enter the
ocean elsewhere within the West Coast ecosystem. Thus, the e�ects of conditions encountered
by Salish Sea stocks outside of the Salish Sea appear to dominate the e�ects of oceanographic
conditions that are unique to the Salish Sea.

Horizontal transport pathways that are controlled by changes in the NPC do not appear to
substantially contribute to variability in salmon productivity for stocks in what we called the GOA
ecosystem. For instance, we found no support for consistent e�ects of either NPC index on pro-
ductivity of salmon stocks in this region. This �nding is in contrast to the strong and consistent
positive e�ects of the NPC indices on productivity in the WC ecosystem, which further suggests
that di�erent environmental pathways may control productivity of higher-trophic-level species in
these two ecosystems. This hypothesis, that di�erent mechanisms may control salmon produc-
tivity in di�erent ecosystems, is supported by several previous studies that have also indicated
di�erences in the e�ects of environmental variables on salmon productivity between the WC and
GOA ecosystems. For example, Mueter et al. (2002a) showed opposite e�ects of sea surface tem-
perature on pink, chum, and sockeye salmon in northern and southern areas, with the dividing
line occurring around southern Southeast Alaska. Similarly, Malick et al. (2015a) indicated that
the phenology of the spring bloom of phytoplankton has e�ects of opposite sign on pink salmon
stocks in Alaska compared to stocks in British Columbia. Both Mueter et al. (2002a) and Malick
et al. (2015a) suggested that the di�erent e�ects may be driven by di�erences in oceanography
between the WC and GOA ecosystems, which is further supported by our results. Di�erences in
the e�ects of the NPC between northern and southern areas further suggests that prey availability
for salmon in the GOA may either not be a�ected by variability in horizontal transport or prey
availability may not be limiting.

In the Bering Sea, we found less consistent e�ects of the BI and NPGO on salmon produc-
tivity than in the West Coast ecosystem. For example, we found that (1) neither index had a strong
e�ect on sockeye salmon productivity, (2) the NPGO was positively related to chum salmon pro-
ductivity, and (3) the estimated e�ects of both indices on pink salmon productivity were highly
uncertain. Because the BS ecosystem is geographically isolated from the NPC, it is unlikely that
variability associated with the NPC has a direct e�ect on salmon productivity in this region. In-
stead, the BI and NPGO likely represent indirect indicators of broad atmospheric or oceanographic



CHAPTER 3. HORIZONTAL OCEAN TRANSPORT AND SALMON PRODUCTIVITY 56

patterns, such as changes in the North Paci�c Oscillation, that link conditions in the Bering Sea to
the mid-latitude conditions driving variability in the NPC (Di Lorenzo et al. 2013a).

Finally, our results demonstrate that ocean current patterns and horizontal transport path-
ways can strongly in�uence Paci�c salmon stocks, with the strongest e�ects being observed for
stocks in Washington and British Columbia. This conclusion, combined with previous research,
indicates that in some areas multiple environmental pathways may underlie changes in salmon
productivity, where one set of pathways is mediated by vertical ocean transport (e.g., upwelling)
and another set is mediated by horizontal ocean transport (Ottersen et al. 2010; Malick et al. 2015b;
Di Lorenzo et al. 2013b). Furthermore, our results provide some evidence that the relative impor-
tance of horizontal transport pathways may di�er between northern and southern areas for the
species we considered. Taken together, this suggests that quantifying the relative importance and
cumulative e�ects of multiple environmental pathways is important for understanding how future
environmental change will in�uence production of higher-trophic-level species.
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Table 3.4: Model selection quantities from the sensitivity analysis that used the bifur-
cation index calculated using an expanded grid of drifters. # gives the model number
as de�ned in Table 3.1 of the main text; Np gives the nominal number of parameters;
pD gives the e�ective number of parameters; and ∆WAIC gives the WAIC value for
each model relative to the model with the minimum WAIC value.

Pink Chum Sockeye

# Np pD ∆WAIC Np pD ∆WAIC Np pD ∆WAIC

1 95 71 263.4 109 89 298.0 131 104 592.8
2 140 115 55.1 161 133 186.0 194 164 291.5
3 96 71 257.6 110 85 162.6 132 102 331.7
4 141 113 46.1 162 134 53.9 195 164 9.7
5 186 152 104.5 214 175 28.4 258 218 19.8
6 199 98 233.0 227 123 268.1 271 149 553.2
7 244 136 11.9 279 159 157.6 334 206 249.0
8 200 98 222.0 228 118 149.4 272 137 319.8
9 245 133 0.0 280 159 30.8 335 189 0.0
10 290 175 58.5 332 202 0.0 398 251 3.7

Table 3.5: Model selection quantities from the sensitivity analysis that used the bifur-
cation index calculated using the methods outlined in Watters and Bessey (2008). #
gives the model number as de�ned in Table 3.1 of the main text; Np gives the nomi-
nal number of parameters; pD gives the e�ective number of parameters; and ∆WAIC
gives the WAIC value for each model relative to the model with the minimum WAIC
value.

Pink Chum Sockeye

# Np pD ∆WAIC Np pD ∆WAIC Np pD ∆WAIC

1 95 71 252.3 109 89 292.4 131 104 583.1
2 140 115 44.0 161 133 180.5 194 164 281.8
3 96 71 246.4 110 85 157.1 132 102 322.0
4 141 113 34.9 162 134 48.3 195 164 0.0
5 186 152 93.3 214 175 22.9 258 218 10.1
6 199 96 236.2 227 119 268.6 271 147 555.7
7 244 135 10.2 279 154 156.8 334 205 246.3
8 200 97 228.1 228 114 150.1 272 137 328.7
9 245 133 0.0 280 154 29.7 335 190 2.5
10 290 174 56.0 332 197 0.0 398 251 4.4
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Figure 3.6: Starting location for the OSCURS model drifters used to calculate the bi-
furcation index. Black dots show the locations where the drifters were seeded for the
main bifurcation index and grey plus signs indicate the additional drifter starting lo-
cations for the bifurcation index calculated using the expanded grid of drifters, which
was part of a sensitivity analysis examining changes in assumptions underlying the
bifurcation index.
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Figure 3.7: Continued on next page . . .
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Figure 3.7: OSCURS model drifter trajectories for years 1967–2010. Each panel shows
the drifter tracks for a single year where the drifters were simulated from February 1
to June 30. Red tracks indicate drifters that ended south of their starting location and
blue tracks indicate drifters that ended north of their starting location. The lower left
corner in each panel gives the year and the bifurcation index (BI) for that year. The
BI values are standardized to a mean of 0 and a standard deviation of 1 (i.e., standard
deviation units, SDUs).
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Figure 3.8: Single-stock model coe�cients for the BI and NPGO (i.e., γi ). Gamma
coe�cients were estimated by �tting generalized Ricker models (i.e., eq. 3.2) to each of
the 163 salmon stocks separately using maximum likelihood. Coe�cients (in standard
deviation units) are shown for pink salmon (panel a), chum salmon (panel b), and
sockeye salmon (panel c). Within each panel, stock-speci�c estimates are grouped by
ecosystem and stocks are ordered south (left) to north (right) where the stock number
(x-axis) corresponds to the numbers in Fig. 3.1 of the main text. Solid circles (black)
indicate the maximum likelihood estimate for the BI e�ect, γBI,i , and solid squares
(red) indicate the NPGO e�ect, γNPGO,i . Points inside the grey boxes indicate salmon
stocks that enter the ocean in the Salish Sea.



Chapter 4

Accounting for multiple pathways in the
connections among climate variability,
ocean processes, and coho salmon
recruitment in the Northern California
Current1

4.1 Abstract

Pathways linking climate to population dynamics of higher-trophic-level �sh species such as Pa-
ci�c salmon often involve a hierarchy in which regional-scale physical and biological processes
mediate the e�ects of large-scale climate variability. We used probabilistic networks to investigate
17 potential ecological pathways linking climate to Oregon coho salmon recruitment. We found
that pathways originating with the Paci�c Decadal Oscillation were the most in�uential on recruit-
ment with the net e�ect being 2 to 4 times greater than for pathways originating with the North
Paci�c Gyre Oscillation or Oceanic Niño Index. Among all environmental variables, sea surface
temperature and an index of juvenile salmon prey biomass had the greatest e�ects on recruitment
with a 76% chance of recruitment being equal to or below average given that ocean temperatures

1A version of this chapter appears as Malick, M.J., S.P. Cox, R.M. Peterman, T.C. Wainwright, and W.T. Peterson.
2015. Accounting for multiple pathways in the connections among climate variability, ocean processes, and coho salmon
recruitment in the Northern California Current. Canadian Journal of Fisheries and Aquatic Sciences 72:1552–1564. http:
//doi.org/10.1139/cjfas-2014-0509.
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were above average and a 34% chance of recruitment being below average given that prey biomass
was above average. Our results provide evidence that shifts in climate patterns could strongly
in�uence recruitment simultaneously through multiple ecological pathways and highlight the im-
portance of quantifying cumulative e�ects of these pathways on higher-trophic-level species.

4.2 Introduction

Paci�c salmon (Oncorhynchus spp.) populations along the Northeast Paci�c coast exhibit large
inter-annual and inter-decadal �uctuations in adult abundances. Changes in large-scale climate
patterns are often associated with variability in salmon recruitment, although there are many
intermediate-scale processes that can link climate and salmon (Mueter et al. 2002a; Beamish et al.
2004; Drinkwater et al. 2010; Malick et al. 2015a). In particular, several regional-scale oceano-
graphic variables are associated with both large-scale climate patterns and salmon recruitment,
including sea surface temperature (SST), upwelling intensity, and ocean transport (King et al. 2011;
Chavez et al. 2003; Keister et al. 2011). However, most research on relationships between climate
variability and salmon recruitment simplify the ecological system by considering only direct ef-
fects of climate on recruitment (Fig. 4.1a). For instance, multiple studies show correlations between
the Paci�c Decadal Oscillation (PDO) and indices of salmon survival (Mantua et al. 1997; Burke
et al. 2013; Malick et al. 2009) without further investigating possible pathways of bottom-up or
top-down processes linking the two.

Pathways linking climate to the dynamics of higher-trophic-level �sh species such as salmon
often involve a hierarchy in which regional-scale physical and biological processes mediate the
e�ects of large-scale climate variability (Fig. 4.1b; Drinkwater et al. 2010; Ottersen et al. 2010;
Dippner 2006). For example, there are at least two hypothesized pathways connecting the PDO
with salmon recruitment in the Northern California Current (Wells et al. 2008; Keister et al. 2011).
Under the �rst hypothesis, regional-scale SST and juvenile salmon prey biomass act as intermedi-
aries between the PDO and recruitment (Daly et al. 2013; Cole 2000), whereas under the second
hypothesis, regional-scale ocean transport and copepod community composition act as interme-
diaries (Bi et al. 2011a; Keister et al. 2011). These hypothesized pathways include processes that
occur at several temporal, spatial, and functional scales, and therefore, represent the ecological
system more realistically than assuming direct relationships between climate patterns and salmon
recruitment (Levin 1992; Ottersen et al. 2010; Bakun 1996; Hunt et al. 2002).

Despite the more intuitive appeal of the hierarchical pathway perspective on relationships
between climate and salmon recruitment, it remains incomplete because it assumes a station-
ary ecosystem structure. Abrupt or persistent changes in climate patterns can substantially alter
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physical and biological processes in coastal ecosystems, potentially in�uencing high-trophic level
species through numerous ecological pathways (Fig. 4.1c; Anderson and Piatt 1999; Mantua et al.
1997). This implies a more complex hierarchy in which the relative strengths of alternative path-
ways may change over time. However, there has been little research on the relative importance
of particular pathways on salmon recruitment or on the joint e�ect of multiple pathways linking
climate to �sh recruitment in general.

Large-scale 
climate variable

Regional-
scale ocean 

variable

Salmon 
recruitment

Large-scale 
climate variable

Salmon 
recruitment

Regional-
scale ocean 
variable #2

Salmon 
recruitment

Regional-
scale ocean 
variable #1

Large-scale 
climate variable

a. b. c.

Figure 4.1: Schematic of pathways linking large-scale climate processes and Paci�c
salmon recruitment; (a) pathway where climate has a direct e�ect on recruitment,
(b) pathway where climate e�ects on recruitment are mediated by a regional-scale
oceanographic process (e.g., upwelling), (c) climate e�ects are mediated by multiple
regional-scale variables resulting in two pathways connecting climate and recruit-
ment.

