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Abstract

Mountain pine beetles (Dendroctonus ponderosae Hopkins) are the second most

important disturbance agents (after fire) in the lodgepole pine (Pinus contorta subsp.

latifolia (Engelmann) Crichtfield) forests of western North America. Despite ecological

and management importance, little is known about the effect of forest landscape structure

on the spread of mountain pine beetle infestations. The general prediction from other

work is that forest fragmentation at some scale might slow the spread of infestations.

However, mountain pine beetle dispersal ecology is complicated by requirement for

attack en masse and a pheromone based communication system that facilitates this

congregation process. One interesting possibility is that infestations might spread more

slowly over habitat gaps across which beetles cannot communicate. To investigate this

possibility, I develop an individually-based model of mountain pine beetle dispersal,

aggregation and attack, and conduct a series of simulation experiments to explore the

effects of habitat patch size, patch compaction (habitat density), communication distance,

and flight behaviour on the spread rate and final extent of infestations.

In the base experiment I find that decreasing patch compaction does slow

infestation spread irrespective of patch size, though not as much as expected. When I

remove the tendency of beetles to fly for some period before becoming receptive to

pheromones (free flight), patch size becomes important and spread rate only varies with

habitat density when patch size is small. At face value, the prediction arising from this is

that beetles will be somewhat sensitive to forest fragmentation at small scales, but

insensitive to variation in patch size because of their free flight behaviour. However,

parameter values and the adequacy of model form are uncertain so these ideas require

further evaluation. Two more robust conclusions are that apparently minor changes to

dispersal behaviour can significantly alter beetle response to landscape pattern, and that

despite 100 years of research on this system many aspects of mountain pine beetle

dispersal ecology remain unknown.
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1 INTRODUCTION

1.1 MANAGEMENT CONTEXT AND MOTIVATION

A current mountain pine beetle outbreak in the central interior region of British

Columbia has spread over approximately 1.2 million hectares of forest since it began 8 to

10 years ago (R & S Rogers Consulting Inc. 2001). In one in a series of actions aimed at

slowing this outbreak, the Government of British Columbia has increased the rate of

logging by 25% (5.4 million cubic metres) in the 9.1 million hectare region of the province

(R & S Rogers Consulting Inc. 2001). Despite logging the beetle infestation continues to

spread, raising questions about mountain pine beetles.

The mountain pine beetle (Dendroctonus ponderosae Hopkins) is an aggressive

bark beetle native to much of the lodgepole pine (Pinus contorta subsp. latifolia

(Engelmann) Crichtfield) forest of western North America (below 56o North latitude). In

most places throughout this range mountain pine beetles have a 1-year life cycle (for

overviews of mountain pine beetle biology see Amman 1978; Amman et al. 1984;

Safranyik 1989; Samman and Logan 2000). They attack live or recently dead pine trees in

late summer, boring under the bark to construct egg galleries in the phloem. Emergent

larvae feed on the inner bark through the fall and spring, before emerging as adults in July

or August to find new host trees. Fungi, bacteria and yeast carried by the beetles attack

the living tissue of trees, and, if infection is successful, eventually kill them. Pines resist

attack by secreting resin into the path of the beetle, which physically impedes progress,

interferes with pheromone signals, seals the living cells from infection by fungus, and

drowns eggs and larvae. Thus, beetles must attack in groups large enough to exhaust the

resin pool and kill all or part of the tree in order to ensure brood survival and attack

success. When beetle populations are low, they persist by attacking old and damaged

trees with low resin reserves. However, if beetle populations increase beyond some critical
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threshold they can overwhelm the defenses of more vigorous trees. Since vigorous trees

provide more food that allows better reproductive success, beetle populations that have

risen enough to kill these trees may continue to increase rapidly, or outbreak. Once

populations have risen to outbreak levels, they typically remain high until the supply of

suitable hosts is exhausted, or cold winter reduces populations to below critical outbreak

numbers (Amman 1978; Samman and Logan 2000). For the purposes of this discussion

an outbreak of beetles within a small area or single forest stand is referred to as an

infestation, while the term outbreak is generally reserved for larger landscape scale

phenomena.

Models of the population dynamics of mountain pine beetles and other insects

(Berryman 1978; Clark et al. 1979; Thompson et al. 1981; Raffa and Berryman 1986;

Mawby 1989; Safranyik et al. 1999) and more general understanding of system dynamics

(Ludwig et al. 1997) predict that outbreaks should be much easier to prevent than to

control. A long history of failed or dubiously successful control efforts (Wood et al. 1985;

Amman and Logan 1998) is consistent with the theory, prompting calls for more

“proactive” management (Amman and Safranyik 1984; Amman and Logan1998;

Samman and Logan 2000). However, proactive management is more easily preached than

successfully achieved. Social, political and institutional inertia can prevent even

universally beneficial actions from being taken. In this case, there are also real ecological

concerns with some approaches to proactive management.

Strategies for reducing the risk of outbreaks before they occur include: beetle

trapping; cutting, burning, or chemical treatment of brood trees in small infestation

centres; thinning or “beetle proofing” forest stands to reduce their susceptibility to beetle

infestation; and logging of forest stands at susceptibility to or high risk of infestation

(Amman et al. 1984; Amman and Safranyik 1984; Maclauchlan and Brooks 1994; Natural
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Resources Canada 2001). This last strategy is common because removed timber can be

valuable.

The susceptibility of forest stands to mountain pine beetle infestation depends on

local climate, species composition, stand density, and tree age (Shore and Safranyik

1992), as well as various aspects of tree condition. Lodgepole pine trees become

susceptible to attack when the phloem becomes thick enough to support large beetle

broods, typically at about 15 centimetres diameter or 60 to 80 years of age. As trees get

older resin production declines and they become less resistant to attack, so old forest

stands are most susceptible. Old forests also tend to have high biodiversity, wildlife,

recreation and other non-timber values, and herein lies the conflict. A bid to reduce beetle

risk by logging susceptible stands amounts to a systematic elimination of old forest from

the landscape. To many, a landscape without old forest is unacceptable. A landscape-

scale mountain pine beetle epidemic like the current one in central British Columbia is

also undesirable from a number of perspectives, so some strategy to reduce overall

landscape susceptibility to large outbreaks while retaining old forest would be ideal.

Some promise for such a strategy lies in the consideration of landscape pattern

and spatial heterogeneity. Research in the fields of landscape and disturbance ecology,

epidemiology, and population ecology has shown that population dynamics can depend

not only on the amount of available habitat, but also on the spatial arrangement of that

habitat. For instance, increasing the complexity or heterogeneity of landscapes at some

scales may decrease the rate of spread and extent of diseases and disturbances (Turner et

al. 1989; Rodriguez and Torres-Sorando 2001), decrease the survival and reproductive

rates of some organisms (Simberloff 1988; Cantrell and Cosner 1991; Saunders et al.

1991; Andren 1994; Bender et al. 1998; Heibeler 2000), and globally stabilize locally

unstable population dynamics (Hastings 1977; May 1978; Reeve 1988; Taylor 1990). In

forests, the juxtaposition of stands of different age classes can reduce overall landscape
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flammability (Franklin and Forman 1987; Turner and Romme 1994; Turner et al. 1999),

and isolated forest patches are less likely to be infested by the western spruce budworm

(Choristoneura occidentalis) (Bergeron et al. 1995).

These general results give some reason to believe that landscape pattern could

affect beetle population dynamics, and in particular that increased heterogeneity at some

scale might slow the spread of infestations, decrease the magnitude of outbreaks, and

stabilize overall population dynamics. Despite this promise, the effect of the spatial

arrangement of habitat on the spread of mountain pine beetle infestations is unknown

(Bentz et al. 1993). There is also reason for skepticism. The effect of landscape pattern

depends on complex interactions between landscape and the habitat preferences and

dispersal ecology of individual species (Saunders et al. 1991; Andren 1994; Coulson et al.

1999), and increasing heterogeneity can even promote insect outbreaks in some cases

(Franklin and Forman 1987; Kareiva 1987). Given such variability, results from other

systems can only guide the development of hypotheses. The only way to find out how

pattern affects mountain pine beetles is to study mountain pine beetles.

Before launching wholeheartedly into a quest for beetle management by forest

landscape manipulation, it is worth pausing here for a cautionary moment. Just as

targeted harvesting may result in a reduction of old forest, unfettered beetle landscape

management might result in systematic fragmentation of forest landscapes. From an

ecological perspective, this is troubling. First, fragmentation could harm species that

humans want to conserve (Saunders et al. 1991; Andren 1994; Bender et al. 1998; Poiani

et al. 2000). Second, because species response to pattern is unique, patterns that slow

beetles might disrupt or destabilize other forest processes in ways we cannot predict

(Franklin and Forman 1987; Kaufmann and Regan 1995; Irwin 1999). Even if

fragmentation will slow beetles, and even if we do not care about negative impacts on rare

or threatened species, changing landscape pattern might destabilize other forest species
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and processes unexpectedly, causing more severe outbreaks of other insects or other

unexpected and undesirable effects. Thus, it seems prudent to be wary of actions that

increase forest fragmentation even if these actions seem likely to slow mountain pine

beetles.

What role then for landscape level beetle management? Restoration is one

interesting possibility. Forest structures and disturbance regimes in many parts of North

America have been altered since European settlement by a variety of causes, including

disruption of burning by aboriginal peoples, extensive fires during early European

settlement, more recent fire suppression, logging, and climate change (Whelan 1995).

Opinions differ about whether beetle outbreaks historically spread over areas as large as

recent outbreaks, but one possibility is that recent changes to forest structure have altered

mountain pine beetle population dynamics, and are in part responsible for recent

outbreaks (Gara et al. 1984; Geiszler et al. 1980a; Rogers et al. 1996; Goyer 1998;

McCullough et al. 1998). Restoration of historic forest conditions has been promoted to

maintain ecological and aesthetic values, and reduce fire risk (Landres et al. 1999; Whelan

1995). If it turns out that historic forest structures also confer greater resistance to

mountain pine beetle outbreaks, then some possibility for a happy resolution of timber

and other values exists.

Unfortunately, there is also the possibility that landscapes most resistant to

mountain pine beetle may be neither “natural” nor good for all other species. In this case,

conflict between beetle and other management objectives will remain. It might be that

better understanding of the effect of pattern on beetles would increase the pressure to

further fragment forest landscapes. However, potential costs of landscape level beetle

management must be weighed against the realized costs of current management. In

British Columbia targeted harvesting of old forest is common in non-outbreak periods.

During outbreaks, the rate of clearcutting is increased and requirements for planning,
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consideration of public input, and environmental protection are relaxed (Hughes and

Drever 2000). Compared to this status quo, an opportunity for a more carefully

considered and balanced approach seems attractive. So, with caveats in place, I proceed.

1.2 OBJECTIVES

Understanding how landscape structure may or may not affect the spread of

mountain pine beetle infestations will require experimentation on real landscapes, or

minimally, examination of the relationships between past spread patterns and underlying

forest structure. However, in this study I do neither. Instead, I look at the effect of

landscape pattern on the behaviour of a spatially explicit model of mountain pine beetle

dispersal, aggregation, and attack.

Modeling studies range in purpose from conceptually provocative to predictive,

and this study lies towards the speculative end of the scale. There are not enough available

data or understanding to predict how beetles might spread on a particular landscape in a

particular year. Rather, my purposes are more general: to motivate interest in the subject,

clarify hypotheses, identify knowledge gaps, and gain insight into the mechanisms of

infestation spread and the conditions under which pattern effects may or may not occur.