In this study, we investigate how multiple ecological pathways potentially link climate and
oceanographic processes to wild Oregon coho salmon (O. kisutch) recruitment. Speci�cally, we
developed two probabilistic network models, similar to Fig. 4.1c, to determine the joint e�ect of
multiple ecological pathways on coho salmon recruitment as well as the relative strength of spe-
ci�c pathways. In addition, we investigated two time periods to determine whether the dominant
pathways changed over time. Our use of probabilistic networks allowed us to (1) clearly and intu-
itively model recruitment as a function of multiple ecological pathways, (2) quantify the e�ects of
both direct and indirect e�ects of environmental variables on salmon recruitment, and (3) account
for uncertainty in the relationships among variables by describing the relationships probabilisti-
cally rather than deterministically (Varis 1995). We also identify important environmental variables
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that could be used as indicators of salmon recruitment and contribute to the understanding of the
mechanisms that control recruitment of Paci�c salmon in the Northern California Current region.

4.3 Methods

4.3.1 Overview

We used data for nine environmental variables to estimate the relative strength and net e�ects of
17 ecological pathways on recruitment of wild Oregon coho salmon. The pathways were organized
into two independent probabilistic networks (e.g., Fig. 4.1c), a physical network and a biophysical
network, which we used to perform two analyses. First, to determine the relative strength of each
of the 17 pathways within the networks, we used partial correlation coe�cients to estimate the
strength of each link in the networks. Second, to quantify the joint e�ect of multiple pathways
on coho salmon recruitment, we used �tted probabilistic networks along with Monte Carlo sam-
pling to estimate conditional posterior probability distributions for various levels of coho salmon
recruitment, given several scenarios (i.e., sets of conditions) for the environmental variables.

4.3.2 Data sources

Coho salmon recruitment

Oregon’s wild coho salmon populations are divided into three discrete evolutionarily signi�cant
units (ESU; Weitkamp et al. 1995; Lawson et al. 2007). The focus of our study is on the Oregon
Coast ESU, the largest one, which extends from the mouth of the Columbia River south to Cape
Blanco (Fig. 4.2). It contains 21 independent coho salmon populations (i.e., populations that were
historically self-supporting) located in several di�erent river basins (Lawson et al. 2007). Oregon
Coast coho salmon rear mainly in coastal streams and rivers, but some populations rear primarily
in coastal lakes and have a distinct life history and di�erent population dynamics than the river
populations (Lawson et al. 2004; PFMC 2013). Because of this, we restricted our analysis to the
river populations only. In the past, there was also substantial production of hatchery coho salmon
on the Oregon coast—we have excluded this production from our analysis, and concentrate on just
the wild production.

Annual aggregate adult recruitment and escapement estimates for the wild river coho salmon
populations within the Oregon Coast ESU were available for brood years 1968–2009 from the Pa-
ci�c Fisheries Management Council (PFMC 2013; Rupp et al. 2012). Recruitment estimates were
generated from adult escapement and harvest rate estimates, where escapement was estimated
through statistical expansion of survey counts in a subset of stream reaches within the Oregon
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Figure 4.2: Study area showing the ocean-entry locations of the ten largest river basins
located within the Oregon Coast coho salmon evolutionarily signi�cant unit (ESU).
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Coast ESU (Lewis et al. 2010). For return years 1971 through 1990, adult escapements were moni-
tored using spawner surveys on standard index areas along the Oregon coast. Since 1990 a strat-
i�ed random sampling design has been implemented, which covers all spawning habitats within
the Oregon Coast ESU (Jacobs and Nickelson 1998; Lewis et al. 2010). Because spawner survey
methods prior to 1990 did not allow reliable reconstruction of population-speci�c abundance, we
used aggregate recruitment data across all coho salmon populations in the Oregon Coast ESU
(Fig. 4.3), which is consistent with the current pre-season forecasting methods used by the Paci�c
Fisheries Management Council (PFMC 2013).
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Figure 4.3: Time series of spawning stock size (dashed line) and the resulting total
recruitment (solid line) for Oregon Coast coho salmon. Grey shaded region indicates
the period used for the biophysical network.

We chose to focus on wild coho salmon production instead of hatchery production because
of a potential mismatch between the biological data used in this study and the geographic location
of coho salmon hatcheries. The most widely used and reliable source of hatchery data in the
Northern California Current region is the Oregon Production Index (Logerwell et al. 2003; Koslow
et al. 2002; Cole 2000), which is largely composed of data for Columbia River hatcheries (90%
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Columbia River �sh since 1991; PFMC 2013). Because the Columbia River is approximately 425 km
north of the sampling locations used to produce the biological data set, the biological variables
may not be representative of early ocean conditions of coho salmon entering the ocean from the
Columbia River. In addition, Columbia River �sh enter the ocean in the Columbia River plume,
which can have di�erent dynamics than other coastal areas due to the large freshwater in�uence
(Hickey et al. 1998).

While our main focus was on total recruitment, we also investigated an index of coho salmon
productivity. To create the productivity index, we �t a Beverton-Holt model (loge(R/S) = loge(a) -
loge(1 + bS); Beverton and Holt 1957) to the spawner-recruitment time series and then calculated
the residuals. We used this residual series as our productivity index, which describes inter-annual
variability in productivity (in units of loge(R/S)) after accounting for density-dependent e�ects of
spawner abundance (Supporting materials Fig. 4.9).

Environmental variables

Nine environmental variables were included in the probabilistic networks (Table 4.1; footnotes in
that table indicate the data sources). Three of the variables represent large-scale climate patterns,
which re�ect variability over thousands of kilometers (King et al. 2011). The �rst, PDO, is de�ned as
the leading principle component of monthly SST anomalies in the North Paci�c poleward of 20◦N
(Mantua et al. 1997). Second, the North Paci�c Gyre Oscillation (NPGO) is de�ned as the second
principle component of monthly sea-surface-height anomalies in the North Paci�c and represents
variability that is orthogonal to the PDO over the period 1950–2010 (Di Lorenzo et al. 2008). Third,
we used the Oceanic Niño Index (ONI) to index variability associated with El Niño and La Niña
events; it is de�ned as the 3-month running average of SST anomalies in the Niño 3.4 region
(120◦W–170◦W and 5◦S–5◦N) (Trenberth 1997). Unlike the PDO and NPGO, which have most of
their variance at decadal and inter-decadal periods, the ONI has most of its variance at inter-annual
time scales (Sarachik and Cane 2010). Because large-scale climate variables are believed to set the
stage for regional-scale physical and biological processes, each of the three large-scale variables
was averaged over the months of December–March in the winter prior to smolt out-migration
(Mantua et al. 1997; Yeh et al. 2011; Di Lorenzo et al. 2013a).

Four of the environmental variables represent physical oceanographic variability on a smaller,
regional scale. First, we used monthly National Oceanic and Atmospheric Administration extended
reconstructed SST version 3b data to index regional-scale variability in SST o� the coast of Ore-
gon (Smith et al. 2008). Monthly SST values were averaged over January–June for a 2◦x2◦ grid cell
centered on 44◦N 126◦W. The January–June period was chosen because research has suggested
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Table 4.1: Summary of environmental variables used to construct the probabilistic
networks. Seasonal average indicates the period over which each variable was aver-
aged. Extent refers to the north-south spatial area that the variable covers (degrees
latitude).

Variable Seasonal Average Extent Years Sourcea

ONI December–March 5N–5S 1970–2011 1
PDO December–March 20–65N 1970–2011 2
NPGO December–March 25–62N 1970–2011 3
SST January–June 43–45N 1970–2011 4
Upwelling March–April 43.5–46.5N 1970–2011 5
Spring Transition 43.5–46.5N 1970–2011 5
Deep Temperature May–September 44.6N 1998–2011 6
Ichthyoplankton January–March 44.6N 1998–2011 6
Copepod Biomass May–September 44.6N 1998–2011 6
Coho Recruitment 43–46N 1970–2011 7
a 1: http://www.cpc.ncep.noaa.gov; 2: http://jisao.washington.edu/pdo/PDO.latest; 3:

http://www.o3d.org/npgo/npgo.php; 4: http://www.ncdc.noaa.gov/ersst/; 5: http://
www.pfel.noaa.gov; 6: Peterson et al. (2012); 7: PFMC (2013).

that coastal SST can strongly in�uence salmon survival at time periods just prior to and during
smolt out-migration (Mueter et al. 2005).

Second, we used the Bakun upwelling index to represent inter-annual variability in up-
welling intensity, where intensity was quanti�ed as the volume of surface water transported o�-
shore caused by geostrophic wind �elds (Bakun 1973; Schwing et al. 1996). Daily values for the
upwelling index were available for 1970–2011 for the 45◦N 125◦W station. We averaged the up-
welling index over March–April to represent ocean conditions just-prior to the spring transition
and smolt out-migration (Logerwell et al. 2003; Lawson 1997). Third, to index inter-annual vari-
ability in the start date of the upwelling season, we used the Bakun upwelling index to calculate
the spring transition date as the day of the year corresponding to the minimum value of the cu-
mulative upwelling index (Bakun 1973; Bograd et al. 2009), where the cumulative upwelling index
was calculated by taking the daily cumulative sum of the Bakun upwelling index starting on Jan-
uary 1 of each year. Fourth, we used deep water temperature (i.e., temperature at 50m depth) at a
station �ve miles o� the coast of Newport, Oregon to index inter-annual variability of the source
of waters which upwell along the Oregon coast. This source water is thought to be primarily in�u-
enced by wind intensity and large-scale climate patterns such as the PDO and NPGO (Jacox et al.
2014; Chhak and Di Lorenzo 2007). In particular, when northerly winds are strong, water from
a deeper (and thus colder) o�shore source upwells onto the shelf; when winds are weak, waters
upwell from a shallower (thus warmer) source.

The two remaining environmental variables represent inter-annual variability in regional-

http://www.cpc.ncep.noaa.gov
http://jisao.washington.edu/pdo/PDO.latest
http://www.o3d.org/npgo/npgo.php
http://www.ncdc.noaa.gov/ersst/
http://www.pfel.noaa.gov
http://www.pfel.noaa.gov
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scale biological (rather than physical) processes. First, to index prey availability of juvenile �sh
available to coho salmon during their �rst summer at sea, we used the average biomass (mg car-
bon / 1000 m3) of those ichthyoplankton species that in January–March will develop into the
individuals that the coho salmon will eat in summer (primarily sand lance and osmerids). Sam-
pling of ichthyoplankton occurred from 1998–2011 (Table 4.1). All �sh larvae were identi�ed to
the species level and a subset of lengths were taken for each species. Length-to-biomass conver-
sions were made using published values, and total biomass at each station was estimated (Peterson
et al. 2012). Details of the ichthyoplankton sampling procedures can be found in Daly et al. (2013).
Although our ichthyoplankton biomass variable indexes prey resource availability prior to smolt
out-migration (i.e., January–March), previous research has indicated that ichthyoplankton biomass
during this period is correlated with coho salmon survival (Daly et al. 2013).

Second, to index the quality of food (rather than the quantity) available to coho salmon dur-
ing their early marine residency, we used the average May–September log10 biomass (mg carbon
/ m3) of three primary copepod species, Pseudocalanus mimus, Acartia longiremis, and Calanus

marshallae. These copepod species are associated with northern water sources and generally have
a higher lipid content than copepod species characteristic of other water sources o� the coast of
Oregon (Lee et al. 2006; Hoo� and Peterson 2006). Copepods were sampled biweekly from 1998–
2011 during May–September at the NH05 station along the Newport Hydrographic Line. Details
of the copepod sampling procedures can be found in Lamb and Peterson (2005), Peterson and
Keister (2003), and Bi et al. (2011b). We used a May–September average to represent conditions
experienced by coho salmon during and just after smolt out-migration (Bi et al. 2011a).

In general, all environmental variables were averaged over a temporal period corresponding
to either the winter prior to ocean entry or the �rst summer the coho salmon were in the ocean
to represent conditions coho salmon experience during the �rst ocean summer (Table 4.1). Unless
stated otherwise, all reported years correspond to the ocean entry year for the coho salmon cohort.

4.3.3 Probabilistic networks

Probabilistic networks are a class of graphical models that permit the explicit and intuitive model-
ing of ecological networks while also taking uncertainties into account explicitly (Pearl 1988; Varis
1995). A complete probabilistic network is composed of three parts: (1) a set of variables, (2) a
network structure in the form of a directed acyclic graph, and (3) a set of local probability distribu-
tions associated with each variable (Heckerman 1996). These three components of a probabilistic
network produce a joint probability distribution over all variables in a network (also known as the
global distribution for the network).
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Our probabilistic network analysis consisted of four steps. First, we constructed two directed
acyclic graphs, which represented alternative network structures, using the nine environmental
variables. Second, we estimated the strength of each link and pathway in the networks using par-
tial correlation coe�cients. Third, we �t the probabilistic networks by estimating the parameters
of the local probability distributions for each network. Fourth, we used the �tted networks to es-
timate conditional posterior probability distributions for recruitment given various scenarios for
the environmental variables.

Network structures

We used the nine environmental variables to construct two probabilistic network structures (Figs.
4.4 and 4.5) that represented the hypothesized structure of the ecological system. Both network
structures took the form of directed acyclic graphs, meaning neither network contained feedback
loops. Within the networks, ovals represent variables and arrows connecting variables indicate
dependencies among the variables. The networks in this study contain three types of variables
(1) variables with no incoming arrows (root variables), (2) variables with incoming and outgoing
arrows (intermediate variables), and (3) variables with only incoming arrows (in our networks
recruitment was the only variable with no outgoing arrows). Because intermediate variables can
be both dependent and independent variables within the network, we refer to variables at the base
of an arrow as parent variables and variables at the tip of an arrow head as child variables, as is
the convention for such analyses of probabilistic network models (Koller and Friedman 2009; Korb
and Nicholson 2004).

The �rst network structure was a physical network based on only physical environmental
variables for coho salmon ocean entry years 1970–2011. The physical network structure included
7 variables, 10 links among the variables, and 9 pathways connecting large-scale climate variables
with recruitment (Fig. 4.4). The second network structure was a biophysical network that com-
bined physical and biological environmental variables for ocean entry years 1998–2011. The bio-
physical network structure had 10 variables, 13 links, and 8 pathways connecting climate variables
and recruitment (Fig. 4.5).

Both the physical and biophysical network structures were organized in a spatial, temporal,
and functional manner to represent bottom-up forcing on coho salmon recruitment. For example,
large-scale climate and oceanographic patterns of variability were designated as root variables and
were averaged over the winter months prior to smolt outmigration (Table 4.1). These large-scale
variables were independent of each other in the networks (as indicated by the absence of arrows
connecting these variables in the networks) and directly in�uenced a set of regional-scale physical
oceanographic variables such as SST that represented variability in the late winter and spring
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Figure 4.4: Directed acyclic graph for the probabilistic network �t using only physical
environmental variables (called the physical network here). Ovals represent variables
and arrows indicate dependencies among variables within the network. Numbers
next to each arrow are the partial correlation coe�cients. Thick solid arrows indicate
the pathway with the highest average partial correlations (“link strength”, i.e., PDO
to SST to coho recruitment), whereas the thick dashed arrow indicates the �rst link
in the pathway with the second-highest average link strength.
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Figure 4.5: Directed acyclic graph for the probabilistic network �t using both physical
and biological environmental variables (called the biophysical network here). Ovals
represent variables and arrows indicate dependencies among variables within the net-
work. Numbers next to each arrow are the partial correlation coe�cients. Thick solid
arrows indicate the pathway with the highest average partial correlations (i.e., link
strength), whereas thick dashed arrows indicate the pathway with the second highest
average link strength.
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(Table 4.1). In the physical network, SST was directly linked to coho salmon recruitment (Fig. 4.4),
whereas in the biophysical network the regional-scale physical variables directly in�uenced a set
of regional-scale biological variables (e.g., copepod biomass), which were then directly connected
to coho salmon recruitment (Fig. 4.5).

Pathway and link strength

We used partial correlation coe�cients to quantify the strength of each link in the network graphs
(Zar 1999; Scutari 2010; Yang et al. 2011). Coe�cients were computed for each link in a network by
correlating two variables connected by an arrow while accounting for the e�ects of other variables
that had incoming arrows to the child variable of the arrow of interest. For example, the partial cor-
relation coe�cient for the link connecting ichthyoplankton biomass and coho salmon recruitment
in the biophysical network was computed by correlating these two variables, after removing the
e�ect of copepod biomass on ichthyoplankton biomass and recruitment. To help identify the path-
ways with the strongest associations between pairs of variables (i.e., relative pathway strength),
we averaged the absolute value of the partial correlation coe�cients for each link in a particular
pathway connecting large-scale climate variables with coho salmon recruitment. For example, to
estimate the relative strength of the pathway including the PDO, SST, and coho salmon recruit-
ment in the physical network, we averaged the partial correlation coe�cients for the link between
the PDO and SST and between SST and recruitment.

Network parameter estimation

Both the physical and biophysical probabilistic networks took the form of linear Gaussian prob-
abilistic networks where the local probability distributions associated with each variable were
assumed to be Gaussian and the joint distribution of all variables in the network was assumed
to be multivariate normal (Shachter and Kenley 1989; Koller and Friedman 2009). Parameters of
local distributions were estimated using linear regression models �t by maximum likelihood. For
variables with incoming arrows, the regression models were �t with the child variable as the re-
sponse variable and the parent variables as the predictor variables. For example, in the biophysical
network (Fig. 4.5), parameters for the local distribution for SST were estimated using a linear re-
gression model where SST was the dependent variable and the ONI and PDO were the independent
variables. For root variables, models were �t with only an intercept term. For coho salmon recruit-
ment, models were �t using natural log-transformed coho salmon recruitment data. Model �tting
was performed using R and the Bayesian network package bnlearn (Scutari 2010; R Core Team
2015).
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Unlike conventional path analysis (Wright 1934), the parameters of the regression models
(i.e., the parameters of the local distributions) were not of direct interest in our probabilistic net-
work analysis (Korb and Nicholson 2004; Koller and Friedman 2009). Instead, the �tted regression
parameters were used along with a Monte Carlo sampling algorithm to query the joint probabil-
ity distribution of the probabilistic network, which allowed us to estimate conditional posterior
probability distributions for recruitment given various scenarios for the environmental variables,
as explained in the following two sections (Henrion 1988).

Posterior distributions

Using the �tted probabilistic networks, we estimated two sets of conditional posterior probability
distributions for coho salmon recruitment to quantify the e�ect of the environmental variables on
recruitment. For both sets of posterior distributions, we �rst discretized the predictor environ-
mental variables into two categories, above or below the arithmetic mean value. The choice of
using two categories for the predictor variables was partly due to the low sample sizes available
for the environmental variables and to simplify presentation of the results (Koller and Friedman
2009). We then estimated conditional posterior probabilities for a range of recruitment values
that corresponded to the observed recruitment data, which allowed us to summarize the posterior
probabilities using cumulative probability distributions.

For the �rst set of posterior distributions, we estimated the probability of recruitment be-
ing less than a range of abundance values given values of a single environmental variable in the
network (i.e., we only speci�ed conditions for a single environmental variable at a time). For
instance, we estimated the conditional probability that recruitment would be less than or equal
to 150 000 salmon given that SST was above average. For environmental variables not directly
connected to recruitment (e.g., the PDO), this set of posterior distributions accounts for all path-
ways connecting that variable and recruitment by propagating through the network uncertainty
about the relationships among pairs of variables (see the Posterior sampling section for details).
That is, this set of posterior distributions quanti�es the joint e�ect of all pathways speci�ed in the
network connecting the environmental variable and recruitment. We evaluated two scenarios for
each environmental variable corresponding to the variable either being above or below average.

For the second set of posterior distributions, we estimated the probability of recruitment be-
ing less than a range of abundance levels, given that all parent variables of recruitment were either
above of below their mean value. For the physical network, this corresponded to estimating the
conditional probability of various levels of recruitment, given values for both SST and the spring
transition, whereas the conditioning variables on recruitment for the biophysical network were
ichthyoplankton biomass and copepod biomass. We estimated probabilities for four scenarios of
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environmental variables. Because both networks had two variables directly linked to recruitment,
scenarios included cases in which both environmental variables were either above or below av-
erage and the two cases in which one of the environmental variables was above average and the
other was below average.

Each set of posterior distributions included a single probability distribution for each discrete
case of an environmental variable (i.e., above and below average). To facilitate the interpretation
of results, we calculated the maximum di�erence between cumulative probability distributions
(∆p) for each discrete case of an environmental variable. For instance, ∆p for the two cumulative
probability distributions showing the e�ects of SST on recruitment was calculated by �nding the
maximum vertical di�erence (i.e., probability) between the cumulative probability distributions
for recruitment given above- and below-average SST conditions. To more easily compare results
from the physical and biophysical networks, we also estimated the posterior probability that coho
salmon recruitment would be less than or equal to 150 000 salmon, which is approximately equal
to average recruitment for 1970–2011 (149 152 salmon).

Posterior sampling

We estimated the conditional posterior probability distributions for recruitment using logic sam-
pling (also known as forward sampling), which is a type of rejection sampling (Henrion 1988; Korb
and Nicholson 2004). As an example, to estimate the conditional probability of recruitment being
below 150 000 salmon given that the PDO was above average in the physical network, we �rst
sampled values for the three large scale variables independently of each other weighting by the
prior distribution for each variable. We then sampled values for SST and upwelling weighting by
the known values of the large-scale variables. The spring transition was then sampled, weighting
by the known values of SST and upwelling. Finally, recruitment values were sampled, weighting
by the known values of both parent variables. The probability of recruitment being below 150 000
given an above average PDO value was then estimated by dividing the number of samples where
recruitment was less than 150 000 and the PDO was above average by the number of samples
where the PDO was above average.

More generally, the estimation algorithm consisted of sampling from the joint posterior
distribution, where the samples were weighted either by the prior distribution for variables with
no parents or the value of the parent variables. The prior distributions for the root variables
corresponded to the observed distribution over the period included in the model and were sampled
independently for each root variable. Samples were only retained if the value of the sampled
evidence variable of interest (e.g., PDO is above average) was the same as the value speci�ed in
the analysis. The conditional probability for coho salmon recruitment given the evidence was then
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computed as the number of samples where both the evidence and recruitment values matched
the speci�ed value divided by the total number of samples where the sampled evidence values
match the speci�ed value (Henrion 1988). For each analysis, we generated 1 000 000 samples from
the posterior distribution in order to ensure that events with low probabilities were su�ciently
sampled (Koller and Friedman 2009).

4.4 Results

4.4.1 Pathway and link strength

In both networks, the pathway with the highest relative strength originated with the PDO (Table
4.2). In the physical network, the pathway with the highest average link strength included the
PDO, SST, and recruitment (average of the absolute values of the two relevant correlations = 0.54;
Fig. 4.4 and Table 4.2) and the pathway with the second highest relative strength included the ONI,
SST, and recruitment (average correlation = 0.46). The pathway with the strongest association
among variables in the biophysical network was nearly identical to the strongest pathway in the
physical network, but also included ichthyoplankton biomass (average correlation = 0.54; Fig. 4.5
and Table 4.2), while the pathway with the second highest relative strength went from the PDO
through deep temperature and copepod biomass to recruitment (average correlation = 0.53).

In the physical network, the two environmental variables with a direct e�ect on recruit-
ment (SST and spring transition) had a negative relationship with recruitment indicating that
cooler surface temperatures and an earlier spring transition date are associated with higher re-
cruitment (Fig. 4.4). Between these two variables, SST had a considerably stronger relationship
with recruitment than the spring transition with a partial correlation coe�cient more than twice
as strong (Fig. 4.4). In the biophysical network, both variables with a direct e�ect on recruitment
(ichthyoplankton and copepod biomass) had a positive relationship with recruitment, suggesting
higher prey biomass is associated with increased recruitment, although the relationship between
ichthyoplankton biomass and recruitment was twice as strong as the relationship between cope-
pod biomass and recruitment (Fig. 4.5).

4.4.2 Posterior distributions

In the probabilistic analysis, the variables with the strongest overall e�ect (i.e., the joint e�ect of
all pathways connecting a single environmental variable and recruitment) on the probability of re-
cruitment were regional-scale physical and biological variables with a direct e�ect on recruitment
(Figs. 4.6 and 4.7). In the physical network, SST had the strongest e�ect on recruitment with ∆p =
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Table 4.2: Relative pathway strength for each pathway connecting large-scale climate
variables and coho salmon recruitment in the physical and biophysical networks; r
gives the average of the absolute value of the partial correlation coe�cients for each
link in a pathway.

Network Pathway r
Physical PDO, SST 0.54

ONI, SST 0.46
NPGO, SST 0.43
PDO, SST, Spring Transition 0.35
ONI, SST, Spring Transition 0.30
ONI, Upwelling, Spring Transition 0.28
NPGO, SST, Spring Transition 0.28
PDO, Upwelling, Spring Transition 0.27
NPGO, Upwelling, Spring Transition 0.24

Biophysical PDO, SST, Ichthyoplankton 0.54
PDO, Deep Temperature, Copepod Biomass 0.53
ONI, SST, Ichthyoplankton 0.50
NPGO, Deep Temperature, Copepod Biomass 0.49
PDO, Upwelling, Spring Transition, Copepod Biomass 0.36
PDO, SST, Spring Transition, Copepod Biomass 0.35
ONI, Upwelling, Spring Transition, Copepod Biomass 0.35
ONI, SST, Spring Transition, Copepod Biomass 0.33

0.29 (Fig. 4.6d), which was moderately larger than the next most in�uential variable, the PDO (∆p
= 0.18; Fig. 4.6b). For the biophysical network, ichthyoplankton biomass had the strongest e�ect
on recruitment with ∆p = 0.40, which was considerably stronger than all other variables in the
network (Fig. 4.7). Di�erences in steepness of the two conditional probability distributions for the
physical network meant that there was a 76% chance that recruitment would be 150 000 or less
when SST was above average and a 49% chance of recruitment being equal to or below that level
when SST was below average (Fig. 4.6d). Likewise, for the biophysical network, there was a 34%
chance that recruitment would be 150 000 or less when ichthyoplankton biomass was greater than
average and a 73% chance when ichthyoplankton biomass was less than average (Fig. 4.7g).