More particularly, I am interested in how unique features of mountain pine beetle

dispersal ecology might alter their response to landscape pattern. From a management

point of view, this should clarify whether the general promise of heterogeneity might

apply to beetles, and at what scale. Ecologically, the hope is for some insight into the

robustness of generic expectations.
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1.3 EXPECTATIONS

1.3.1 Effect of Pattern in General

Before considering how landscape pattern might affect beetles in particular, it is

worth a brief review of the effects of pattern in general. First, note that my concern is with

a very narrow range of effects arising from variation in the spatial arrangement of habitat.

Changing forest pattern can significantly affect radiation fluxes, wind patterns, water

fluxes, predator abundance, and other aspects of the ecosystem that might in turn affect

mountain pine beetles (Saunders 1991). While these effects are no doubt important, here I

consider only the direct effects of patch size and remoteness on the ability of mountain

pine beetles to successfully spread from one habitat patch to another.

The effect of habitat connectivity on the spread of agents has been of particular

concern in the fields of epidemiology (May and Anderson 1984; Rodriguez and

Torres-Sorando 2001; Bolker 1999), metapopulation biology (Taylor 1990) and

disturbance ecology (Turner et al. 1989). Classical epidemiology has focussed on

understanding models of simple epidemics with removal (SIR –

Susceptible/Infective/Removed) (see Capasso 1993 for overview). In these models,

disease is transmitted from infective to susceptible population members, which then

become infective. After some period, infective individuals either die, or recover and

become resistant to the disease. These models have been used to describe the progress of

diseases such as measles for which permanent immunity is developed after infection, or

plant diseases that kill their host. Like these diseases, mountain pine beetles also kill their

hosts as they spread, so results from this class of models may give some insight into

mountain pine beetle epidemiology.

A recent study by Bolker (1999) examined the effect of host spatial heterogeneity,

or patchiness, on the spread of an SIR type disease through plant populations. He used
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analytic and stochastic simulation models to demonstrate that increasing spatial

autocorrelation in host distributions can increase both the rate of spread and the final size

of epidemics, while even spacing of host plants may decrease rate of disease spread. This

result is consistent with previous theoretical work in epidemiology, and the effect has also

been observed in several experimental studies (Bolker 1999).

A central result in metapopulation theory is that dissecting populations can allow

regional stability of locally unstable predator-prey interactions by limiting the extent of

local oscillations or outbreaks (Taylor 1990). Upon first consideration, this may seem in

conflict with the epidemiological work, which suggests that increasing patchiness should

most often increase the spread rate of outbreaks. This apparent conflict may be resolved

by recognizing that the two groups use different reference conditions. The

epidemiologists assume that average initial transmission rate, or the initial ratio of hosts to

non-hosts, is constant, so their finding is that epidemics spread faster when hosts are

aggregated than when hosts are dispersed randomly over the same geographical area. In

contrast, metapopulation biologists are concerned with increasing the isolation of or

distance between host patches, so they hold patch size constant and increase the distance

between hosts or effectively, the geographic area across which hosts are dispersed. Thus,

the disagreement appears to be due to different interpretations of what increasing

“patchiness” might mean. Metapopulation biologists find that increasing the distance

between patches will tend to slow the spread of organisms, given constant patch size. If

area is constant, then increasing patch size or the clumpiness of habitat also increases the

distance between patches, but epidemiologists seem to find that the benefit of increasing

the distance between patches is outweighed by the cost of larger patch size, so more

clumping increases the spread of outbreaks.

Both the epidemiological models and the metapopulation models discussed so far

assume that all patches are close enough together that dispersal may occur between them.
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However, this is not always the case. In the other extreme, classic percolation models

assume that spread or infection can only happen between nearest neighbors, so the total

extent of an outbreak or disturbance is absolutely constrained by the size of habitat

patches (Turner et al. 1989). An interesting result from these latter models is that the effect

of increasing habitat abundance on total patch size or infestation extent is not linear, but

varies with the amount of habitat already present. At intermediate habitat abundance,

landscapes reach a critical threshold, where small increases in habitat can dramatically

increase disturbance extent by linking large patches. Percolation models also emphasize

that the effect of increased patchiness should depend on the relative abundance of habitat

- if habitat is so common that it tends to form large contiguous patches when distributed

randomly, then increased clumping may decrease average patch size and outbreak extent,

even though this aggregation may increase spread rate within patches. In contrast, if

habitat is sparse then increased clumping may increase the overall extent of outbreaks.

Empirical studies of birds and mammals support the general conclusion that pattern

effects depend on the relative abundance of habitat (Andren 1994).

In most situations, the dispersal reality is probably somewhere between two

extremes. No organisms can traverse infinite distances, but most can travel some distance

through inhospitable habitat. Thus, the “functional connectivity” of habitat is usually

something less than infinite, and something more than the physical connectivity of habitat

patches (Tischendorf and Fahrig 2000). Keitt et al. (1997) have highlighted that clusters of

habitat patches separated by less than dispersal distance may be linked into effective

super-patches or percolation clusters by dispersal. Results from percolation theory should

apply to these clusters, suggesting that changes to pattern which decrease average cluster

size should decrease the average size of outbreaks. Within clusters, increasing clumpiness

might increase the spread rate of outbreaks as predicted by epidemiological models.
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1.3.2 Consequences of Pheromone Mediated Congregation

As noted earlier, trees resist attack, and mountain pine beetles must attack in

groups to be successful. To facilitate mass attack, beetles generally disperse together over

a short period of two or three weeks in early summer, and use a system of at least five

different pheromones (beetle produced volatile chemicals) and kairomones (host

produced volatile chemicals) to attract others to areas where attack is insufficient, and

later repel them from areas that are full (see Borden 1987 for review). Pheromone

mediated congregation is an inherently spatial process, and it seems reasonable that this

phenomenon might alter the effect of pattern on mountain pine beetles.

Discussions of functional connectivity often focus on dispersal ability as the

limiting factor (Keitt et al. 1997; Tischendorf and Fahrig 2000). For organisms that can

successfully colonize new habitat alone or in small numbers, this may be appropriate.

However, mountain pine beetles must group together (or congregate) if they are to

successfully overcome host defences. If congregation is required for success then it seems

that landscapes across which organisms cannot effectively congregate should be

functionally fragmented, whether or not individuals can successfully disperse from patch

to patch. Thus, my proposition is that, if congregation is important for success, functional

connectivity should depend on the scale of pheromone communication, and

fragmentation at the scale of pheromone communication should alter the rate and extent

of infestation spread. 

That the ability of species to detect habitat over some distance might alter the

interaction between species and landscapes is not a new idea. In another modeling study,

Fahrig and Paloheimo (1988a) found that the ability of organisms to detect new patches

was a more important determinant of overall population size than the rate of dispersal or

the overall distance across which these organisms could disperse. Essentially, if organisms
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can detect new patches then they are less likely to get lost and die during dispersal. Fahrig

and Paloheimo (1988b) further point out that the effect of changing pattern varies with

detection distance. If the average distance between patches is either much larger or much

smaller than the detection distance, then changes in the spatial arrangement of patches do

not matter much. However, changes in spatial arrangement that increase the distance

between patches beyond the scale of detection distance can significantly affect dispersal

success and overall population size. In essence, this is the same sort of critical threshold

that percolation theory predicts for simple spread models. However, in this case detection

ability, rather than dispersal ability, limits spread.

Fahrig and Paloheimo’s results are interesting, but perhaps not entirely applicable

to mountain pine beetles. These beetles not only orient toward likely hosts over distance,

but towards each other. For clarity, I follow Turchin (1998), and refer to the first

behaviour as aggregative dispersal, and the second as congregative. Both behaviours are

similar in that they can result in high density of organisms in quality habitat. However, my

concern is whether more subtle differences between the two processes might lead to

substantially different landscape pattern effects.

Other authors have also suggested that attraction between conspecifics might

affect population and metapopulation dynamics, but these effects have not been well

enough studied to yield any further insight (Smith and Peacock 1990). Turchin (1989)

used an advection-diffusion model to explore the interaction between patch size and

congregative movement, and found that congregation can alter the relationship between

population and patch size, increasing population density in large patches. However,

Turchin assumes that insects that leave a patch are immediately lost to the system, so

insect density at patch boundaries is always zero. Since insects that are attracted to areas

of high insect density will by definition avoid these lethal boundaries more often, it

should be no surprise that these populations will reach higher densities than populations



12

of insects that fail to avoid patch boundaries. However, this same avoidance effect might

be expected from insects that are attracted to good habitat, so this work does not help

clarify how the effects of congregation might differ from the effects of directed movement

in general.

1.3.3 Consequences of Free Flight

The spatial aspect of mountain pine beetle population ecology has intrigued other

authors, and a number of other spatially explicit beetle models have been built. Thus far,

most of these authors have taken a continuum reaction-diffusion approach, where

movement is approximated by a simple diffusion or advection-diffusion process, written

as a partial differential equation (Polymenopoulos and Long 1990; Turchin and Theony

1993; Logan et al. 1998). The most complete and comprehensive of these efforts, and the

one most directly applicable to my present pursuit is an effort by Powell, Logan, Bentz

and others (referred to as the MPBpde) (Powell et al. 1996, White and Powell 1997, Logan

et al. 1998, Powell et al. 1998, White and Powell 1998, Biesinger et al. 2000). While I have

not chosen the same approach, it is on this model that much of my thought and

conceptual framework is based. I pause here to acknowledge this overall intellectual debt,

which arises in particulars throughout much of the remainder of this document, and on

which the following discussion is largely based.

The diffusion approach to movement modeling arises from the result that simple

diffusion equations can approximate the aggregate dynamics of randomly moving

particles, or, in biological terms, random-walkers (Turchin 1998). While the classic

application is to an uncorrelated random walk, diffusion and advection-diffusion

equations can also be derived to approximate more complicated movement behaviours,
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including correlated random walks and various forms of taxis, or directed movement

(Patlak 1953; Turchin 1998; Grunbaum 1999).

The diffusion approach has several significant advantages, including generality,

flexibility, and analytical tractability (Okubo 1980; Turchin 1991, 1998). Thanks to a long

history of use and analysis in several fields, the mathematics of these models is well

understood. The relationship between individual movement behaviour and the average

population flux described by generalized diffusion models is also well understood, so

behavioural assumptions are clear and explicit. There are, however, also some problems.

First, the range of movement behaviours that can be represented is limited. For example,

many bark beetle species require some period of exercise, or “free flight”, before they

become responsive to pheromones (Borden et al. 1986). Field studies of Ips typographus

suggest that free flight periods may significantly alter dispersal patterns (Helland 1984;

Helland 1989), and indirect evidence for the effect on mountain pine beetle dispersal is

given by the fact that some beetles fly past nearby attractive sources (Safranyik et al.

1989), and that infestations tend to spread before all the hosts within an infested area are

depleted (Mitchell and Preisler 1991; Borden 1993; Shore, T., personal communication).

In diffusion approximations, individuals are considered in aggregate, without respect to

the time since they emerged. Since mountain pine beetles do not emerge all at once, but

continuously over the flight period, a diffusion approximation cannot capture the free

flight behaviour.

That diffusion approximations are not biologically “correct” does not

automatically render them useless. For example, another oddity of all diffusion

approximations is that signals propagate infinitely quickly, or, in biological terms, some

proportion of organisms can move infinitely fast. Despite the obvious biological absurdity

of this assumption, the consequences for many diffusion applications are often not

severe. Equilibrium solutions are largely not affected, and in simple diffusion only such a
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small proportion of the population travels far that whether their linear speed is limited

may be irrelevant. Thus, the relevant question is not whether diffusion approximations are

right, but whether they are “good enough”. In other words, does adding more complexity

fundamentally alter the results of interest?