Among the three large-scale climate variables, the PDO had the strongest overall e�ect on
recruitment in both networks with a ∆p between 2 and 4 times greater than for the ONI and
NPGO (Figs. 4.6 and 4.7). In particular, a warm PDO (i.e., when the PDO was above average) was
associated with lower recruitment. For example, there was a 71% chance that recruitment would
be 150 000 salmon or less when the PDO was in a warm phase for the physical network and a 62%
chance for the biophysical network (Figs. 4.6b and 4.7b). When the PDO was cool, the probability
of recruitment being equal to or below 150 000 was considerably less, with a 54% chance in the
physical network and a 45% chance in the biophysical network. In contrast, for the NPGO and ONI,
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Figure 4.6: Cumulative probability distributions of coho salmon recruitment for the
physical network conditioned on each variable in the network. Solid red curves in-
dicate the cumulative probability for recruitment given that the environmental vari-
able is greater than average, whereas dashed blue curves show cumulative probability
when the environmental variable is less than average. Thin dotted lines indicate the
cumulative probabilities for 150 000 salmon. The ∆p gives the maximum vertical
di�erence in probability between the two cumulative distributions within a panel.
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Figure 4.7: Cumulative probability distributions of coho salmon recruitment for the
biophysical network conditioned on each variable in the network. Solid red curves
indicate the cumulative probability for recruitment given that the environmental vari-
able is greater than average, whereas dashed blue curves show cumulative probability
when the environmental variable is less than average. Thin dotted lines indicate the
cumulative probabilities for 150 000 salmon. The ∆p gives the maximum vertical
di�erence in probability between the two cumulative distributions within a panel.
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the probability of recruitment being 150 000 or less was nearly identical, regardless of whether
these variables were above or below average.

When both parent variables of recruitment in the physical network were above average,
that is, when SST was warm and the spring transition occurred late, the cumulative probability
distribution for recruitment (solid red curve in Fig. 4.8a) was considerably steeper compared to
when SST was cool and the spring transition occurred early (solid blue curve in Fig. 4.8a). This
di�erence in steepness corresponded to an 81% chance recruitment would be equal to or below
150 000 salmon when both conditioning variables were above average but only a 43% when both
variables were below average (Fig. 4.8a). For the biophysical network, when both variables that
index coho salmon prey resources (i.e., ichthyoplankton and copepod biomass) were above aver-
age, the cumulative probability distribution for recruitment was considerably less steep (solid red
curve in Fig. 4.8b) than when the prey resource indices were below average (solid blue curve in
Fig. 4.8b). This di�erence in the cumulative probability distributions equated to a 25% chance that
recruitment would be 150 000 salmon or less when both prey indices were above average and a
81% chance recruitment would be equal to or below that level when both prey indices were below
average.

When oceanographic conditions were mixed, that is, when one parent variable of recruit-
ment was above average and the other was below average, the probability that recruitment would
be 150 000 salmon or less tended to be more in�uenced by SST than the spring transition date in
the physical network and by ichthyoplankton biomass than copepod biomass in the biophysical
network (Fig. 4.8). For instance, the cumulative probability distribution when ichthyoplankton
biomass was below average and copepod biomass was above average (blue dashed curve in Fig.
4.8b) was moderately steeper compared to when ichthyoplankton biomass was above average and
copepod biomass was below average (red dashed curve in Fig. 4.8b).

4.4.3 Productivity index

The results from the networks �tted using an index of coho salmon productivity were qualitatively
the same as the results shown above for the networks �tted using total coho salmon recruitment.
The rank order of the pathways with the highest average partial correlation coe�cients was iden-
tical for both the physical and biophysical networks (Supporting materials Table 4.3). Similarly,
the rank order of the in�uence of each environmental variable on coho salmon (as indicated by
∆p) was identical for both the physical and biophysical networks (Supporting materials Figs. 4.10,
4.11, and 4.12).



CHAPTER 4. QUANTIFYING ECOLOGICAL NETWORK EFFECTS 82

●

0 200 400 600 800

0.0

0.2

0.4

0.6

0.8

1.0
(a) Physical network

C
um

ul
at

iv
e 

pr
ob

ab
ili

ty ∆p = 0.39

SST ST

+
+
−
−

+
−
+
−

●

0 200 400 600 800

(b) Biophysical network

Recruits (thousands)

∆p = 0.56

Ich Cope

+
+
−
−

+
−
+
−

Figure 4.8: Cumulative conditional posterior probability distributions for coho salmon
recruitment conditioned on the parent variables of recruitment for (a) the physical
network (conditioned on sea surface temperature (SST) and spring transition (ST)
date) and (b) the biophysical network (conditioned on ichthyoplankton biomass (Ich)
and copepod biomass (Cope)). Solid red curves indicate the cumulative probability
for recruitment given that both conditioning variables are greater than average (+).
Solid blue curves show cumulative probabilities when both variables are less than
their long-term averages (−). Dashed curves indicate scenarios when the condition-
ing variables are mixed. For the physical network, the red dashed curve indicates
cumulative probabilities when SST is above average and the spring transition is be-
low average, whereas the dashed blue curve shows the cumulative probabilities for
the opposite conditions. For the biophysical network, the red dashed curve indicates
cumulative probabilities when ichthyoplankton biomass is above average and cope-
pod biomass is below average, whereas the dashed blue curve shows the cumulative
probabilities for the opposite conditions. Thin dotted lines indicate the cumulative
probabilities for 150 000 salmon. The ∆p gives the maximum vertical di�erence in
probability between the two cumulative distributions where both conditioning vari-
ables are either above or below average within a panel.
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4.5 Discussion

In this study, we estimated the joint e�ect and relative strength of multiple ecological pathways on
coho salmon recruitment in the Northern California Current to better understand the mechanisms
linking climate variability and salmon recruitment. We found (1) pathways originating with the
PDO were the most in�uential on recruitment with a joint e�ect considerably larger than for the
ONI or NPGO, (2) warm ocean years (i.e., when surface temperatures were above average) were
associated with reduced salmon prey biomass as well as lower recruitment levels compared to cool
years, and (3) the probability of coho salmon recruitment being below average was most strongly
in�uenced by regional-scale SST and ichthyoplankton biomass. These results suggest that shifts in
climate and ocean conditions resulting from natural variability or anthropogenic climate change
could in�uence salmon recruitment through multiple mechanisms.

Our �ndings indicate there were multiple pathways with high average link strength con-
necting the PDO and recruitment of Oregon coho salmon, suggesting that a single large-scale
climate event can in�uence salmon recruitment simultaneously through multiple mechanisms. In
the pathway with the strongest associations among variables, SST and ichthyoplankton biomass
mediated the e�ects of the PDO on recruitment. This result broadly agrees with those of sev-
eral previous studies that suggest thermal environments are important for the recruitment pro-
cesses of higher-trophic level species (Martins et al. 2012; Planque and Frédou 1999; Hunt et al.
2011). Although temperature can in�uence salmon directly, for example, by in�uencing metabolic
or growth rates (Mortensen et al. 2000; Farley et al. 2007b), the occurrence of ichthyoplankton
biomass as an intermediary between SST and recruitment in the biophysical network suggests
that the indirect e�ect of temperature through bottom-up forcing can also strongly in�uence re-
cruitment. In particular, it appears that cooler ocean temperatures are associated with increased
prey resources for juvenile salmon. This is consistent with the �ndings of Daly et al. (2013) and also
supports the idea of a combined in�uence of ocean temperature and prey resources on juvenile
salmon (Pearcy 1992).

The pathway with the second strongest association among variables included deep water
temperature and copepod biomass as intermediaries between the PDO and recruitment, indicating
changes in ocean current patterns and the subsequent advection of zooplankton into the Northern
California Current region may also in�uence recruitment. O� the Oregon coast, zooplankton are
generally associated with one of two community structures, (1) a northern community that has low
species diversity and large copepod species that are rich in lipids, or (2) a southern community that
has high species diversity and small copepod species that are poor in lipids (Hoo� and Peterson
2006). The observed negative relationship between deep water temperature and copepod biomass
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supports the �ndings of previous studies that indicated the lipid-rich zooplankton community is
associated with the transport of cooler water from northern areas into the Northern California
Current (Keister et al. 2011). Furthermore, the positive relationship between copepod biomass
and recruitment suggests increased lipid-rich copepod prey resources are associated with higher
salmon recruitment (Bi et al. 2011a).

In both networks, cool PDO conditions (i.e., when the PDO was below the long-term av-
erage) were associated with increased recruitment compared to warm conditions. Furthermore,
cool periods were also associated with cooler deep water temperatures (indicative of increased
equator-ward transport), increased upwelling, increased ichthyoplankton biomass, and a more
northern copepod community composition o� the coast of Oregon. Although numerous previous
studies have indicated similar associations among these environmental variables during cool PDO
regimes (King et al. 2011; Peterson and Schwing 2003; Keister et al. 2011; Mantua et al. 1997), our
results extend those �ndings by explicitly quantifying the uncertainty in these relationships in the
form of posterior probabilities. For example, the results for the biophysical network indicated that
under warm PDO conditions, there was a 62% chance that recruitment would be below the long-
term average. In contrast, under cool PDO conditions, there was only a 45% chance recruitment
would be below average. Although this suggests that cool ocean conditions are bene�cial for coho
salmon, it also indicates there is considerable uncertainty about recruitment levels even when the
PDO is below average. This uncertainty may partly arise due to our focus on recruitment, which
also includes variability from the freshwater life phase, although our sensitivity analysis using
productivity showed almost the same results as using total recruitment.

We found that ichthyoplankton biomass tended to be more in�uential than copepod biomass
on recruitment with an e�ect twice as strong. The importance of ichthyoplankton biomass over
copepod biomass was surprising because several previous studies have reported strong positive
relationships between the biomass of northern copepod species and coho salmon survival (Bi et al.
2011a; Ruzicka et al. 2011; Peterson and Schwing 2003). However, the �nding is consistent with
evidence indicating that coho salmon diets during the �rst ocean summer are primarily composed
of small �sh species (by percent weight) such as Paci�c sand lance and osmerids (Brodeur et al.
2007a; Weitkamp and Sturdevant 2008). The importance of ichthyoplankton biomass likely re�ects
a bottom-up forcing mechanism where increased ichthyoplankton biomass results in increased
growth rates, body size, and marine survival of coho salmon. However, because ichthyoplankton
are also prey for numerous other species (Gladics et al. 2014; Miller et al. 2010; Miller and Brodeur
2007) and because ocean conditions that in�uence ichthyoplankton biomass may also in�uence
other marine species, this variable may act as a surrogate for other biological processes that directly
in�uence survival such as predator distributions, abundances, or diets.
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The result that upwelling did not have a strong e�ect on recruitment deviates from earlier
�ndings that increased upwelling intensity is associated with increased marine survival of Oregon
coho salmon (Fisher and Pearcy 1988; Logerwell et al. 2003). This di�erence in results may be due
to at least three factors. First, in this study we used total recruitment from wild coho salmon stocks,
which includes variability associated with the freshwater life phase, whereas the previous studies
used marine survival of hatchery reared coho salmon as the response variable. Second, there is
some evidence that the relationship between upwelling and salmon survival may not be stationary.
In particular, Botsford and Lawrence (2002) and Pearcy (1997) indicated that the previous strong
correlation between upwelling and coho salmon survival in the Northern California Current has
broken down since the early 1990s. Third, the weak relationship may also be due to how upwelling
was indexed. To index upwelling intensity, we averaged the daily Bakun upwelling index over the
months of March and April. However, this index does not di�erentiate between magnitude and
duration of upwelling events within this period. In particular, sustained wind speeds over a certain
threshold may reduce ecosystem productivity due to transport of nutrients and phytoplankton out
of the system (Botsford et al. 2006; 2003). Therefore, it is possible that shorter-term upwelling
“events” on the scale of days or weeks may be more important for determining productivity in the
coastal ecosystem than the seasonal upwelling average.