The question of which approach is most appropriate for modeling mountain pine

beetle dynamics is complicated by technical challenges. A major virtue of some simple

diffusion models is that they are analytically tractable, and thus allow general

understanding. However, nonlinearities in either the aspatial (reaction) or spatial

(advection-diffusion) terms render these equations intractable (Turchin 1998).

Chemotactic beetle models belong to this class of non-linear models, and thus must be

approximated numerically. Unfortunately, this task is not trivial as approximation is

confounded by the stiffness of the model (White and Powell 1998; Powell et al. 1998).

In general, stiffness occurs when rates of change vary by orders of magnitude over

time, space, or between state variables. To understand stiffness in practical terms,

consider the following description of beetle movement (Logan et al. 1998):
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P is beetle density, A is pheromone concentration, A0 and A3 determine the relationship

between pheromone concentration and attractiveness for beetles, and µ and ν are

coefficients that affect beetle speed. The rate of beetle population (P) redistribution is

given by the flux due to random motion (the diffusion term Pµ 2∇ ) and movement up

pheromone gradients (the advection term )]/()([ 3AAAAAAP oo +−∇∇− υ ). Beetles

move fastest when the coefficients µ or ν are large, when attractiveness at the place of

origin (A) is low, and when pheromone gradients ( A∇ ) are steep. µ and ν are constant

throughout the simulation, but attractiveness is a dynamic quantity that varies with

nesting beetle density over time and space. As beetles move faster, the time-step over
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which beetle movement must be simulated decreases (given a constant grid spacing or

spatial discretization). Thus, very small time-steps are needed to solve this system

accurately in places where beetles have congregated and pheromone gradients are steep.

Unfortunately, smaller time-steps increase the amount of computation required to

complete a simulation. Finding a numerical scheme that remains accurate and stable when

attractiveness gradients are steep, and is also computationally efficient enough to be

useful, is a formidable challenge. Researchers have tried several approaches to solving this

problem with the MPBpde, with varying success (White and Powell 1998; Powell et al.

1998). In another attempt, Tatiana Marquez-Lago implemented a slightly modified

MPBpde model using a first order Imex method (Ascher et al. 1995), but we found the

result too cumbersome to be useful (unpublished).

In all the figuring about how best to address the problem of spatial stiffness in this

model, an essential biological detail has perhaps received too little attention. That is,

spatial stiffness arises from the fact that the net rate of beetle displacement becomes faster

as pheromone gradients become steeper, and, as noted earlier, there is no limit to the

speed beetles move. I wonder whether at least some of the stiffness displayed by this

model is an artifact of the diffusion approximation, not a biological reality. Perhaps some

of the numerical and technical challenges might be avoided with a more biologically

accurate model.

The problem of infinite velocity in the diffusion approximation has been pointed

out before, and alternatives have been proposed (see Holmes 1993 for summary). In

particular, the telegraph equation (Goldstein 1951; Okubo 1980) may be a useful

alternative with some of the same theoretical advantages as the diffusion equation

(Holmes 1993). Niwa (1998) has successfully adapted the basic approach to describe the

movement of fish schools in response to temperature gradients, suggesting that the

telegraph approach may be flexible enough to model a variety of directed movement
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behaviours in addition to random walks. However, without the aid of previous work,

deriving and implementing a speed limited model to describe mountain pine beetle

movement is a task beyond the scope of this project.

Continuum reaction-diffusion models are just one among a range of options for

modeling movement (Turchin 1998). At the other extreme, individual based models treat

the movement of each organism independently. The individual based approach allows

more flexible movement rules, and the implementation of these rules is largely intuitive.

The drawbacks are that individual based models are more difficult to analyze and more

difficult to communicate (Grimm et al. 1999). Even greater flexibility is not always a

virtue because individual based models are often species specific, difficult to compare,

and less conducive to general insight than diffusion models (Turchin 1998; Grimm 1999;

Grimm et al. 1999). However, this complaint goes both ways. Results from diffusion

models are general and elegant, but they may be missing crucial biological detail. Neither

approach is perfect, and better understanding of the effect of complex behaviour on

general results would be useful. Having been frustrated in my attempts at continuous

modeling, I have taken an individual based approach for largely practical reasons.

However, this choice also offers opportunity to explore the limits of simple assumptions.

How do the complications of mountain pine beetle dispersal behaviour alter their

response to landscape pattern? Do general predictions from simpler models hold?

Mountain pine beetle dispersal is complicated by a number of behaviours in

addition to free flight. For example, in order to search out suitable hosts more efficiently,

beetles tend to fly down or perpendicular to the prevailing wind until they detect a

pheromone plume, which they then follow upwind to the source (Choudhury and

Kennedy 1980; Byers 1988; Safranyik et al. 1989). Observations of beetles flying up

above canopy and new infestation spots arising far from old ones suggest that mountain

pine beetles have a long-distance, above-canopy dispersal mode that is qualitatively
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different from local, pheromone directed dispersal (Safranyik et al. 1989; Safranyik, L.,

personal communication). Mountain pine beetles are not strong fliers, and rising above

the canopy might allow beetles to hitchhike on air currents to avoid local competition for

resources. While these behaviours are interesting and potentially important, I ignore them

here for practical reasons, and restrict myself to the more manageable task of investigating

free flight as one example of the larger phenomena of complex dispersal behaviour.
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2 METHODS

2.1 THE MODEL

Loosely, the annual cycle of the mountain pine beetle can be divided into two

distinct parts: the flight period, which consists of several weeks in late summer when

beetles emerge, disperse, and attack new hosts, and the rest of the year, when beetles

feed, mate, and reproduce under the bark of host trees. I have extended the model over

multiple years in order to integrate the effects of pattern over whole landscapes, and

reduce the effects of local variability. However, since this study is concerned with

dispersal and spatial dynamics, I focus largely on the flight phase. Here, I describe the

model of mountain pine beetle dispersal within a single flight period, and later conclude

with a brief description of how the model is extended over multiple years.

2.1.1 Conceptual Overview of the Flight Model

The MPBpde model developed by Logan, Powell, Bentz and others follows flying

beetles, nesting beetles, number of beetle holes, tree resin capacity (a measure of tree

vigour), pheromones and kairomones over a single dispersal period (Powell et al. 1996,

White and Powell 1997, Logan et al. 1998, Powell et al. 1998, White and Powell 1998,

Biesinger et al. 2000 – for simplicity, this group of citations will be referred to collectively

as Powell et al. through the remainder of this document). To capitalize on the considerable

effort that has gone into developing the MPBpde, I have used their conceptual approach,

model formulations and parameter values where possible. However, I have altered several

aspects to create a model better suited to my purpose. Throughout this description I note

where I have deviated from the MPBpde, and explain my reasoning.



19

Since my interest is in the effect of spatial pattern on the spread of beetle

infestations, and the influence of pheromone mediated communication on this interaction,

at minimum the flight model must track the dynamics of flying beetles, nesting beetles,

and pheromones over time and space. In this I follow the sprit of the MPBpde, but to

accommodate free flight I treat flying beetles and nesting beetles individually, rather than

collectively. Individual beetles can be either waiting to emerge, flying and unreceptive to

chemical attractants (uflying), flying and receptive to chemical attractants (rflying),

nesting, or dead.

The probability that a beetle will be flying at location (i,j) and time t is a function

of the basic processes of emergence, death, landing, and movement, which in turn depend

on the previous state of that beetle. Note that throughout this document probabilities will

be denoted by the symbol Π to distinguish them from flying beetle populations, which

are denoted by P:

) then  if}{ 1-tj,i,,, e? (emergencwaitingflying tji =Π

n))er locatiot to anothor movemen deathlanding- (flying i,j,t- ,,(1 then if else 1 Π

)),(  ( then if else 1,, jilocationtomovement flying tmjni Π−++ (1)

When flying beetles land they become nesting beetles, which then either die or

survive to produce pheromones to attract or deter other flying beetles. Thus, the dynamics

of nesting is simply a function of landing and death.

) then  if}{ 1,, ? (landingflyingnesting i,j,t-tji =Π   

))-(1 then  if lse 1 ? (deathnestinge i,j,t- (2)
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The overall population of flying beetles (P) and nesting beetles (Q) at each location

(i,j) and time t is

                      ∑= tjitji flyingP ,,,,

(3)

∑= tjitji nestingQ ,,,,       (4)

State variables in this model vary across space as well as time, so the value of

variable P at location (i,j) and time t is Pi,j,t. For convenience, I have dropped the subscript

notation on state variables, which are denoted by capital letters. All other parameters are

aspatial constants unless otherwise noted.

Following Powell et al., the change in pheromone concentration (A) over space

and time is the sum of production, diffusion, and decay (or loss through the canopy):

outdiffusionindiffusiondecayproduction
t
A

  −+−=
∂
∂

(3)

I am concerned about whether and under what conditions congregative dispersal

is functionally different from aggregative dispersal. To address this concern, I include

some mechanism of aggregative dispersal for comparison. Conveniently, there is evidence

for such a mechanism in mountain pine beetle ecology. Early emerging mountain pine

beetles do not seem to attack randomly, but orient towards suitable hosts using chemical

and visual cues (see Powell et al. 1996 for summary). Primary attraction has also been

established for other scolytids, and a modeling study of Ips typographus suggests that

this strategy may improve attack success and survival significantly (Gries et al. 1989). See

“Kairomone production, diffusion, and decay” for more details. For now, it suffices that

unattacked host trees emit kairomones (C ) that diffuse like pheromones, and are also

attractive to beetles. Kairomone concentration is given by:
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outdiffusionindiffusiondecayproduction
t
C   −+−=

∂
∂

             (4)

Mountain pine beetles communicate via several semiochemicals with different

functionality, production, and decay rates (see Borden et al. 1987 for summary). Powell et

al. have chosen to model the functionality of this chemical complex with a single

pheromone, and I have done the same. In principle one could include as many volatiles as

necessary, following the same conceptual approach as in Equation 4, with different

production and decay functions for each chemical.

Apart from representing mountain pine beetles individually, my most fundamental

divergence from the MPBpde approach is to model aspatial dynamics more implicitly,

ignoring the dynamic response of trees to attack, and assuming success or kill rate

depends only on the cumulative number of attacks over a flight period, the total capacity

for beetles, and resistance of trees. Like Powell et al., I represent forest resistance with a

static variable, R, that varies between 1 and 0, and determines the shape of the

relationship between cumulative attacks and kill. A second forest variable is also included

to represent carrying capacity (K) for beetles at each location (Beetle Capacity – K). This

allows me to tie both landing rate and pheromone production to an easily interpretable

quantity, and to ensure that areas do not continue to be attractive after they are “full”, or

vice versa. Representing forest state with both a capacity for and a resistance to beetles

also allows that some trees may be less resistant than others of the same size, and that

those areas may act as refugia for beetles and foci for attack.
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2.1.2 Mountain Pine Beetle Dispersal

Each individual beetle can be in one of five possible modes: waiting to emerge,

flying and unreceptive to pheromones or kairomones (uflying), flying and receptive to

pheromones and kairomones (rflying), nesting once they have landed, or dead. Each

beetle also has a location, and if they do not land, flying beetles may remain in place or

move from their current location to one of four neighboring locations. Thus, the state of a

beetle is given by its mode and location, and one state transition per beetle may occur at

each time-step (t to t+1). I write the probability of these transitions as:

}:{  mj n,iji, ++Π lk   (5)

where k and l can be any of the five dispersal modes, i and j are the row and column

location of the beetle at time t, and n and m are integers between –1 and 1. All but eleven

of these transition probabilities are zero. The remainder are defined as follows.