Some results from the physical and biophysical networks were similar, including show-
ing the importance of the PDO and SST in the strongest pathways and the minimal in�uence of
the NPGO and upwelling on recruitment. These similarities between the networks, which were
�t using di�erent but overlapping years, suggests that the major pathways and the most impor-
tant climate and physical variables for determining recruitment did not di�er greatly between the
1970–2011 and 1998–2011 time periods. In addition, this similarity indicates that our results are
not sensitive to the di�erent network structures that we used to connect large-scale climate and
regional-scale physical variables.

The parameters of the local distributions in our probabilistic networks were estimated us-
ing linear regression models, therefore, we implicitly assumed these relationships were stationary
(i.e., the parameters were constant over time; Walters 1987). However, sharp changes in the abun-
dance and productivity index for Oregon Coast coho salmon over the past 40 years (Fig. 4.3 and
Supporting materials Fig. 4.9) may re�ect non-stationarity in the recruitment time series. Detect-
ing non-stationarity and its causes is often problematic in �sheries abundance time series due to
small sample sizes, the lack of contrast in the data, and confounding with environmental condi-
tions and changes in harvest management (Walters 1987; Peterman 2009). In the case of Oregon
Coast coho salmon, the short time series make it di�cult to detect non-stationarity, as opposed to
large variations, even though there is moderately good contrast in the recruitment estimates. In
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addition, potential changes in the underlying relationships between recruitment and the environ-
mental variables may be confounded with other factors including changes in harvest management
strategies, or changes in freshwater habitat. Because the results of the physical and biophysical
networks were similar (suggesting there was little change in relationships between the entire study
period and the most recent 14 years), we believe our stationarity assumption is valid for the time
periods investigated, although, we caution against extrapolating the reported relationships outside
the temporal bounds used to �t the probabilistic networks.

Our network modeling approach explicitly depicted the hypothesized ecological network,
however, relationships within the network are correlative rather than causative. Therefore, our
results could be confounded with variables or pathways not included in the networks. For example,
the networks presented in this study only included pathways representing bottom-up forcing. It is
likely though, that shifts in large-scale climate patterns also in�uence top-down forcing pathways,
for instance, by in�uencing the distribution of predators of juvenile coho salmon (Pearcy 2002;
Perry et al. 2005). Therefore, our �ndings merely represent an initial step in understanding how
salmon recruitment is in�uenced by the ecological network: further research is needed into other
ecological pathways to more clearly identify the ecological mechanisms.

While our research focused on using the �tted probabilistic networks to better understand
how environmental conditions in�uence coho salmon, the networks could also be used as a tool to
help managers of salmon �sheries by providing pre-season forecasts of recruitment given di�erent
scenarios of environmental conditions (Nyberg et al. 2006; Araujo et al. 2013). The probabilistic
network approach has several advantages over more traditional modeling and forecasting meth-
ods (e.g., stock recruitment models with environmental e�ects) including explicitly depicting the
underlying ecological network, accounting for multiple pathways and indirect e�ects, and pre-
senting results in a probabilistic form. In particular, such explicit representation of uncertainty is
an important aspect of using ecological models to guide decision-making (Clark et al. 2001).

In conclusion, our results demonstrate that large-scale climate patterns can strongly in�u-
ence coho salmon recruitment simultaneously through multiple ecological pathways. This sug-
gests that multiple ecological mechanisms may underlie the large �uctuations observed in adult
returns of Paci�c salmon. In particular, it appears that both thermal regimes and prey resources
are important processes in the mechanisms connecting climate variability and salmon recruitment.
Taken together, these conclusions highlight the importance of quantifying the cumulative e�ects
of these pathways to better understand how future changes in climate patterns will in�uence
higher-trophic-level species (Ainsworth et al. 2011; Fulton 2011).
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4.7 Supporting materials

4.7.1 Supporting �gures and tables

Table 4.3: Relative pathway strength for each pathway connecting large-scale climate
variables and the coho salmon productivity index in the physical and biophysical net-
works; r gives the average of the absolute value of the partial correlation coe�cients
for each link in a pathway.

Network Pathway r
Physical PDO, SST 0.56

ONI, SST 0.48
NPGO, SST 0.44
PDO, SST, Spring Transition 0.36
ONI, SST, Spring Transition 0.30
ONI, Upwelling, Spring Transition 0.28
NPGO, SST, Spring Transition 0.28
PDO, Upwelling, Spring Transition 0.27
NPGO, Upwelling, Spring Transition 0.25

Biophysical PDO, SST, Ichthyoplankton 0.58
PDO, Deep Temperature, Copepod Biomass 0.55
ONI, SST, Ichthyoplankton 0.54
NPGO, Deep Temperature, Copepod Biomass 0.51
PDO, Upwelling, Spring Transition, Copepod Biomass 0.37
PDO, SST, Spring Transition, Copepod Biomass 0.36
ONI, Upwelling, Spring Transition, Copepod Biomass 0.36
ONI, SST, Spring Transition, Copepod Biomass 0.34
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Figure 4.9: Time series of the coho salmon productivity index. The productivity index
was calculated as the residuals from a Beverton-Holt spawner-recruit model. Grey
shaded region indicates the period used for the biophysical network.
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Figure 4.10: Cumulative probability distributions of the coho salmon productivity in-
dex for the physical network conditioned on each variable in the network. Solid red
curves indicate the cumulative probability for the productivity index given that the
environmental variable is greater than average, whereas dashed blue curves show
cumulative probability when the environmental variable is less than average. Thin
dotted lines indicate the cumulative probabilities for average productivity. The ∆p
gives the maximum vertical di�erence in probability between the two cumulative
distributions within a panel.
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Figure 4.11: Cumulative probability distributions of the coho salmon productivity index
for the biophysical network conditioned on each variable in the network. Solid red
curves indicate the cumulative probability for the productivity index given that the
environmental variable is greater than average, whereas blue dashed curves show
cumulative probability when the environmental variable is less than average. Thin
dotted lines indicate the cumulative probabilities for average productivity. The ∆p
gives the maximum vertical di�erence in probability between the two cumulative
distributions within a panel.
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Figure 4.12: Cumulative conditional posterior probability distributions for the coho
salmon productivity index conditioned on the parent variables of productivity for (a)
the physical network (conditioned on sea surface temperature (SST) and spring tran-
sition (ST) date) and (b) the biophysical network (conditioned on ichthyoplankton
biomass (Ich) and copepod biomass (Cope)). Solid red curves indicate the cumula-
tive probability for the productivity index given that both conditioning variables are
greater than average (+). Solid blue curves show cumulative probabilities when both
variables are less than their long-term averages (−). Dashed curves indicate scenarios
when the conditioning variables are mixed. For the physical network, the red dashed
curve indicates cumulative probabilities when SST is above average and the spring
transition is below average, whereas the dashed blue curve shows the cumulative
probabilities for the opposite conditions. For the biophysical network, the red dashed
curve indicates cumulative probabilities when ichthyoplankton biomass is above av-
erage and copepod biomass is below average, whereas the dashed blue curve shows
the cumulative probabilities for the opposite conditions. Thin dotted lines indicate the
cumulative probabilities for average productivity. The ∆p gives the maximum verti-
cal di�erence in probability between the two cumulative distributions where both
conditioning variables are either above or below average within a panel.



Chapter 5

Confronting challenges to integrating
Paci�c salmon into ecosystem-based
management policies1

5.1 Abstract

Ecosystem-based management is an increasingly prominent paradigm for the management of
living marine resources with a focus on maintaining ecosystem level properties and processes
in the presence of anthropogenic and natural disturbances. Although highly migratory marine
and anadromous �sh species often disproportionately contribute to the structure and function of
ecosystems, incorporating these species into ecosystem-based management policies remains chal-
lenging because they spend a considerable portion of time outside the boundaries that de�ne a
particular management area. In this paper, we use two case studies to examine how challenges
arising from ecosystem openness, imperfect information, and ecosystem complexity can impede
e�orts to integrate highly migratory Paci�c salmon (Oncorhynchus spp.) into ecosystem-based
management policies. Our analysis highlights three main factors that hinder more e�ective in-
tegration: (1) uncertainties about the impacts of human activities and ecological processes that
occur in geographically distant jurisdictional areas or at spatial scales larger than the ecosystem-
based management area, (2) spatial asymmetries in the distribution of costs and bene�ts associated
with management decisions (i.e., positive or negative externalities), and (3) static management
policies that prevent updating management decisions in a timely manner when ecosystem condi-
tions change or new information becomes available. Given these factors, we suggest two potential

1S.P. Cox and M.B. Rutherford are co-authors on this chapter, which is in preparation for submission to a journal.
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strategies to address migratory challenges. First, we recommend the creation of an international
ecosystem synthesis group to facilitate the collection, analysis, and dissemination of ecological,
social, and policy information across national and other jurisdictional boundaries. Second, we
recommend the expanded use of dynamic in-season management policies that allow rapid updat-
ing of management decisions based on evolving information about ecosystem conditions. Our
�ndings further suggest that ecosystem-based management policies need to explicitly account for
mismatches in the scale at which ecosystem services are provided by highly migratory species and
the scale at which human activities and natural processes impact those services.

5.2 Introduction

Over the past few decades, ecosystem-based management (EBM) has emerged as a leading paradigm
for the management of living marine resources in many parts of the world, with a focus on main-
taining ecosystem level properties and processes (e.g., nutrient cycles and trophic interactions) in
the presence of anthropogenic and natural disturbances (Engler 2015; Skjoldal and Misund 2008;
Fletcher 2008; Constable 2011; Olsson et al. 2008). A key principle underlying EBM is that dis-
tinct boundaries demarcate the management area, with the boundaries ideally being chosen based
on the ecological properties of the system rather than existing socio-political boundaries (Long
et al. 2015; Engler 2015). However, in addition to the di�culties of managing across existing juris-
dictional boundaries, most marine ecosystems cannot be easily discretized into manageable units
because ecosystem boundaries remain open, i.e., organisms, energy, or matter can move across
speci�ed ecosystem boundaries (O’Neill 2001).

Ecosystem openness presents a key challenge to integrating highly migratory species into
EBM policies because these species frequently move across ecosystem and jurisdictional bound-
aries. Indeed, highly migratory marine and anadromous �sh species provide critical connectivity
between geographically distant ecosystems and these species often play a disproportionately large
role in the structure and function of ecosystems by translocating organic material, nutrients, and
energy (Lundberg and Moberg 2003; Heupel et al. 2015). However, factors external to the manage-
ment area may strongly a�ect the status and contributions of species that spend a considerable
portion of their life cycle outside the human de�ned boundaries of an ecosystem. In particular, this
movement across management and jurisdictional boundaries may lead to mismatches between the
scale of management and the biology of a migratory �sh stock (Cash et al. 2006; Epstein et al. 2015).
To overcome these potential mismatches, some EBM initiatives are using very large spatial bound-
aries (e.g., large marine ecosystems) in an attempt to capture full ecosystems; however, even these
larger EBM initiatives are often not successful at including the full life cycle of many highly mi-
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gratory species, such as Paci�c salmon (Oncorhynchus spp.; Field and Francis 2006; Sherman and
Duda 1999; Wang 2004). Jurisdictional challenges make it unrealistic to expect that management
will be able to scale up to the necessary level to capture the full spatial range of highly migratory
species (Cowan et al. 2012; Lascelles et al. 2014). Therefore, in this study, we focus on the chal-
lenges associated with accounting for and incorporating highly migratory species into existing
local and regional scale EBM initiatives.

A second major source of challenges to integrating highly migratory marine species into
EBM is the quality of the available information. In order to practice EBM, we must identify and
estimate cumulative impacts from a diverse suite of physical, biological, and human in�uences
on marine ecosystems across multiple spatio-temporal scales (Lascelles et al. 2014; Halpern et al.
2008). However, our ability to study and manage these cumulative impacts is limited because we
often have imperfect information (e.g., non-existent data or data with potentially large observation
error) about the status of particular ecosystem components or the drivers of ecosystem dynamics.
For instance, information is usually lacking to separate particular cause and e�ect relationships
because we tend to study only the most economically dominant components and drivers of ecosys-
tems. A third source of challenges is that even when good information is available, ecosystem com-
plexity (i.e., numerous ecological processes interacting in multiple, and often non-linear ways) can
limit our ability to recognize the drivers of patterns and processes in natural systems because un-
derlying cause-e�ect relationships may be spontaneous and non-stationary over space and time
(Hsieh et al. 2005; Burkett et al. 2005; Sche�er et al. 2001). In other words, new cause-e�ect rela-
tionships may emerge while others disappear by the time we accumulate enough information to
understand any particular one (Myers 1998).