Beetle emergence rate varies with temperature and weather patterns that are

beyond the scope of this modeling exercise (Safranyik et al. 1989). For simplicity, I follow

Powell et al., and assume that beetles emerge at a uniform rate over the flight period.

Thus, the probability of a waiting beetle emerging in any particular hour is given by the

inverse of the total flight period, T.

/Tflyingaiting 1 }:? {w  ji,ji, = (6)

The number of waiting beetles depends on the number of successful beetles at a

location in the previous season. This dependence is explained more fully in the section on

extending the model over multiple years. For simplicity, I ignore the possibility of beetles

dying before emergence. Thus, the probability of waiting beetles remaining in the same

state is:
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/T- waitingaiting 11}:? {w  ji,ji, = (7)

For further simplicity, I assume that once a beetle has landed it does not return to

flying. However, assessing nesting death is more problematic. In practice, the death rate

of nesting beetles will depend on host resin response. However, since the dynamic

response of trees to beetle attack is not considered explicitly, I cannot include mortality

explicitly. Instead, I include all nesting death in my assessment of over-winter survival

and success. Thus, the probability of nesting beetles becoming something else within a

flight period is zero, and:

1 }:{ ji,ji, =Π nestingnesting         (8)

Since I do not explicitly consider nesting death, the number of nesting beetles (Q) is more

accurately interpreted as the cumulative number of attempted attacks at each location.

To include the free flight mechanism, I follow Helland et al. (1984) and assume

that mountain pine beetles are unreceptive to pheromones and kairomones upon

emergence, and unreceptive beetles (uflying) become receptive (rflying) at some constant

rate, rf.

fji,ji,  }:{  rrflyinguflying =Π         (9)

I assume that unreceptive beetles neither land nor respond to chemical cues.

Defining transition probabilities for flying beetles is more problematic since these

beetles can undergo any of six transitions, and these transitions are mutually exclusive. To

ensure that beetles do not both die and move, flying beetle transitions are assessed

hierarchically. Thus, the transition probabilities that follow are conditional upon one

another.
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First, beetles either live or die. Following Powell et al., I assume a constant flying

death rate, ω1, that does not vary with receptive status. Thus, the probability of death is

simply:

1ji,ji,  }:{  ω=Π deadflying       (10)

Provided that a beetle didn’t die, it then may land. Assessing this landing

probability is one of the most conceptually difficult aspects of this modeling exercise, and

I discuss the details and reasons for my approach in the following section. For now, it

suffices that:

ji,ji,ji,  }:{  telanding ranestingrflying =Π (11)

If beetles neither die nor land they may move. As noted earlier, scolytids tend to

fly down or across wind until they encounter a pheromone plume, and then follow the

plumes upwind to their source (Choudhury and Kennedy 1980; Byers 1988; Safranyik et

al. 1989). For simplicity I have not included wind in this model, so I cannot model this

behaviour directly. However, Zollner and Lima (1999) have shown that straight or nearly

straight search strategies are more efficient than purely random ones. To ensure that I do

not underestimate the search efficiency of beetles too badly, I assume that unreceptive

beetles follow a correlated random walk search pattern derived from the exponential

distribution:
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αi+m,j+n is the angle between the last move and the potential move (proposed turning

angle), and αm is approximately the average turning angle when average turning angle is
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small (~<60 degrees) (see Figure 1 for sample curves). When average turning angle is

large, αm overestimates because the range of possible turning angles is finite.

If beetles are receptive and some gradient of attractive chemical is present then the

probability of movement to each location depends on the relative attractiveness of that

location:
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Since it is in the interest of beetles not only to find good hosts but to find good

hosts already attacked by other beetles, I assume that beetles only follow kairomone

gradients until they encounter pheromone gradients. This assumption is supported by

evidence that aggregative pheromone signals effectively overpower any tendency of

mountain pine beetles to land preferentially on suitable host trees (Pureswaran and

Borden 2002). First, each beetle checks for a local pheromone gradient. If a gradient is

detected, then attractiveness of each location depends only on the local pheromone

concentration:
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Ai+m,j+n is the concentration of pheromones at location i+m,j+n, ar is the minimum

concentration of pheromones detectable by beetles, and as determines the relative

preference of beetles for low pheromone over no pheromone areas.  The attractiveness

parameter, al, controls the sensitivity of mountain pine beetles to pheromone gradients.

The attractiveness function is designed to make beetles more sensitive to differences in

pheromone concentration when pheromone concentrations are low. Figures 2 and 3 show

the effect of al and as on attractiveness and relative attractiveness, respectively.
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If a pheromone gradient is not present, then I assume mountain pine beetle follow

kairomone gradients in a similar manner. The attractiveness function in this case is:
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        (15)

Finally, if neither pheromones nor kairomones are available to give guidance, then

receptive beetles behave like unreceptive beetles. In this case, the transition probabilities

are:
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2.1.3 Landing and Pheromone Production

Conceptually, the biggest challenge in this modeling exercise is to formulate an

appropriate pheromone production and response model. As noted earlier, mountain pine

beetles facilitate mass attack using a system of at least five semiochemicals that differ in

the message they carry, the rates at which they are produced and decay, and the time at

which they are produced. Modeling the mechanics of this system would require

representation of pheromone production by individual beetles and pheromone diffusion

at the scale of individual galleries and trees. Not only do we not have the detailed data to

support such representation, we also could not investigate large-scale landscape dynamics

with such a fine scale model. Thus, some abstraction of the pheromone communication

system is required that adequately reproduces the large-scale behaviour of beetle

populations without explicitly representing the small scale processes that give rise to that

behaviour.
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Before developing this abstraction, it is worthwhile to review what is known about

mountain pine beetle pheromone ecology and its landscape scale consequences. To begin,

Borden et al. (1987) have developed a conceptual model of the role of pheromones in

attack dynamics based on a summary of the literature. In brief: Early in attack, females

produce trans-verbenol, an attractive pheromone. Males attracted by this initial

pheromone release exo-brevicomin and frontalin over a period of several days after

landing on the host. Both of these latter pheromones are multi-functional, meaning they

are attractive at low concentrations and repulsive at high concentrations. This multi-

functionality may induce incoming beetles to space themselves at some distance, helping

to avoid overcrowding while still promoting enough aggregation to overcome host

resistance.

Later in the attack, females stop producing trans-verbenol while males stop

producing exo-brevicomin but continue releasing frontalin. Verbenol, an antiaggregant, is

produced by autoxidation of trans-verbenol and by microorganisms in association with

female beetles. In this last phase, high levels of verbenone and frontalin deter beetles from

approaching or landing at the attacked site. The clumped attack patterns and switching

behaviour characteristic of mountain pine beetle could be explained by the differential

decay rates of these two later pheromones. Since verbenone photoisomerizes rapidly on

exposure to sunlight (Kostyk et al. 1993) and frontalin is more stable, frontalin is likely to

diffuse further from the source tree. Beetles would continue to be attracted to those

adjacent areas where verbenone was absent and frontalin was present in low (attractive)

concentrations.

The net effect of this sequence is that areas become attractive early in attack, and

unattractive at some point later. However, we do not know precisely how the transition

from attractive to unattractive states relates to the state of the trees or beetle population at

a location. Thus, a model of this system must remain in part speculative.
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Powell et al. have chosen to model a single pheromone that is attractive at low

concentrations and repulsive at high concentrations. One consequence of this approach is

that the transition from attraction to repulsion occurs independent of both the resistance

and the capacity for beetles at any location. Thus, areas with low capacity (or few trees)

may never accumulate enough beetle attacks to become repulsive, while areas with high

capacity may become repulsive before enough beetles aggregate to overcome host

defences. I do not know for certain that the transition from attraction to repulsion is

dependent on local forest conditions, but, upon consideration, it seems likely.

A more troubling consequence of Powell et al.’s formulation is that unattractive

areas can create highly effective barriers to beetle spread. Since beetles will prefer to stay

in areas where there are no trees than travel through a highly infested area in search of

new hosts, they may become trapped in poor areas. Experimental evidence suggests that

this may be a problem with the conceptual model rather than a problem faced by real

beetles. Mountain pine beetles attack trees baited with verbenone (a repellent) and exo-

brevicomin (at attractive concentrations) significantly less than trees baited with only exo-

brevicomin, but do not attack verbenone-baited trees less than unbaited trees (Shore et al.

1992). Thus, it seems that while verbenone does act effectively to mask or neutralize

attractive signals, it does not seem to actively deter beetles.

To guide the development of an alternative pheromone model, I assume that the

aggregation system is optimally designed to facilitate mass attack while minimizing

overcrowding, and that flying and nesting beetles each behave selfishly to maximize their

own fitness. It is interesting to note that the interests of flying beetles and nesting beetles

need not always align. Once host resistance has been overcome, it is in the interest of

beetles already nesting to discourage further attack, and so minimize competition. Thus,

nesting beetles should stop producing attractants at this point. However, flying beetles

may gain by landing in places where host defences have been depleted, as long as
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competition with other beetles is not so intense that it offsets the advantage of avoiding

host defences. Thus, flying beetles should keep aggregating and landing until the space (or

capacity) for beetles is full, even though nesting beetles should stop actively producing an

aggregation signal before this.

To avoid erecting pheromone barriers and deterring flying beetles from areas that

are not yet full, I assume that the antiaggregative effects of verbenone and the multi-

functional pheromones remain local within each cell. Thus, for flying beetles areas may

cease to be attractive, but never become actively unattractive to dispersal. However, once

a beetle has arrived in an area, antiaggregants may deter it from landing if beetle capacity

is full. Thus, I treat the antiaggregative effects of pheromone implicitly by considering the

relationship between space left and landing rate directly. In the absence of other nesting

beetles, flying beetles prefer to land in areas with low resistance to attack, so base landing

rate is given by:

2)1( r
bbase Rrr −= (17)

where R is a value between 0 and 1 that determines the relative resistance of trees to

attack, and r2 controls the selectivity or preference for low resistance over high resistance

areas. In general, areas become more attractive as the number of nesting beetles increases,

so landing rate also increases. Finally, landing rate peaks at some intermediate number of

beetles, and declines to zero as the number of nesting beetles reaches capacity. In sum:
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rm is the maximum possible landing rate. r1 determines how fast landing rate increases

with the number of nesting beetles, r3 determines how the relative preference of flying

beetles for low resistance areas persists as the number of nesting beetles increases, and r5
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determines the sensitivity of flying beetles to crowding (see Figures 4 and 5 for sample

curves).

The long-range attractive effects of trans-verbenol and the two multi-functional

pheromones are modeled with a single attractive pheromone, A. This pheromone diffuses

across the landscape exactly like the multi-functional pheromone modeled by Powell et

al., but its production and effect differ. Per beetle production rate is maximum (am) when

nesting beetles are sparse, and decreases to zero as host capacity is reached:
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The point at which pheromone production reaches one half of maximum increases with

resistance, R, with the rate of increase determined by a3. The parameter a1 determines the

steepness of production decline, and a6 ensures that initial pheromone production is

maximum unless host resistance is very nearly zero (see Figures 6 and 7 for sample

curves).

I have supposed that there is a conflict between the interests of flying and nesting

beetles, and that flying beetles should keep aggregating and landing until areas are full,

while nesting beetles should stop actively producing aggregating pheromones as soon as

host resistance is overcome. While the suppositions remain speculative, it is interesting to

note that a conflict between the interests of flying and nesting beetles could account for

the multi-functionality of frontalin and exo-brevicomin. In the interest of reducing

competition, it makes sense that nesting beetles should put some resources toward

producing an “antiaggregation” signal, rather than simply falling silent. However,

following the argument above, flying beetles should interpret this signal as an indicator of

a secure resource, and aggregate towards it until they are so near to the signaling beetle

that the cost of competition equals the advantage of security. Finally, the rapid decay rate
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of verbenone (Kostyk et al. 1993) could explain why this pheromone functions only as an

antiaggregant.