These three features—ecosystem openness, imperfect information, and ecosystem complexity—
are clearly evident in coupled marine-terrestrial ecosystems along the west coast of North Amer-
ica, where policy-makers are struggling to integrate highly migratory Paci�c salmon into EBM
policies. In this paper, we �rst examine how challenges arising from openness, imperfect informa-
tion, and ecosystem complexity can impede e�orts to integrate highly migratory Paci�c salmon
into EBM policies and then we explore potential strategies that could be implemented to over-
come these challenges. Although we focus on two case studies involving Paci�c salmon, the chal-
lenges and strategies discussed appear to be widely applicable to other highly migratory marine
or anadromous �sh species that move among jurisdictions and ecosystems.
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5.3 Salmon and ecosystem-based management

Paci�c salmon typically require a continuum of ecosystems spanning hundreds or thousands of
kilometers to complete their anadromous life cycle. The combined extent of these ecosystems
ranges from diverse headwaters of large river systems to the pelagic ocean environment of the
North Paci�c Ocean, Gulf of Alaska, and Bering Sea. Within these varied ecosystems, Paci�c
salmon provide numerous ecosystem services, including contributing to critical ecosystem func-
tions (e.g., nutrient cycles in freshwater ecosystems), providing economic and food provisioning
services to commercial, subsistence, and recreational �shing sectors, and contributing to social
and cultural dimensions of coastal North Paci�c communities.

Declines in Paci�c salmon abundance over the past few decades highlight their importance
in numerous regions along the west coast of North America. For example, the Yukon and Kuskok-
wim River regions in western Alaska were declared economic disaster areas following declining
returns of adult chinook salmon (O. tshawytscha) and chum salmon (O. keta) throughout the 1990s
and 2000s. Con�icts continue in these regions as government managers and stakeholders strug-
gle to allocate the diminished adult salmon returns among �shery sectors (Ebbin 2002; 2003).
Similarly, in southern British Columbia (BC), declining adult abundances of Fraser River sockeye
salmon (O. nerka) throughout the 2000s resulted in limited opportunities for commercial, subsis-
tence, and recreational harvest and prompted a federal judicial inquiry (the Cohen Commission)
involving government o�cials, scientists, and other stakeholders to determine the causes of the
declines (Cohen 2012). Along the west coast of the United States, many salmon populations have
been extirpated and several others are listed as threatened or endangered under the United States
Endangered Species Act, severely reducing the ecosystem services provided by Paci�c salmon in
this region (Nehlsen et al. 1991; NMFS 2015; Williams et al. 2011).

Declining adult salmon abundances have widespread e�ects on ecosystem structure and
function that can detrimentally a�ect other valued components of ecosystems, including econom-
ically important species. For example, migration of adult salmon into freshwater provides a large
in�ux of marine derived nutrients to aquatic and terrestrial ecosystems (Claeson et al. 2006; John-
ston et al. 2004; Chaloner and Wip�i 2002). This large subsidy of nutrients (e.g., nitrogen and
phosphorous) and organic matter (e.g., organic carbon) gets incorporated into multiple levels of
the food chain, providing critical connectivity between marine and terrestrial ecosystems (Claeson
et al. 2006; Johnston et al. 2004). Migrating and spawning salmon, as well as post-spawning car-
casses, are also a key food resource for numerous predators and scavengers in marine, freshwater,
and terrestrial systems including birds, bears, whales, seals, and sea lions (Ford et al. 2016; Olesiuk
1993; Trites et al. 2007; Hilderbrand et al. 1999). In some cases, such as orca whales (Orcinus orca)
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in the Salish Sea, adult chinook salmon are the primary diet item for most of the year (Ford et al.
2016).

Maintaining ecosystem level properties such as nutrient cycles and trophic linkages requires
a holistic, ecosystem-based approach to management of living marine resources because of the
complex and non-linear connections among ecosystem components (Engler 2015). Indeed, sev-
eral state and federal agencies responsible for managing marine resources along the west coast of
North America have either started to implement EBM policies or are in the process of develop-
ing EBM policies. For example, in 2007 the state of Washington (WA) created the Puget Sound
Partnership, a public-private partnership made up of government agencies, scientists, and private
groups, with the goal of implementing an ecosystem-based management approach to resource use
in Puget Sound, WA (Ruckelshaus et al. 2009; Samhouri et al. 2011). Similarly, in BC, the Marine
Plan Partnership for the North Paci�c Coast (MaPP)—a co-led partnership between the provincial
government and First Nations—was created in 2011 to facilitate EBM e�orts along the BC North
Coast. At the federal level, the United States National Marine Fisheries Service recently released a
policy directive that establishes “a framework of guiding principles to enhance and accelerate the
implementation of EBFM [ecosystem-based �sheries management]” (NMFS 2016).

A common element of these EBM initiatives is that they are largely con�ned within existing
socio-political boundaries. For instance, Ruckelshaus et al. (2009) notes that the “Puget Sound
Partnership is focusing on ecosystem-based management of the marine waters and lands within
Washington State, while recognizing that the entire ecosystem spans Washington State and British
Columbia.” For highly migratory species, such arbitrarily de�ned ecosystem boundaries can result
in a mismatch between the scale of the management or jurisdictional area and the biology of the
�sh stock. For example, an adult salmon returning to WA State from the Gulf of Alaska may pass
through as many as �ve jurisdictional areas in the marine environment, including international
waters, federally managed waters in Canada and the United States, and state managed waters in
Alaska and WA.

Spatial mismatches, arising from the limited spatial extent of the EBM area, the openness of
the ecosystems, and the large migratory range of Paci�c salmon, create challenges for integrating
salmon into EBM policies. In particular, natural processes and human activities occurring either at
locations that are geographically distant from the EBM area (e.g., targeted �sheries and bycatch in
non-targeted �sheries; Fig. 5.1a) or at spatial scales larger than the EBM area (e.g., environmental
change and interactions between hatchery and wild salmon; Fig. 5.1b) may strongly impact salmon
populations and the e�ectiveness of local EBM policies. In the following section, we detail two of
these broad scale impacts, including �sheries that intercept salmon at geographically distant loca-
tions and competition between wild and hatchery salmon for limited food resources throughout
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the North Paci�c. In doing so, we highlight how imperfect information and ecosystem complexity
contribute further to the di�culties in overcoming these challenges.

(a) (b)

Hatchery and wild 
salmon interactions

(1000s km)

Ecosystem-based 
management area

(100s km)

Ecosystem-based 
management area

(100s km)

Interception
fishery #1
(100s km)

Interception
fishery #2
(100s km)

Figure 5.1: Schematic of two spatial mismatches between ecosystem-based manage-
ment areas and the migratory range of Paci�c salmon. The left panel (a) indicates
a mismatch due to geographic distance between two interception �sheries and the
ecosystem-based management area. Black dashed arrows in panel (a) indicate the
migratory direction of adult salmon. The right panel (b) indicates a mismatch due to
interactions between wild and hatchery salmon occurring at a larger spatial scale than
the ecosystem-based management area. The black dashed arrows in panel (b) indicate
the marine migratory route of wild salmon that originate within the ecosystem-based
management area.

5.4 Migratory challenges

5.4.1 Interception harvest of highly migratory salmon

A common policy problem for migratory species occurs when commercial �sheries intercept a
species (or population) at multiple points along its migration route (Lascelles et al. 2014). These
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interception �sheries pose a particularly di�cult challenge for local or regional scale EBM poli-
cies because the harvesting is often outside the boundaries of the EBM decision-making area and
may be spread across numerous management jurisdictions. Further, interception �sheries fre-
quently result in externalities (both positive and negative) where an asymmetric distribution of
costs and bene�ts occurs from management decisions made in up-migration or down-migration
areas (Scherer 1990). For instance, users of the resource in down-migration areas often bear costs
or bene�ts of management decisions made in up-migration areas (e.g., decisions to increase or de-
crease harvest rates) because the migratory species passes through the up-migration area prior to
entering the down-migration area. For Paci�c salmon, the down-migration area often represents
the source location for a population, i.e., the natal spawning locations, and harvest in up-migration
areas can reduce both the number of salmon available for harvest in the down-migration area and
the number of eggs deposited by spawning adults.

Adult and sub-adult Paci�c salmon are harvested in coastal waters throughout their migra-
tory range by both targeted �sheries and as bycatch in �sheries targeting other species. Targeted
harvesting frequently occurs in mixed-stock �sheries where salmon stocks with distant origins
co-mingle with local stocks and are harvested jointly. For example, the Southeast Alaska (SEAK)
chinook salmon troll �shery, the largest commercial chinook salmon �shery in SEAK, harvests
salmon originating from SEAK, BC, WA, and Oregon, with more than 80% of the chinook salmon
catch originating outside SEAK (Templin and Seeb 2004).

The challenges posed by interception �sheries for Paci�c salmon have been recognized for
over a century and the bi-lateral Paci�c Salmon Treaty between the United States and Canada
speci�cally deals with interception of salmon from distant origins (Knight 2000; Noakes et al.
2005). In particular, the ‘State of Origin’ principle within the treaty states that the primary har-
vest rights and burden of conservation of Paci�c salmon stocks are assigned to the jurisdictional
area where the stock originates. However, such policies developed to achieve equity in salmon
harvesting across the migratory range of adult salmon can be unsuccessful for numerous reasons
including (1) inability to selectively harvest certain salmon stocks within mixed stock �sheries be-
cause information is lacking about which salmon stocks are currently migrating through a partic-
ular harvest area, and (2) over harvest (or under harvest) of salmon in up-migration areas because
of an incomplete understanding of the complex ecosystem dynamics that drive variability in adult
salmon returns.

This latter reason is exempli�ed by chinook salmon �sheries management along the west
coast of North America. Under the Paci�c Salmon Treaty the SEAK chinook salmon troll �sh-
ery is regulated using aggregate abundance-based management where the total allowable catch
in a given year is set based on pre-season abundance forecasts estimated by the Chinook Techni-
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cal Committee (PST 2014, Annex IV, Chapter 3, Section 6). The pre-season abundance forecasts,
however, are often not accurate representations of actual total run size due to di�culties in fore-
casting salmon productivity. In other words, salmon productivity is often linked to natural and
anthropogenic drivers in complex and nonlinear ways and we often lack information to identify
and predict particular cause and e�ect relationships in a timely manner (Peterman and Dorner
2012; Malick and Cox 2016; Myers 1998). For instance, from 2009 to 2013, the pre-season chinook
salmon abundance index for SEAK overestimated abundance in all but one year (i.e., 2013), result-
ing in disproportionately large chinook harvests in SEAK (Fig. 5.2; CTC 2015a). In these years,
stakeholders in down-migration areas, e.g., Puget Sound, bear the cost of uncertainty associated
with the pre-season forecasts in the form of reduced adult salmon returns and the ecosystem ser-
vices they provide. Moreover, the management of chinook salmon under the Paci�c Salmon Treaty
is largely implemented using static reference points that are estimated to produce the maximum
sustained yield for a stock (or group of stocks) without consideration of other ecosystem services
provided by salmon (CTC 2015b). By focusing on a single ecosystem service, in this case providing
food and associated economic bene�ts for humans, the other ecosystem roles of salmon in local or
distant areas are discounted or ignored, such as providing prey for orca whales and other marine
mammals and providing connectivity between marine and freshwater ecosystems in the form of
marine derived nutrients.

At the same time, the costs of management decisions made within down-migration areas
may disproportionately be borne by stakeholders in down-migration areas compared to stakehold-
ers in up-migration areas. For example, the ‘State of Origin’ principle puts the responsibility for
salmon conservation on the jurisdictional area where the stock originates. However, e�orts to
restore ecosystems or rebuild salmon abundances in down-migration areas may result in positive
externalities, in that the stakeholders in the down-migration area bear the full costs of the rebuild-
ing or restoration e�orts, but users throughout the migratory range of the salmon population gain
the potential bene�ts of increased salmon abundances.

5.4.2 Salmon hatcheries

Releasing hatchery-reared juvenile Paci�c salmon into freshwater and marine ecosystems is a
common management practice throughout the North Paci�c Rim. The primary objective of these
hatcheries is to augment wild salmon production for either conservation purposes or to supple-
ment commercial and other harvests. Despite widespread debate about the e�ectiveness of hatch-
ery releases to increase adult salmon returns (Hilborn and Eggers 2000; Wertheimer et al. 2001;
Hilborn and Eggers 2001), releases of juvenile Paci�c salmon from hatcheries located around the
North Paci�c Rim have increased ten fold over the past �ve decades, exceeding seven billion salmon
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Figure 5.2: Di�erence between pre-season and post-season allowable catch esti-
mates for three North American chinook salmon �sheries managed using aggregate
abundance-based management outlined in the Paci�c Salmon Treaty. Positive values
(red) indicate the pre-season estimate overestimated the allowable catch in a given
year and �shery, whereas negative values (blue) indicate the pre-season estimate un-
derestimated the allowable catch. All values are in thousands of adult chinook salmon.
Values within each panel give the maximum and minimum relative error of the pre-
season estimate compared to the post-season estimate.
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released in 2015 (Fig. 5.3). These hatchery salmon co-mingle with wild salmon throughout their
marine migratory range and compete with wild salmon and other species that feed at similar
trophic levels for a limited common-pool of prey resources throughout the North Paci�c Ocean.

Because Paci�c salmon migrate and feed across broad regions of the North Paci�c Ocean
and Bering Sea, competition occurs between wild and hatchery salmon originating in di�erent
jurisdictions, nations, and continents. For example, wild sockeye salmon originating in Bristol
Bay, Alaska compete with abundant hatchery pink salmon released from hatcheries in Russia and
Japan during their second and third years of ocean residency (Ruggerone et al. 2003). A major
consequence of competition between hatchery and wild salmon across their marine migratory
range is density dependent growth, which can result in (1) reduced age-speci�c body sizes of wild
adult salmon, and (2) declines in wild salmon population productivity (Ruggerone and Connors
2015; Ruggerone et al. 2003). For instance, widespread declines in age-speci�c adult body sizes
observed in many salmon populations since the 1980s have been attributed to density dependent
growth in the marine environment (Ricker 1981; Ishida et al. 1993; Pyper and Peterman 1999). In-
deed, the large increases in hatchery releases, combined with the strong evidence for reductions in
adult body sizes and stock productivities, have led to concerns about carrying capacity limitations
of the North Paci�c Ocean for Paci�c salmon (Pearcy et al. 1999; Nielsen and Ruggerone 2009).

These ocean-basin scale e�ects of hatchery salmon on wild salmon present a challenge for
EBM policies because they indicate that management actions implemented for salmon originating
in one jurisdictional area or nation can a�ect salmon populations originating in distant jurisdic-
tions or nations. In other words, declines in wild stock productivity or age-speci�c adult body sizes
due to competition with hatchery salmon released from multiple nations can strongly in�uence
the provisioning of ecosystem services provided by Paci�c salmon within an EBM area. In partic-
ular, the ecological e�ects of hatchery salmon on wild salmon populations can (1) reduce harvest
opportunities for stakeholders of a�ected stocks, (2) in�uence ecosystem structure and function
within an EBM area by a�ecting trophic interactions and connectivity between marine and ter-
restrial ecosystems, and (3) inhibit conservation e�orts within an EBM area to recover threatened
or endangered salmon populations (Ruggerone et al. 2003; Nielsen and Ruggerone 2009).

Addressing the challenges posed by the ocean-basin scale e�ects of hatchery salmon on wild
salmon populations would likely require the creation of a new international agreement, organi-
zation, or other institution to either regulate hatchery releases or alter the incentives associated
with releasing juvenile hatchery salmon (Holt et al. 2008). The common-pool prey resources that
hatchery and wild salmon compete for are both rivalrous and non-exclusive, i.e., the consumption
of prey by hatchery salmon reduces food availability for wild salmon and it is di�cult to exclude
nations or agencies from releasing juvenile hatchery salmon. As with many common-pool re-
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Figure 5.3: Hatchery releases of juvenile Paci�c salmon for (a) all North Paci�c Rim
nations combined and (b) each North Paci�c Rim nation individually. For the United
States, releases from Alaska are shown separate from those in the lower mainland
because of the order-of-magnitude di�erences in total releases between the two.
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source problems, this creates a disincentive for a particular agency or nation to reduce hatchery
releases because that agency or nation receives most of the bene�ts from the releases, in terms of
harvest of returning adult hatchery salmon, but only bears a fraction of the costs of deterioration
of the prey resources, which are spread across multiple nations (Holt et al. 2008).

Even if such an international institution were created to manage hatchery releases, deter-
mining an ecologically acceptable level of total hatchery releases each year would be challeng-
ing because the productivity levels of the ecosystems that comprise the North Paci�c are non-
stationary, varying on inter-annual and inter-decadal scales corresponding to large-scale shifts
in the climate (Hare et al. 1999; Chavez et al. 2003). For example, an abrupt and unanticipated
reversal of the Paci�c Decadal Oscillation in 1976/77 precipitated an ecological regime shift that
resulted in the species composition of the North Paci�c shifting from a crustacean-dominated sys-
tem to a gadid- and �at�sh-dominated system (Mantua et al. 1997; Anderson and Piatt 1999; Mueter
and Norcross 2000). Similarly, as the climate warms, the frequency of extreme events in marine
ecosystems (e.g., marine heat waves) is expected to increase, which can in�uence hatchery-wild
interaction by altering food resource availability (Jentsch et al. 2007; Di Lorenzo and Mantua 2016).
For instance, between the winters of 2013–2014 and 2014–2015 o�shore ocean temperatures in the
Northeast Paci�c Ocean were anomalously warm (nearly 2.5◦C above the long term average) re-
sulting in widespread changes in ecosystem dynamics including reductions in large lipid-rich prey
resources for juvenile salmon (Bond et al. 2015; Di Lorenzo and Mantua 2016).

5.5 Potential strategies to address migratory challenges

A common element of the challenges discussed here is a mismatch between the scale of manage-
ment and the migratory life history of Paci�c salmon, with the challenges being exacerbated by
imperfect information about cause and e�ect relationships and complex non-stationary ecosystem
dynamics. The two case studies highlight three main factors that hinder more e�ective integration
of highly migratory species into EBM policies, including (1) uncertainties about the impacts of hu-
man activities and ecological processes that occur at distant locations or at scales larger than the
EBM area, (2) spatial asymmetries in the distribution of costs and bene�ts associated with manage-
ment decisions, and (3) static management policies that prevent updating management decisions
in a timely manner when ecosystem conditions change. In this section, we present two strate-
gies that could help overcome these problems: increased cross-scale synthesis of information; and
expanded near real-time data analysis of ecosystem dynamics.
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5.5.1 Cross-scale synthesis of information

Our �rst proposed strategy is the collection and synthesis of ecological, economic, and policy
information across jurisdictional areas along with the dissemination of strategic management ad-
vice that is informed from this broad-scale synthesis. Such advice could at least partially address
two of the factors hindering integration of highly migratory species into EBM policies: uncer-
tainty about impacts of processes outside the EBM area and asymmetrical distribution of costs
and bene�ts. Currently, there are numerous organizations and programs that conduct ecological,
economic, and policy research on Paci�c salmon at the local and regional scales. For example, the
Arctic-Yukon-Kuskokwim Sustainable Salmon Initiative, the National Oceanic and Atmospheric
Administration’s Southeast Alaska Coastal Monitoring Program, and the Salish Sea Paci�c Salmon
Marine Survival Project all collect empirical data on Paci�c salmon and other ecosystem compo-
nents to increase knowledge about how ecosystem dynamics and human activities in�uence Paci�c
salmon populations. These research e�orts are largely used to provide scienti�c and management
advice at the local and regional spatial scales. However, the limited spatial extent of these research
e�orts omits social and ecological forces that occur at distant locations or at scales larger than the
management area, which can in�uence the ecosystem services generated by Paci�c salmon within
the local or regional management area, and therefore, should be taken into account in EBM.

The need to collect and synthesize information at larger scales and across jurisdictional
boundaries is not unique to Paci�c salmon, and ecosystem working groups have become increas-
ingly common elements of international management organizations because of their e�ectiveness
at synthesizing information across multiple jurisdictional areas (Engler 2015; Lascelles et al. 2014).
For example, the International Commission for the Conservation of Atlantic Tunas, the Inter-
American Tropical Tuna Commission, and the Northwest Atlantic Fisheries Organization have all
created ecosystem working groups as a key part of their research e�orts. These working groups
conduct cross-scale ecological and social research that is used to provide strategic management
advice to multiple smaller-scale jurisdictional areas. For instance, the Northwest Atlantic Fisheries
Organization collects and synthesizes data from member states and, in turn, disseminates strategic
management advice (e.g., identifying vulnerable marine ecosystems).

Following these examples, we recommend the creation of an international ecosystem syn-
thesis group to facilitate the collection and analysis of ecological, economic, and policy information
across jurisdictional areas in the North Paci�c and to disseminate strategic management advice to
local and regional scale EBM programs (Fig. 5.4). The creation of an international synthesis group
would not necessarily require a new international organization, but instead could be implemented
through the modi�cation of an existing organization. In particular, the North Paci�c Anadromous
Fish Commission (NPAFC), the organization charged with implementing the multi-lateral Con-
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vention for the Conservation of Anadromous Stocks, would be an obvious starting point for two
reasons. First, the NPAFC has an existing mandate to conduct scienti�c research “for the pur-
pose of the conservation of anadromous stocks including, as appropriate, scienti�c research on
other ecologically related species” (CCAS 1992). Second, the NPAFC already has an established
structure for international cooperation among North Paci�c Rim nations along with established
political relationships that would enable the dissemination of strategic management advice.

Ecological risk 
assessment

Scenario
analysis

Policy and economic
analysis

International ecosystem 
synthesis group

Ecosystem-based
management area

#1

Ecosystem-based
management area

#2

Ecosystem-based
management area

#3

Information

Advice

Figure 5.4: Schematic of hypothesized interactions between local and regional scale
ecosystem-based management areas and an international ecosystem synthesis group.
Solid arrows (red) represent the �ow of data and information from ecosystem-based
management programs to the international synthesis group, whereas dashed arrows
(blue) represent the �ow of strategic management advice from the international syn-
thesis group to speci�c ecosystem-based management programs.

Based on the case studies provided here, we further suggest that a key focal point of this
synthesis group should be identifying critical uncertainties and risks to ecosystem services pro-
vided by Paci�c salmon from an array of human activities and natural processes across their mi-
gratory range including current and proposed management actions. Uncertainties arise in social
and ecological systems for numerous reasons including natural variability, imperfect information
about complex social and ecological processes, vague management objectives, and limited control
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over �sheries and other human activities (Peterman 2004). For EBM policies, these widespread
uncertainties are important to identify and quantify because they create risks for management
agencies, ecosystems, and communities that rely on salmon for economic and cultural prosperity.
Further, understanding how these uncertainties may a�ect the outcomes of current and proposed
management actions across multiple spatio-temporal scales is a necessary component of imple-
menting policies that are robust to a wide range of potential future changes in the dynamics of
social-ecological systems.

Ecological risk assessment represents one well established framework for identifying criti-
cal uncertainties and quantifying risks within social-ecological systems. The primary goal of risk
assessment is to estimate “the magnitudes of adverse consequences that will arise from events
that are uncertain, and the chances (i.e. probabilities) of those events and their consequences oc-
curring” (Peterman 2004). Numerous risk assessment techniques might be used successfully to
assess uncertainties and risks to ecosystem services provided by highly migratory species. For
example, Smith et al. (2007) and Hobday et al. (2011) outline a technique, referred to as Ecological
Risk Assessment for the E�ects of Fishing (ERAEF), that is based on a hierarchy of assessments in
which each level in the hierarchy acts as a screening process. Low risk threats are screened out at
lower levels in the hierarchy and higher risk threats are moved up the hierarchy for more detailed
evaluation. For EBM policies that need to integrate highly migratory species, the ERAEF tech-
nique is appealing for at least two reasons. First, the ERAEF method can be used to assess a wide
range of threats or impacts and, because the �rst level of the assessment hierarchy is primarily
based on expert opinion, threats or impacts with limited empirical information can be included in
the assessment. Second, the ERAEF method explicitly incorporates a precautionary approach by
assuming that a threat or impact is high risk unless data or information are available that indicate
otherwise.

In addition to risk assessment, scenario analysis is an increasingly popular method for an-
alyzing risks associated with current and proposed management actions. Using scenario analysis
and simulation modeling, researchers can analyze multiple potential ecosystem or management
outcomes given a set of alternative management actions. These analyses can be used to inform
managers and decision-makers about the potential of di�erent management actions to impact
social-ecological systems. Within �sheries science, the most widely used framework for scenario
analysis is management strategy evaluation where “models are used to simulate the behavior of
ecosystems and provide the ability to forecast changes in ecosystem state as a consequence of
management scenarios and decision rules” (Levin et al. 2009). Scenario analysis in general, and
management strategy evaluation in particular, can thus be used to help identify policies and man-
agement actions that have the greatest potential to achieve stated management objectives, such
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as maintaining connectivity between marine and terrestrial ecosystems. Further, with simulation
modeling, a broad range of potential management actions that span multiple spatial scales and
jurisdictional areas can be considered within a scenario analysis. For example, Dorner et al. (2009)
and Dorner et al. (2013) used management strategy evaluation to assess how alternative Paci�c
salmon stock assessment models and management actions across several spatial scales perform
under a wide variety of climate change scenarios.