While it is encouraging that some aspects of pheromone ecology are consistent

with my assumptions, in reality it may not be that the mountain pine beetle aggregation

system is optimal. In particular, asserting that flying beetles aggregate and land until all

the susceptible trees in an area have been fully attacked assumes that flying beetles can

tell precisely when an area is full, and that beetles tend to kill all of the infested trees at a

location before moving on. The reality is that spots do not spread evenly, but often skip,

leaving susceptible trees unattacked (Mitchell and Preisler 1991; Borden 1993). It is not

clear how to model this skipping behaviour while still avoiding pheromone traps using a

simple biased random walk dispersal rule, suggesting once more that beetle dispersal is

more complex than this model. One interesting possibility is that an alternate above

canopy dispersal mode might give trapped beetles a way out. However, not enough is

known about when or how often beetles rise above the canopy, how they travel once they

have risen, or how they decide to come down (but see Safranyik et al. 1992). Since we

have neither the data nor the understanding to support a more complex dispersal model at

this time, I leave the challenge for future research, and continue.

2.1.4 Pheromone Diffusion and Decay

Following Powell et al. I represent pheromone dynamics using a simple diffusion

model with a constant decay rate, δa.

A rateproductionpheromone Ab
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2.1.5 Kairomone Production, Diffusion and Decay

There is some evidence of primary attraction in mountain pine beetle attack

dynamics (Moeck and Simmons 1991; Pureswaran and Borden 2002). However, my

interest is not in modeling primary attraction as it occurs, but in comparing the effect of

movement towards suitable hosts and movement towards conspecifics, controlling for as

many other factors as possible (see Section 1.3.2 for more thorough discussion). Thus, it

is more important that primary and secondary attraction occur at the same intensity over

the same spatial scales in this model than that they are biologically accurate. I refer to my

primary attractant as a “kairomone”, but true kairomones (host volatiles) may not have

the properties or dynamics I attribute to them here. I assume that beetles are most

attracted by the volatiles of trees with low resistance, so that kairomone production

declines with increasing resistance:

)1(, Rc rateproductionkairomone mji −= (21)

Note that this formulation differs from the MPBpde, where kairomone production

is proportional to the number of mountain pine beetle attack holes and the resistance of

host trees (White and Powell 1998; Logan et al. 1998). Trees that have been killed by

beetles cease to produce kairomones that make them attractive to other beetles. Finally,

kairomone spread and decay is a simple dissipative diffusion process, so the rate of

change in kairomone over time is given by:

CRcCb
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)1(2                   (22)
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2.1.6 Complete Model of Dispersal, Aggregation and Attack

In sum, at any point in time, t, throughout the flight period, mountain pine beetles

may be in one of five modes. Possible mode transitions and their associated probabilities

are summarized in Table 1. The population of flying beetles at each location is given by P,

and the population of nesting beetles is given by Q.

∑∑ += jiji rflyinguflyingP ,,

(23)

∑= jinestingQ , (24)

At each time-step, t to t+1, flying beetles can also change locations, and transition

probabilities between adjacent locations are given by:
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Finally, pheromones and kairomones arise, spread, and decay according to:
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See Table 2 for a summary of model processes and interactions between variables.

See Figure 8 for a graphical summary of same.
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2.1.7 Extending the Model Over Multiple Years

My primary interest is in the effect of landscape pattern on the spread of beetle

infestations over several years. To extend the model, I consider the attack efficiency of

beetles within cells. Provided trees that are at least somewhat resistant, beetle success,

measured as per capita reproductive rate, should be low when the density of nesting

beetles is low, and increase as the number of nesting beetles increases enough to

overcome host defences. As the number of nesting beetles increases even further towards

carrying capacity, I expect that per capita reproductive rate will eventually decrease as

competition for host resources becomes limiting (Safranyik et al. 1999). Furthermore, the

point at which host defences are overcome and survival reaches maximum should be the

point at which pheromone production by nesting beetles declines. An equation with these

properties is:
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where the parameters s1, s3, and s6, control the relationship between reproductive rate and

resistance in the same way that a1, a3, and a6 control the relationship between pheromone

production and resistance. Generally, the value of these parameters should be equal so

that pheromone production decreases as success increases, and vice versa. rw determines

the maximum per capita reproductive rate in the absence of resistance or competition, s4

determines the minimum reproductive rate that flying beetles will tolerate (or the

reproductive rate at carrying capacity) and s5 determines the rate at which reproductive

success decreases due to crowding. If beetles do not tend to crowd each other so much

that total reproduction declines then s4 =s5+1. It also seems reasonable that landing rate
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might decrease with reproductive rate due to crowding, in which case s5 should be equal

to r5, the crowding parameter in Equation 18.

In passing, it is worth noting that there are a number of complications to mountain

pine beetle survival and reproduction I have not addressed. First, the quality of host trees,

the duration and severity of winter cold, competition and any other factor that stresses the

population seems to disproportionately affect males and thus alter sex ratios (Amman and

Cole 1983). Upon reflection, it seems that a higher proportion of females might

compensate for higher mortality rates, so reducing the effect of density dependent

competition on net reproduction, but it is not clear to me how exactly this might alter

infestation spread over all.

Of potentially more direct concern is that average beetle size decreases with egg

gallery density (competition), increases with phloem thickness, and increases also when

winter temperature is low (Amman and Cole 1983; Safranyik 1976). Large females have

higher reproductive potential, and, more importantly, large beetles of either sex may have

a longer flight period and a longer free flight period (Borden et al. 1986; Safranyik 1976).

At face value, the prediction might be that crowded beetles spread less far because they

are in poor physical condition. This seems logical, but also unfortunate for beetles. I

wonder if some behavioural mechanism like rising above the canopy might help beetles

get away from crowded situations even with limited physiological resources. At any rate,

it seems that density dependence in dispersal distance and free flight behaviour could alter

infestation spread. This possibility deserves further attention.

Nesting beetles in year n give rise to Q*reproduction rate offspring in year n+1,

which emerge at a constant rate over the flight period in the following year. Thus, γi,j,n+1,

the emergence rate at each location in year n, is given by:

fnjinnji prateonreproductiQ ,,1,,  *=+γ (30)
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where pf is the duration of the annual flight period in flight hours.

If trees have no resistance, then the proportion of trees killed at a location is equal

to the proportion of trees attacked. Given the simplifying assumption that beetles fill trees

to capacity before moving on, kill rate is given by Q/K. If trees have resistance, then kill

rate will be less than Q/K, and I assume the decrease is equal to the ratio of realized

reproduction rate to maximum reproduction rate. Realized reproduction rate is given by

Equation 29, and maximum reproduction rate is the realized rate when R = 0. Dividing

through, we get:
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 As trees are killed, capacity declines by kill rate:
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However, assuming that surviving trees fully recover before the next flight period,

and all trees within a stand have the same relative resistance, then resistance within the

stand remains constant over the course of the outbreak:

nn RR =+1 (33)

See Figures 9, 10 and 11 for sample success and kill rate curves.
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2.2 PARAMETERS AND IMPLEMENTATION

2.2.1 Base Model Parameterization

I have used the parameter values from the MPBpde work where possible.

However, many of the parameters in my model do not have analogues in the MPBpde.

Where available I have used estimates from other literature, and where not I have taken a

calibration approach, relying on literature, common sense and arbitrary decree to guide

my expectations about the appropriate behaviour of model subcomponents.

For the purposes of calibration and testing, I approached the model in 5 stages:

forest composition, beetle flight behaviour in the absence of pheromones or kairomones,

pheromone and kairomone production and diffusion, beetle response to volatiles, and

beetle survival and reproduction. First, the forest at each location is characterized by a

capacity for beetles, K, which is the number of beetles that can land before that location

becomes unattractive to other beetles. The MPBpde contains no analogous parameter,

and the capacity for beetles is an emergent property of that model, rather than an input.

However, in a field study designed to parameterize the MPBpde, Biesinger et al. (2000)

found that the average number of nesting beetles in colonized trees ranged from 567 to

1496 MPB tree-1. Stands susceptible to mountain pine beetle attack typically range from

between 750 to 1500 stems ha-1 (Shore and Safranyik 1992; Whitehead et al. 2001).

Assuming average stand density of 1000 susceptible stems per hectare suggests an

average beetle capacity, K0, on the order of 1,000,000 MPB ha-1.

Due to computational constraints I cannot model all beetles individually. Instead, I

model “individual” groups of 1000 beetles that emerge and move together. Note that this

may increase the efficiency of spread at the margins of the infestation, but as long as

congregation of several groups of beetles is still required for success I do not expect the
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increase in spread rate to be excessive. To avoid confusion or misrepresentation I present

all results and parameter values in thousands of MPB, or TMPB. Thus, the average

carrying capacity is 1000 TMPB ha-1.

Following Powell et al., I assume some variability in forest composition over space

so that weak, low capacity areas can provide foci for attack. Thus, beetle capacity is

uniformly distributed with a mean of 1000 TMPB ha-1, a minimum of 500 TMPB ha-1, and

a maximum of 1500 TMPB ha-1. I also assume that resistance varies normally across the

landscape, with a mean of 0.5, and a standard deviation of 0.3.

Before adding the complications of chemotaxis, it is worthwhile to consider how

beetles move in the absence of pheromone or kairomone cues. Together, the parameters

Ko, Ro, ω1, rf, αm, rb, r2, and the beetle step rate ∆t determine the distance traveled by

beetles across a contiguously forested landscape in the absence of pheromones or

kairomones. Following Biesinger et al. (2000), I use a constant death rate (ω1) of

0.01 fh-1 (beetles fly for only a few hours each day so following Powell et al. the base unit

of time in this analysis is the flight-hour, fh - there are approximately 5 fh per day). The

free flight duration of mountain pine beetles is not known, but related bark beetle species

require an average of between 30 and 90 minutes flight exercise before becoming

receptive to olfactory stimuli (Borden et al. 1986). Lacking better estimates, I assume that

beetles become receptive to pheromones at a rate (rf) of 0.65 fh-1. Finally, I assume that

beetles turn an average of angle, αm, of 35o at each step. This leaves the base landing and

step rate parameters to be determined. Biesinger et al. (2000) assume that flying beetles

follow a simple random walk movement pattern with a diffusivity of 1 ha fh-1. However,

since I have not taken a diffusion approach I cannot use this diffusivity estimate directly.

Instead, I return to the study from which Biesinger et al. (2000) derived their movement

parameter estimates, where Turchin and Theony (1993) found that 50 % of southern pine

beetles disperse less than 0.69 km, and 99% disperse less than 3.29 km. A step rate (∆t) of



40

0.25 fh cell-1 (where each raster cell is 50 by 50 metres or 0.25 ha) and a maximum base

landing rate (rb) of 0.2 fh-1 gives an average travel distance of 0.64 km on contiguous

habitat, and 1.3 km on a landscape without habitat (but note that the latter may be an

underestimate due to edge effects – see Figure 12 for details). 90% of beetles travel less

than 1.5 km on contiguous habitat (Figure 12).