Although synthesis of ecological information, such as how climate change may a�ect salmon
food availability and hatchery-wild salmon competition in coastal and pelagic ecosystem, would
be a key function of the proposed synthesis group, synthesis of economic and policy information
would also be important. In particular, the group could provide advice on how best to address
the positive and negative externalities arising from the migratory life histories of salmon (i.e., the
asymmetric spatial distribution of costs and bene�ts). The synthesis group should seek to better
understand how di�erent policy instruments and management actions could alter the incentives
and behavior of stakeholders across the migratory range of Paci�c salmon. As discussed earlier,
ecological restoration e�orts within a localized EBM area can result in positive externalities if the
bene�ts of the restoration accrue to stakeholders outside the EBM area. This is a frequent oc-
currence for Paci�c salmon stocks that are harvested in interception �sheries. Policy instruments
that could be implemented to overcome this positive externality include side-payments from stake-
holders in distant locations that bene�t from the restoration e�orts, a tax on the harvest of salmon
originating in a particular area, or assigning property rights to the resource (e.g., individual trans-
ferable quotas). Determining the potential of these alternative policy instruments to achieve stated
policy objectives and how they may in�uence incentives of stakeholders across broad geographic
regions is a necessary component of overcoming the challenges of e�ectively integrating Paci�c
salmon into EBM policies.

5.5.2 Near real-time analysis of ecosystem dynamics

Our second proposed strategy relies on the increased availability of near real-time data analysis on
ecosystem conditions and migration timing, which can be used to inform in-season management
decisions. Despite the complex dynamics of ecosystems, several of the management prescriptions
outlined in the Paci�c Salmon Treaty are static within a given year. For instance, in the aggregate
abundance-based management policy used to manage SEAK chinook �sheries, the quota is set be-
fore the �shing season and is not updated regardless of the actual timing or strength of the salmon
runs. Similarly, since about 1990 the magnitude of releases of juvenile salmon from hatcheries
around the North Paci�c Rim has remained nearly constant, despite annual and decadal changes
in the productivity of pelagic and coastal ecosystems. In many cases, however, information on
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current ecosystem conditions and migration timing can be collected, analyzed, and disseminated
in near-real time to help align management decisions with current ecosystem conditions. Indeed,
dynamic in-season management, a management strategy that uses near real-time information to
better match management decisions with the state of currently observed ecosystem conditions,
is becoming increasingly popular for management and conservation of highly migratory species
(Maxwell et al. 2015; Lewison et al. 2015).

At the local scale (i.e., the scale of individual salmon �sheries), Paci�c salmon �sheries man-
agement has pioneered several methods for implementing intensive in-season management poli-
cies. In Alaska, management of most marine �sheries for Paci�c salmon are adapted in-season
using time and area closures that are informed by near real-time data collected on the number of
adult salmon that escape the �sheries and move into freshwater to spawn. For instance, in 2013, the
Alaska Department of Fish and Game issued 48 in-season management decisions (i.e., emergency
orders) regarding salmon �sheries around Kodiak Island, Alaska, which allowed managers to use
near real-time data to update decisions based on pre-season forecasts and better match �sheries
harvest with the strength of salmon runs (Jackson and Keyse 2013). Using in-season information
on the number of adult spawners for management of salmon �sheries in this way, however, re-
quires that salmon harvesting occur concurrently with salmon entering their natal rivers. For
those chinook salmon in the SEAK �shery that originate from natal rivers in BC, WA, or Oregon,
information on salmon escapements to those rivers may not be available until after harvest in
Alaska has taken place, so it would not be feasible to adaptively change quotas in-season based on
escapement.

It may be possible, however, to use in-season data about migration routes and timing to in-
crease the selective harvest of local origin and highly productive stocks within mixed-stock salmon
�sheries such as the SEAK chinook �sheries. For example, management of several high value
salmon �sheries (e.g., Bristol Bay and Fraser River sockeye salmon �sheries) employ test �sheries
and genetic sampling to determine the population composition of the salmon currently migrat-
ing through a particular location, which allows managers to close a �shery if large proportions
of threatened or low productivity populations are currently migrating through the commercial
�shing area (Dann et al. 2013). Similar test �sheries and the subsequent near-real time analysis of
genetic sampling could be expanded to SEAK (as well as other areas that intercept salmon bound
for distant natal rivers) to determine which populations are migrating through the commercial
�shing area and potentially reduce the interception of distance origin or low productivity stocks
by informing in-season management decisions about time or area closures.

In addition to expanding dynamic in-season management for salmon �sheries, dynamic
management could also be applied to management of juvenile salmon releases from hatcheries.
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Historically, there has been minimal e�ort to modify the magnitude of salmon releases in response
to changing ocean conditions, which results in either salmon hatcheries gradually increasing to-
tal salmon releases or releasing approximately the same number of salmon each year regardless
of whether ocean conditions are favorable for salmon survival or not (Pearsons 2010). While a
consistent release strategy may allow hatcheries to plan operations more e�ciently, this could be
detrimental to marine ecosystems in general and wild Paci�c salmon speci�cally. For example,
releasing a large number of hatchery-reared juvenile salmon into coastal ecosystems when food
availability is low may lead to high levels of competition between hatchery and wild salmon for
limited food resources. Instead, release strategies could be updated on an annual basis in response
to new information about ecosystem conditions (Pearsons 2010; Peterman and Routledge 1983).
For instance, the previously proposed ecosystem synthesis group could use an ecosystem model
of the North Paci�c within a management strategy evaluation framework to estimate how di�erent
hatchery release levels could impact wild salmon populations given current ecosystem conditions.

5.6 Conclusions

We used two case studies from the Paci�c salmon literature to examine how three features of social-
ecological systems—ecosystem openness, imperfect information, and ecosystem complexity—present
challenges to integrating highly migratory Paci�c salmon into EBM policies. The �rst example,
chinook salmon interception �sheries in SEAK, showed that human activities (in this case, com-
mercial �shing) in one location can in�uence the supply of ecosystem services and incentives
to conserve salmon populations in distant locations. Stakeholders and managers in EBM areas
located in down-migration areas from the interception �sheries bear the costs of uncertainty (im-
perfect information about ecosystem dynamics) associated with management decisions made in
up-migration areas. The second example, competition between hatchery and wild salmon for a
limited common-pool of prey resources, showed that processes that occur over larger spatial scales
than an EBM area can in�uence the provisioning of ecosystem services within the EBM area. In
this case, the aggregate releases of juvenile salmon from North Paci�c Rim nations resulted in
reductions in ecosystem services provided by salmon within a localized EBM area due to reduced
age-speci�c body sizes and productivity of wild salmon stocks. This example further indicated
that overcoming this collective action problem would likely require estimating an acceptable level
of aggregate hatchery releases for current ecosystem conditions, which is impeded by large un-
certainties about the complex non-stationary dynamics of the ecosystems that comprise the North
Paci�c Ocean.

Confronting the challenges arising from ecosystem openness, imperfect information, and
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ecosystem complexity will require cooperation across socio-political borders; unilateral manage-
ment actions are unlikely to resolve the challenges because many impacts occur outside the bounds
of a given EBM area. Our examination of the case studies suggested two potential strategies to ad-
dress these challenges. First, we recommend the creation of an international ecosystem synthesis
group that is charged with aggregating and analyzing ecological, economic, and policy information
from local and regional scale research and management areas, along with disseminating strategic
management advice based on this synthesis. Second, we recommend the expansion of dynamic
in-season management practices to better match management actions to current ecosystem con-
ditions, which would require increased near real-time data collection and analysis. Our �ndings
further indicate that no single solution is likely to overcome the challenges associated with in-
tegrating highly migratory species into local or regional scale EBM policies; instead a variety of
strategies will likely need to be implemented to maintain key ecosystem properties in the presence
of human and natural disturbances. Finally, our results suggest that ecosystem-based management
policies should explicitly account for mismatches in the scale at which ecosystem services are gen-
erated by highly migratory species and the scale at which human activities and natural processes
impact those services.



Chapter 6

Conclusion

In this thesis, I contribute to our broader understanding of how environmental forcing pathways
link climatic and ocean processes to dynamics of Paci�c salmon populations in the Northeast
Paci�c Ocean. My second and third chapters apply a cross-system comparative approach to rig-
orously assess the evidence for population responses to inter-annual changes in two meso-scale
ocean processes. In chapter 2, I investigate the hypothesis that vertical ocean transport and subse-
quent coastal phytoplankton dynamics are associated with changes in Paci�c salmon productivity.
In chapter 3, I examine an alternative hypothesis that suggests ocean processes driven by horizon-
tal ocean transport, such as the advection of zooplankton, are also important drivers of salmon
productivity. My fourth chapter builds on the previous chapters, which each focused on a single
meso-scale ocean process, by estimating the joint e�ects and relative strength of multiple environ-
mental forcing pathways on Paci�c salmon dynamics. My �fth chapter applies an interdisciplinary
approach to examine challenges to integrating highly-migratory anadromous �sh species into local
and regional scale ecosystem-based management policies and provides practical recommendations
for overcoming the identi�ed challenges. In total, this thesis further develops our quantitative un-
derstanding about how climatic and ocean processes in�uence the population dynamics of Paci�c
salmon and in doing so contributes to reducing uncertainties about how environmental change
impacts living marine resources.

My thesis makes two main substantive contributions to our understanding of how large-
scale climate processes downscale to a�ect regional and local scale dynamics of higher-trophic-
level species. First, my thesis provides empirical evidence that the dynamics of higher-trophic-level
species respond to forcing from multiple concurrent environmental forcing pathways. In chapters
2 and 3, I show that environmental pathways mediated by either vertical or horizontal ocean trans-
port processes can impact the dynamics of higher-trophic-level species. Although I investigate
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e�ects of phytoplankton dynamics and ocean currents on salmon productivity individually, these
meso-scale ocean processes likely in�uence higher-trophic-level species simultaneously. Indeed,
my fourth chapter indicates that large-scale climate processes can impact Paci�c salmon year-class
strength via multiple simultaneously operating environmental pathways. For instance, large-scale
climate variability indexed by the Paci�c Decadal Oscillation can propagate to a�ect regional and
local scale dynamics of Paci�c salmon through concurrent pathways that are mediated by di�er-
ent ocean processes. This implies that only considering a single mechanism may be insu�cient to
understand how environmental forcing impacts living marine resources.

Second, my thesis provides empirical evidence that the e�ects of environmental forcing on
higher-trophic-level species can be non-stationary across space. My second and third chapters
indicated that e�ects of the spring bloom initiation date and horizontal ocean transport on salmon
productivity were dependent on the latitude of juvenile salmon ocean entry. For example, in chap-
ter 2, I show that e�ects of the spring bloom initiation date on pink salmon productivity were op-
posite in sign for stocks that enter the ocean south and north of 55.7◦N. Similarly, in chapter three,
my results indicate that ocean current patterns are strongly associated with changes in salmon
productivity for stocks that enter the ocean in the southern Northeast Paci�c upwelling domain,
but not for stocks that enter the ocean in the northern downwelling domain, suggesting that dif-
ferent environmental forcing pathways may drive salmon productivity in northern and southern
areas. A practical implication of this spatial non-stationarity is that relationships inferred from
data in one location may not be applicable to another location.

Collectively, my thesis highlights the need to pursue evidence for multiple competing hy-
potheses to explain observed spatial and temporal changes in demographic rates of exploited
species. Over a century ago, T.C. Chamberlin warned that

We [scientists] are so prone to attribute a phenomenon to a single cause, that, when we
�nd an agency present, we are liable to rest satis�ed therewith, and fail to recognize
that it is but one factor, and perchance a minor factor, in the accomplishment of the
total result. (Chamberlin 1890, p. 94)

Yet, broadening our focus beyond a single hypothesis or set of hypotheses focused around a single
mechanism remains challenging (Hare 2014). As I show in this thesis, competing environmental
forcing hypotheses are not necessarily mutually exclusive and future research e�orts should strive
to understand the cumulative e�ects and relative importance of a broad range of environmental
forcing hypotheses. In particular, increasing our understanding of how the relative importance of
di�erent environmental pathways changes through space and time may be an important compo-
nent to estimating the current and future impacts of climatic change on coastal ecosystems and
the �sh populations they support.
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Environmental variability is an intrinsic element of coastal ecosystems and can have pro-
found impacts on ecosystem structure and function. As climatic processes and ecosystem dynam-
ics change at unprecedented rates, �nding e�ective strategies to integrate empirical information
about natural and anthropogenic forcing into management decisions may be critical to maintaining
viable and productive living marine resources. My �fth chapter highlights two potential strategies
that may prove e�ective, including dynamic in-season management of commercial �sheries and
scenario analysis. Ultimately, uncertainties about the impacts of changing environmental condi-
tions on living marine resources are always likely to be present. E�ective decision-making in the
face of this uncertainty is vital to preserving the ecological, social, and economic bene�ts gener-
ated by marine ecosystems.
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