Biesinger et al. (2000) estimate that pheromones are produced at a rate of 20 µg fh-

1 TMPB-1, diffuse at an average of ba = 0.648 ha fh-1, and decay at a an average rate of δa =

180 fh-1 in a stand of average openness with a wind speed of 0.6 m s-1. I accept the base

diffusivity and decay rate estimates as they are, and assume a maximum pheromone

production rate, am, of 20 µg fh-1 TMPB-1. Following Geiszler et al. (1980b), I assume that

beetles are sensitive to concentration of pheromone greater than 3*10-3 ng m3, or

assuming that chemicals diffusing higher than 3 metres above the ground are lost to the

system, ar = 0.1 µg ha-1. On a grid cell resolution of 0.25 ha, these spread parameters yield

a radially symmetric pheromone plume with cross section shown in Figure 13. Note that

true communication distance will always be one cell greater than measured

communication distance or plume width, as beetles in cells adjacent to the plume can

respond to pheromones in adjacent cells, even if there is no pheromones in the cell they

currently occupy. The prediction that beetles can only communicate effectively over

distances less than 50-100 metres is supported by experience with pheromone baited

trapping, where baits should be set no more than ~75 metres apart to be most effective

(Borden, J. personal communication). This implies that the scale at which pheromones

interact with forest pattern is probably small (on the order of tens to hundreds of metres,

rather than kilometres). I exclude kairomones from the base case, and examine their

effects in a later sensitivity analysis.

Finally, I am left with the reproduction, pheromone production, and landing

parameters to choose. First, I assume that pheromone production declines to zero as
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reproductive rate increases to maximum. Thus, the parameters that control the

reproduction and pheromone production curves are equal (a1=s1, a3 = s3, and a6 = s6).

Similarly, I assume that landing rate declines with reproduction rate, so r5 = s5. Somewhat

more arbitrarily, I assume that per area beetle production rate is maximum when beetles

are at capacity (Q = K), which implies that s4 = s5+1. The ratio of emerging to attacking

beetles must be at least greater than 1 for the population to increase, and in this case I

select rw = 3 for the base case. This leaves the production parameters s1, s3, s5, s6, and the

landing parameters r1 and r3 to choose by some combination of presumption, calibration

and sensitivity analysis.

The parameter s1 determines the steepness with which success increases as Q

increases. This will depend on the aggregation efficiency of beetles within stands. I have

no clear a priori expectation for how this parameter might affect the success of beetles or

the importance of aggregation, and no data to inform the decision. Thus, I arbitrarily

assume a baseline value of 20, and explore the effect of alternative values with sensitivity

analysis. Figure 10 shows the effect of this parameter on pheromone production and

success rates.

Similarly, the parameter r1 determines the steepness of the landing curve, or

eagerness of flying beetles to land next to other beetles. Higher values will make beetles

eager to land where other beetles have landed, regardless of the resistance of the trees

there. If beetles are present in sufficient number to overcome the defences of resistant

hosts, then this should increase overall success rate by increasing the efficiency of

aggregation. However, if beetles are scarce then this may decrease average success rate by

making beetles eager to land in high resistance areas where they may not succeed. In

reality, the willingness of beetles to land will probably vary with the abundance of suitable

hosts. In practice, I have chosen an arbitrary value of 20, and explore the consequences of

this choice later. Figure 5 shows the effect of this parameter on landing rate.
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The parameter s6 determines the base reproductive rate when Q is very low. If

resistance is zero, then reproductive rate should be maximum even when Q is very low.

However, since my purpose is to investigate the situation where congregation is essential

for survival, I assume that if resistance is greater than zero, then success or reproductive

rate is essentially zero until enough beetles have aggregated to overcome host resistance

(s6 = 0.001). While this assumption ensures that congregation is important for success, the

true biological situation is probably less absolute.

The parameter s3 determines the relationship between R and the point where

reproductive rate reaches half of maximum, and thus also affects the degree which

congregation is important for success. Again, I choose this parameter to ensure that

congregation is essential for success, and explore the consequence of this assumption

through sensitivity analysis (Figure 10). Finally, I choose a value of 0.3 for the parameter

that controls the persistence of mountain pine beetle preference for low resistance areas,

r3. Figure 5 shows the sensitivity of landing rate to this parameter.

In sum, the parameters s1, s3, s6, r1, r2, r3 and rb determine relationship between Q,

resistance, and success and the landing behaviour of beetles respectively. Since I have no

data to inform my decisions about the value of these parameters, one of the main results

of this study is an investigation of how assumptions about these parameters affect the

influence of pattern on infestation spread. For baseline simulations, I have chosen values

that seem likely to lead to the behaviour I wish to observe. That is, I have chosen values

that make congregation essential for success. For a complete description of all parameters

and their associated baseline values, see Table 3.
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2.2.2 Numerical Methods and Model Implementation

The mixed reaction-diffusion and individual based modeling approach taken

narrows the range of options for implementation available. Software well equipped to

numerically solving partial differential equations is not well designed to represent

individuals, and tools helpful for individual based modeling do not include more

advanced mathematical capacities. To resolve this dilemma without excessive

programming difficulty, I used an explicit first order forward-Euler method for solving the

diffusion equations. This method is less accurate and has more restrictive stability

conditions than other available options, but the advantage is that it can be implemented

without the use of sparse-matrix solvers or other mathematical tools.

I implemented the model using SELES, a domain-specific declarative modeling

language for spatio-temporal modeling (Fall and Fall 1999 a, b; Fall and Fall 2001 -- note

that the language has been expanded to allow individuals since the original release.

Contact A. Fall for most recent documentation). Reflective boundary conditions are

assumed throughout.

2.2.3 Spatial Extent and Resolution

The problems of spatial and temporal stiffness in this model can be addressed by

using a very fine spatial grid or a multi-grid approach, where areas of focus and attack are

resolved at a finer grid spacing than the rest of the landscape (White and Powell 1996).

Both of these methods are computationally demanding, and ultimately the problem of

spatial stiffness is not so much resolved as endured in a compromise between

computational demand, edge effects and aggregation error.
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In order to assess the spatial grain required to resolve pheromone diffusion, I

simulated the diffusion of pheromones from a single continuous source and measured the

radius of their detectable pheromone plume given base parameter estimates. Given these

values, pheromone plume extent ranges between 50 and 100 metres depending on the

number of nesting beetles present at the source and the carrying capacity of source

habitat. At the other end of the scale, Turchin and Theony’s (1993) finding that 50% of

southern pine beetles disperse 0.69 km or less, and 90% disperse less than 3 km suggests

that a landscape extent of at least several kilometers is required.

In a compromise between minimizing edge effects and minimizing computational

demand, I chose a spatial extent of 5 km by 5 km, or 2500 ha, and grid cell resolution of

50 by 50 metres, or 0.25 ha cell-1. Given that pheromones in the base case only spread

from 50 to 100 metres a grid cell resolution of 50 metres is barely sufficient to resolve this

spread at all. However, to increase to a finer landscape resolution I must either decrease

spatial extent or accept an increase in the computational time required to run the model.

My main purpose here is to investigate pattern effects at the scale of communication

ability rather than dispersal ability, but decreasing the spatial extent of my model below

the characteristic dispersal distance of beetles causes edge effect problems that are

difficult to resolve. The second option – to increase spatial resolution while maintaining

spatial extent – increases the computational demand of the model so much as to make the

experimental simulation approach impractical. Thus, I compromise with a landscape that

is just barely large enough resolved at a scale that is just barely fine enough. Running all

simulations on a square landscape 5 by 5 km large, resolved at 0.25 ha cell-1, gives a total

of 10,000 cells per landscape.



45

2.2.4 Temporal Extent and Resolution

The problem of temporal stiffness arises largely because pheromones decay on

much faster time-scales than beetles diffuse, land, or die. That pheromones decay at a rate

of 180 fh-1 and spread at a rate of 0.648 ha fh-1 (Biesinger et al. 2000) suggests that

pheromone dynamics must be resolved at time step of less than 1/180 fh. In contrast,

beetles diffuse at a rate of 1 ha fh-1, and land or die at a rate of less than 1 fh-1, suggesting

that a time-step of 1/4 fh is adequate to resolve beetle dynamics. To avoid the

computational cost of resolving all model dynamics on the faster pheromone time-scale,

White and Powell (1996) developed a time-scale splitting approach by recognizing that

beetles dynamics evolve so slowly with respect to pheromones that they are essentially

constant over the time-scale at which pheromones evolve. After splitting the beetle and

pheromone time-scales, White and Powell (1996) solve the pheromone and kairomone

equations analytically over the beetle time-step. I follow the spirit of this approach, but

lacking the tools required for transformation to Fourier space, I solve the pheromone and

kairomone equations using an explicit numerical method. After each beetle time-step I

simulate pheromone dynamics until the chemical landscape is near enough to equilibrium

that further simulation causes changes of less than 10-3 µg ha-1 in chemical concentration

and then proceed directly to the next beetle time-step.

Following Logan et al. (1998) I assume a baseline flight period of eight days with

five flight hours per day, giving a total annual flight period, pf, of 40 flight hours. I ran

each simulation for 25 years, or 1000 fh, which was long enough for beetles on

contiguous habitat to successfully kill all susceptible trees. Beetle dynamics are resolved

with a time-step of ∆t = 0.25 fh. Pheromones and kairomones I solve on a time-step of ∆ta
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= 1/500 fh, which is small enough that further decreases to the size of the time-step do not

significantly alter the shape or extent of the pheromone plume.

2.2.5 Initial conditions

Since I am interested in the effect of pattern on the spread of a single infestation, I

begin each run with 1,250,000 successful beetles in the centre of each landscape, giving an

initial emergence rate of 1250*rw/pf = 93.75 TMPB fh-1 from the centre pixel.

2.3 EXPERIMENTAL DESIGN AND ANALYSIS

2.3.1 Pattern generation and experimental design

Binary landscapes were simulated using a spreading algorithm modified from a

simple fire model (Fall 1998). Habitat patches are placed at random, subject to the

constraint that new patches cannot start within old ones. Patch sizes are Weibull

distributed, and the complexity of patch shape depends on the number of neighbours to

which each cell spreads in each step. New patches do not spread over old ones, but

spreading may continue until patches adjoin one another. Patches are initiated and spread

sequentially until the proportion of habitat within the landscape reaches a predetermined

level. The distributions of patch size and shape are each controlled by 2 parameters.

I further constrained the patterns by insisting that the first patch initiate in the

centre of each landscape. Since initial beetles are always released from this central

location, this is equivalent to requiring that infestations always arise within a habitat patch.

This is a biologically reasonable constraint that controls for the initial distance to habitat,

which might otherwise overwhelm the effect of pattern on beetle success.
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Landscape fragmentation, or, for the purposes of this discussion, the average

minimum distance between patches, is affected both by the size and shape of habitat

patches, and the average density (or total amount) of habitat across the landscape.

Increasing aggregation within patches (patch size) also increases the distance between

patches, and the tradeoff between these two factors depends on overall habitat density

(Andren 1994). To explore these interactions, I used a multi-factorial experimental design,

with 4 levels of average patch size from small (0.39 ha) to large (14.2 ha), 4 levels of

habitat density from 10 to 40 percent of the landscape at intervals of 10 percent, and 5

replicates of each resulting pattern type. Since I am interested in the effects of the spatial

arrangement of habitat, rather than the quantity, I held total habitat supply constant, and

varied the amount of area over which this habitat was distributed (see Figure 14 for a

schematic diagram of the experimental design and examples of each pattern type). Pattern

parameter values were chosen so that the range of fragmentation scales (measured here as

average minimum distance between patches) spans the range of pheromone

communication scales (<50 to >200 metres).

I ran the initial pattern and communication distance experiments on this full 4 by 4

factorial pattern array. However, all other sensitivity analyses were run on a reduced 2 by

4 pattern array, omitting the two intermediate patch sizes to reduce computation time and

thus allow more comprehensive experimentation.

2.3.2 General Analysis Procedure

The output from each model run is a time series of area (which can also be

interpreted as volume of timber) killed per year. Area killed ranges from 0 to 250 ha or 0

to 100%, since initial habitat supply is constant across all landscapes. Output curves are
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characteristically sinusoidal, as beetle outbreaks spread exponentially until populations

are limited by accessible habitat supply. See Figure 15 for sample curves.

My basic analytical approach is to fit a non-linear regression to each output curve

(kill vs. time), and then treat the estimated coefficients of each regression as multiple

response variables that can be analyzed using standard regression techniques (Cook and

Ware 1983). In the analysis of growth curves, it is somewhat more common to fit

polynomials to non-linear data, as this ensures that the maximum amount of residual

variation will be accounted for. The main drawback of this latter approach is that

polynomial terms are difficult to interpret biologically. Since my main intent here is to

understand biological effects, I have opted to fit less complicated models with fewer,

more easily interpretable parameters.

To select a regression model, I fit 4 alternative 3 parameter sinusoidal curves (from

Ratkowsky 1990) to each of the base experiment runs and examined the distribution of

residuals and fit (Figure 16). Of the 4 models, the Weibull-type curve had the lowest

maximum residuals, lowest average variance, and the best looking fit. Note that the

rigorousness of selection of the “best” regression model is also not of great concern, as

the models are used to describe curves, rather than to predict. If the fit is adequate then

comparison of the curves should be consistent regardless of the model used (Potvin et al.

1990). Note also that residuals in all of the models are correlated because points in the

time series are not independent. This violates regression assumptions, rendering

significance tests meaningless and raising the possibility of bias in parameter estimates.

However, in this case the violations are not of great concern because the significance of

the regressions is not important, and any bias should be consistent across all curves.

The Weibull-type model has three parameters – aw, gw, and dw. aw can be easily

interpreted as the asymptote or maximum value of the s-curve (Figure 17). gw and dw

together determine the rate at which values increase to the maximum, but their meanings
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cannot be so easily teased apart. In general, increases in either gw or dw lead to increased

slope (Figure 18). Finally, note that I do not analyze the estimated asymptote data (aw),

but instead consider the maximum area killed after 25 years (killf). Maximum kill is a

better measure because curves that are low but slowly increasing at the end of the

simulation do not provide enough information for a meaningful estimate of asymptote.

The distributions of the slope parameters gw and dw allow a continuous statistical

modeling approach. The maximum area killed, in contrast, is bimodally distributed, with

beetles killing either all or very little of the available habitat within the 25 year period

(Figure 19). In all runs, final infestation extent was either less than 15% (37.5 ha) or

greater than 95% (237.5 ha) of initial habitat. To avoid violating regression assumptions I

converted this area killed response to a binomial variable by classifying all cases as either

“outbreak” (>= 95% of the available habitat is killed after 25 years) or “non-outbreak”

(< 95% killed). No technique is available to treat both the binomial and the continuous

response variables in the same experiment, so I tested the experimental effects on kill rate

(gw, dw) and area killed separately.

I varied communication distance and other model parameters within each

incidence of pattern, so the experiments have a repeated measure or split-block design.

The two kill rate responses were analyzed using mixed models to avoid violating the

restrictive circularity assumption of randomized block or split-plot ANOVA (von Ende

2001). Patch size and shape are between-subject factors, and all other experimental

factors are repeated within pattern. Unstructured covariance matrices were assumed, and

all response values were log transformed to equalize variance between groups.

Analyzing the binary outbreak data was somewhat more challenging. In general,

levels of communication distance are not independent, since if beetles can outbreak when

communication distance is short they are nearly certain to outbreak also at longer

communication distances. However, lack of variation in response at some levels of
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communication distance prevented the estimation of more appropriate covariance

matrices, leaving me in the ironic position of being unable to analyze the data properly

because the experimental effects are too strong. Being unable to fit an appropriate

repeated measures model, I pooled the three repeated measures into one response variable

by counting the number of outbreaks that occurred on that pattern across all levels of the

within subject factor. I then tested for effects of patch size and patch compaction on this

overall chance of an outbreak by fitting a mixed model with a Poisson distribution and a

log link function. Sampling zeros and lack of variation at some levels were corrected for

by adding a small amount (0.001) to each outbreak count.

Post-hoc comparisons were challenging due to the large number of possible pair-

wise comparisons (4560 in the base experiment with four levels of patch size, four levels

of patch compaction, three levels of communication distance, and two response

variables). To navigate through this bewildering abundance, I tried two approaches. First,

I examined marginal variation in each factor by looking at pairs that differed only in a

single factor. I also looked at comparisons between each group mean and the maximum

and minimum group means in the experiment to see which kill rates were significantly

greater than “low” or significantly less than “high”. These two approaches did not yield

greatly different insights, and since the latter is easier to summarize and present

graphically, I present only these results. Note that although I only examined a subset, all

pair-wise comparisons are adjusted for the full set of comparisons using the Tukey-

Kramer method. In retrospect, comparisons could have been adjusted for the reduced set

of comparisons that I actually considered. Given that a more conservative correction was

used, some significant results may have been missed, but significant differences that have

been reported are very likely to be true.

Data manipulations and non-linear regressions were done with S+ using the

NLREGB function (Insightful Corp. 2001). Continuous mixed models were fit using the
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MIXED procedure in SAS, and multinomial mixed models were fit using the GENMOD

procedure (SAS Institute Inc. 2000).
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3 EXPERIMENTS AND RESULTS

Following from the introduction there are three main areas of interest:

1) What is the effect of patch size and patch aggregation on infestation spread

rate and extent, and how does pheromone communication distance alter

these effects? Is beetle success directly constrained by pheromone

connectivity, and can beetles aggregate efficiently only over gaps across

which they can communicate?

2) Under what conditions are pheromones a) important for success, and b)

functionally different from kairomones?

3) How does the tendency of beetles to fly for some period before becoming

responsive to pheromones alter the results from part 1?

Each of these questions is addressed with a separate experiment, and it is least

confusing to communicate the design, analysis and results of each together, rather than

dividing methods and results into separate sections that leave each experiment disjointed.

3.1.1 Clarifying hypotheses

My underlying hypothesis about the effect of pattern is that beetles are

constrained by pheromone connectivity, which is in turn influenced by the pattern of the

forest mosaic. That is, infestations should spread efficiently between patches connected

by pheromone communication distance, and slowly or not at all across gaps larger than

communication distance.

To measure how landscapes are connected by pheromones, the approach of Keitt

et al. (1997) would be to join patches less than pheromone distance from one another into

connected clusters. I follow this general approach, but since beetles spread from the
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centre in all landscapes, the measure of connectivity I use is size of the centre cluster

(Figure 20). The reasoning is that if beetle spread is strictly limited by whether or not

beetles can communicate across gaps then the final extent of the infestation should be

equal to the centre cluster size in each landscape.

The simple way to test whether centre cluster size determines the extent of beetle

infestations is to examine the relationship between these two variables. However,

regressions between kill extent and centre cluster size can only indicate whether centre

cluster size predicts kill, not how the effect of pattern on kill differs from the effect of

pattern on centre cluster size. Since the latter is my greater concern, it is most informative

to use centre cluster size indirectly to guide expectations about the effect of pattern, rather

than to test relationships with kill extent directly. To do this, I calculated centre cluster

size for each pattern, and analyzed the results using mixed models similar to the analysis

of growth rate (gw and dw) data. This analysis also gives some indication of whether the

sample sizes and pattern ranges are sufficiently large; if the effect of patch size, patch

compaction, and communication distance on centre cluster size is significant, there is

some comfort that the experiment is sufficient to detect the response we expect if that

response occurs.

In general, the effect of increasing any of patch compaction (p), patch size (w),

and communication distance or buffer width (d) while holding the others constant is to

either increase centre cluster size or leave it unchanged. Interactions between variables

significantly alter the amount of increase (ccs ~ d*w*p, n=320, p<0.0001 – Note:

throughout the remainder of this document, the notation “response ~ factor1*factor2”

followed by a sample size (n) and a p-value indicates that these two factors significantly

interact in their effect on the response variable. Sample sizes are for both within and

between-subject factors, but remember that all factors except p and w are within-subject

so the number of independent samples is less than n. The three possible response
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variables are abbreviated as: ccs = centre cluster size, kr = kill rate, and op = outbreak

probability, and a significant effect of rpt indicates that the two kill rate parameters (gw,dw)

differ in their response to the experimental factors. Parameter and factor abbreviations are

defined elsewhere). When patch size is small (w0) and communication distance is large (d

= 200 m), the distance between patches is less than 200 metres, so the landscape is

connected (centre cluster size ~100%) regardless of patch compaction level (Figure 21,

w0, d = 200 m). Increasing patch compaction decreases the distance between patches

enough to move the landscape from almost completely unconnected to completely

connected when communication distance is intermediate (Figure 21, w0, d = 50 m/100

m). When communication distance is zero, the effect of patch compaction is insufficient

to connect the landscape (Figure 21, w0, d = 0 m).

When patch size is small the transition from connected to unconnected occurs

over a relatively small range of patch compaction (10-20%), demonstrating the threshold-

type behaviour characteristic of percolation networks (Figure 21, w0). As patch size

becomes larger (w10-w50), the distance between patches becomes both larger and more

variable. As this happens, differences between communication distance levels tend to

diminish (Figure 21). The effect of patch compaction also becomes more continuous, and

threshold effect disappears.
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3.2 EXPERIMENT I – BASE CASE

3.2.1 Question

What is the effect of patch size and patch aggregation on infestation spread rate

and extent, and how does pheromone communication distance alter these effects? Is

beetle success directly constrained by pheromone connectivity, and can beetles aggregate

efficiently only over gaps across which they can communicate?

3.2.2 Approach

Pheromone communication distance can be altered by adjusting one of two

parameters in the model. All else being equal, decreasing pheromone diffusivity (ba), and

increasing decay rate (δa) both decrease the extent of a pheromone plume. Diffusivity has

a relatively small effect on plume extent, so I consider only the effect of changing decay

rate. To see how the effect of pattern varies with communication distance I vary

pheromone decay rate across three levels. d50 is 0-50 metres, d100 is 50-100 metres, and

d200 is 100-200 metres (Figure 22).

3.2.3 Expectations

Both outbreak frequency and kill rate (gw, dw) should increase with increasing

patch compaction, communication distance, or patch size. Since the overall prediction is

that centre cluster size should determine kill rate and infestation extent, interactions

between variables should occur as in Figure 21.
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3.2.4 Results

The effect of patch compaction is significant (kr ~ p, n = 240, p=0.003), and kill

rate generally increases with patch compaction as expected (Figure 23). The interaction

between communication distance and the two response variables (gw, dw) is also

significant (kr ~ d*rpt, n = 240, p<0.0001). Increasing communication distance from 50 to

100 metres consistently increases kill rate as expected. However, increasing

communication distance from 100 to 200 metres only appears to increase kill rate when

patch compaction is low (Figure 23). When patch compaction is high kill rate tends to

decrease as communication distance increases from 100 to 200 metres. This apparent

interaction between patch compaction and communication distance is not quite

significant (kr ~ d*p*rpt, n = 240, p=0.0701), but that the trend is consistent over all patch

sizes suggests that it may be real. Kill rate appears to increase slightly with patch size,

especially when communication distance is small (d50), but this effect is also not quite

significant (kr ~ w, n = 240, p=0.077).

As noted earlier, in all runs final infestation extent was either less than 15% of

habitat, or more than 95%. Since 92% of patterns have centre cluster sizes somewhere

between these two extremes, it is clear that infestation extent is not directly constrained

by centre cluster size. In general, trends in outbreak probability mirror trends in kill rate,

except that kill rate may vary between cases where outbreak probability is uniformly

100% (Figure 23). However, relationships between outbreak frequency and the

experimental factors are not significant (Figure 24).

For reference, information from each experiment, including experimental design,

sample size, significant test results, noteworthy trends and comments are summarized in

Table 4.
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3.3 EXPERIMENT II – THE UNIQUENESS OF PHEROMONES

3.3.1 Question

Under what conditions are a) pheromones important for success, and b)

functionally different from kairomones?

3.3.2 Approach

To test whether and under what conditions pheromones are important for success

and functionally different from kairomones I compare the effect of patch compaction and

patch size (w0,w50 only) on beetles with pheromones (pher), kairomones (kai) or no

volatiles (nv) in the case where a) mass attack is important for success and b) mass attack

is not important for success. To facilitate comparison, I chose kairomone production,

spread, decay, and attractiveness parameters so that the kairomone and pheromone

plumes are similar shapes and sizes, and produce a similar response from beetles (Figure

25). Communication distance was high (d200) to ensure that beetles with pheromones

would be successful. Success is measured as kill rate and/or outbreak probability.

3.3.3 Expectations

If aggregation is required for success then success with pheromones (pher) should

be higher than success with no pheromones (nv or kai). If aggregation is not required for

success, then there are three possibilities:

If success with pheromones is equal to success with no volatiles then:
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1) volatiles are only important when aggregation is required for success.

Otherwise, if success with pheromones is equal to success with kairomones, but not

success with no volatiles then:

2) volatiles are important for success always, but if aggregation is not required for

success then pheromones and kairomones are functionally equivalent.

Finally, if success with pheromones is not equal to success with either kairomones or no

volatiles, then:

3) pheromones and kairomones are not functionally equivalent even when

aggregation is not required for success.

3.3.4 Results

As predicted, beetles using pheromones have higher kill rates (dw) and higher

outbreak probabilities when mass attack is required for success (Figure 26). When mass

attack is not required for success kill rate and outbreak probability are uniformly high,

though beetles using pheromones appear to spread slightly slower than beetles using

kairomones or no volatiles at all (Figure 26). Note that the effects of attack requirement

(atr) and communication system (vty) also vary significantly with response variable,

patch compaction, and patch size (kr ~ atr*vty*p*w*rpt, n=240, p=0.014). However the

effects of patch size and patch compaction, while statistically significant, are difficult to

interpret and uncompelling graphically (Figure 26).
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3.4 EXPERIMENT III – THE EFFECT OF FREE FLIGHT

3.4.1 Question

How does the tendency of beetles to fly for some time before becoming

responsive to pheromones alter the results from Experiment I?

3.4.2 Approach

Repeat the Experiment I with no free flight period (rf=4) and a reduced pattern set

(w0 and w50 only).

3.4.3 Expectations

Without free flight, centre cluster size might be more likely to constrain infestation

size because beetles are less likely to fly towards areas without attractants as they do in

free flight. Overall, I expect that free flight should be advantageous to beetles.

3.4.4 Results

Removing free flight alters both the qualitative and quantitative behaviour of this

model. The effect of free flight on kill rate varies with response variable (gw or dw) and

communication distance (kr ~ rf* d* rpt, n=240, p<0.0001), with response variable (gw or

dw) and patch compaction (kr ~ rf* p*rpt, n=240, p=0.0486), and with communication

distance and patch size (kr ~ rf* d*w, n=240, p=0.0053) (Figure 27). Removing free flight

also increases the frequency of outbreaks overall (op ~ rf*rpt, n=20, p<0.0001) (Figure
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28). Essentially, removing free flight eliminates all experimental effects by increasing

spread rate and outbreak frequency when communication distance is small , and

decreasing spread when communication distance is intermediate and patch compaction is

high (Figure 27).

3.5 EXPERIMENT III EXTENSION –

SENSITIVITY WITHOUT FREE FLIGHT

3.5.1 Question

Overall, kill rate in the absence of free flight is very high (Experiment III). I am

curious whether the patch compaction, communication distance or patch size might have

an effect if overall success rate was not so high.

3.5.2 Approach

Decreasing winter reproductive rate (rw) should decrease the chance of an

outbreak and the overall success of beetles. Varying other model parameters no doubt

also decreases overall success, but for this abbreviated analysis I chose only rw. To test the

effect of decreased overall success on the relationship between success and patch

compaction in the case with no free flight I repeated Experiment III with a lower

reproductive rate (rw=3).
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3.5.3 Expectations

When overall success rate is decreased so that kill rate is not uniformly high, kill

rate and outbreak frequency should depend on patch compaction, communication

distance, and patch size.

3.5.4 Results

Decreasing winter reproductive rate (rw) significantly alters the relationship

between kill rate and patch compaction, and this effect varies significantly with patch size

(kr ~ rw*w*p, n=240, p<0.0124). Decreasing rw also alters the relationship between kill

rate, communication distance, patch size and response variable (gw and dw) (kr ~

rw*d*w*rpt, n=240, p<0.0002). Decreasing reproductive rate also decreased the

frequency of outbreaks overall (op ~ rw*rpt, n=20, p<0.0001). Essentially, when both

reproductive rate and patch size are small, kill rate and outbreak probability increase with

both patch size and patch compaction as expected (Figure 29 and 30). Increasing patch

size largely eliminates these effects.



62

4 DISCUSSION

4.1 SUMMARY OF RESULTS

In the base case (with free flight) kill rate increased with communication distance

and patch compaction. Patch size had no significant effect in the base case. Curiously, it

appears that beetles with intermediate communication distance (d100) spread slower than

beetles with high communication distance (d200) when patch compaction is low as

expected, but when patch compaction was high the reverse became true. However, this

interaction, though consistent across patch size, is not statistically significant.

Experimentation with volatile types showed that pheromones are essential for success

and functionally different from kairomones when mass attack was required for success

(Expt. II). When mass attack was not required success was high regardless of whether

volatiles were present, and beetles using pheromones seemed to spread slightly slower.

Removing free flight caused effects that were both strong and somewhat

surprising. First, removing free flight caused beetles to do substantially better when

communication distance was low, contrary to expectations (Expt. III). Beetles without

free flight were sensitive to patch compaction and communication distance as expected

(Expt. III extension). Though beetles with free flight were also sensitive to patch

compaction and communication distance, the trends in that case were less clear and

consistent (Expt. I). In the absence of free flight increasing patch size increased kill rate

and eliminated the effect of patch compaction and communication distance, while in the

base case (with free flight) patch size had no significant effect.

See Table 4 for more complete summary of experimental results.
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4.2 MODEL VERIFICATION AND VALIDATION

Before considering what the results of this study might indicate about mountain

pine beetles it is worth first pausing to consider whether model behaviour is reasonable.

Do the observed outcomes reflect some real aspect of mountain pine beetle ecology, or

are they simply artifacts of a poor model? I have not undertaken any formal model

validation in this study, but I do have some clear expectations about model behaviour.

Conformation of results to these expectations should give some comfort that model

behaviour is not unreasonable. Conversely, clearly unreasonable behaviours should cast

doubt on the model and the meaningfulness of other results.

First, the striking result from Experiment III is that, at low levels of

communication distance, beetles with a free flight period have lower kill rates and less

probability of outbreak than beetles without a free flight period. Note first that kill rate is

not a perfect measure of beetle success, since at high mountain pine beetle densities

individual success (measured as per capita reproductive rate) may decrease while kill rate

continues to increase (Figure 9). However, that beetles with free flight die tend to die out

completely (final infestation extent < 40 ha) while beetles with free flight spread over the

whole landscape suggests that the disadvantage of free flight is real. Mechanistically, this

effect probably occurs because free flying beetles disperse beyond the range of

pheromone cues and get lost, making aggregation less efficient. In general, there is no

guarantee that biology is optimum, and biologists are well advised to be wary of claims

that behaviour should be advantageous just because it is done (Gould and Lewontin

1979). However, while it is possible that free flight is an evolutionary accident or

constraint rather than an adaptive trait, in this case it seems unlikely. First, many different

beetle taxa exhibit delayed sensitivity to olfactory stimulus (free flight), but within each of

these taxa there tends to be wide variation between individual beetles (Borden et al. 1986).

If free flight were as maladaptive in reality as it is in this model, it seems that strong
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selective pressure should work quickly to favour the beetles with shorter free flight

periods, given that these beetles already exist. Thus, it seems prudent to assume that in

reality free flight is advantageous under at least some circumstances, and to doubt a

model that predicts otherwise.

Noting that free flight is neutral or slightly advantageous (not significant) when

communication distance is large or when communication distance is intermediate and

patch compaction is high (Figure 27), I suspect the modeled flight period is too long, and

that a shorter flight period might allow beetles to avoid over-dispersal while still avoiding

over-crowding. Another possibility is that free flight may be advantageous under forest

landscape or population conditions not studied here, and that the advantages of free flight

under those circumstances balance the observed cost. For example, free flight could be

useful for escaping predators or discovering scarce resources during periods of scarce

resource availability. Finally, it may be that beetles’ flight behaviour is more complex,

including some other mechanisms to avoid over-dispersion not included in this study. It

would be interesting to investigate these possibilities to better understand whether the

tradeoff between over-dispersion and over-aggregation in free flight is real, and if so, how

beetles might resolve this tradeoff. In the meantime, the unexpected free-flight

consequence casts some doubt on other results.

There are several other aspects of model behaviour that are not realistic. First,

infestation spread rates are too slow; real infestations can spread over a 250 ha area within

four or five years, in contrast to the nine or ten years predicted by this model (Figure 15)

(Safranyik, L., personal communication). I suspect this is because the conditions for

successful attack are more stringent in my model than in the real world. Real beetles

probably also fly further more often than beetles in this model, especially under crowded

conditions or when suitable habitat is scarce (Figure 12) (Safranyik, L., personal

communication). Whether or not longer distance dispersal would substantially alter the
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effect of small scale pattern probably depends on whether beetles that travel long

distances concentrate at some locations (as could be the case in some locations if

persistent downdrafts prompt beetles to land), or whether they diffuse more broadly

across the landscape. It is not known how effectively long distance travelers congregate,

or how much this phenomenon alters small-scale landscape dynamics, but in any case

lack of long distance dispersal remains a significant difference between the real world and

this model.

Another notable difference between the behaviour of this model and that of real

beetles is that beetles in the model frequently kill 100% of available habitat. Realistically,

it is rare that 90% of susceptible hosts in a stand are killed, and mortality rates of 30 to

70% are more common (Safranyik, L., personal communication). Unrealistically high kill

rates are a direct and unsurprising consequence of the oversimplified stand model I have

used. A more realistic stand model might better predict the intensity of kill, but I do not

expect that it should greatly alter the effect of landscape pattern.

Finally, lest we get too critical, the results of the kairomone experiment give some

comfort that, while the model might not be entirely adequate, it has some reasonable

attributes. When mass attack is required for success, mountain pine beetles dispersing at

random by kairomone cues are not successful, while mountain pine beetles using

pheromones fare much better (Figure 26). In contrast, when mass attack is not required

for success, mountain pine beetles are successful regardless of their navigation system. It

is a bit surprising that there is no difference at all between pheromone, kairomone, and

undirected flight when mass attack is not required for success, as it seems that mountain

pine beetles following pheromones or kairomones should still find scarce habitat more

effectively. However, noting that infestation spread rates are very high, I wonder whether

differences between the three dispersal systems become more significant if habitat is more

scarce or reproductive rates are lower.
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4.3  ON MOUNTAIN PINE BEETLE ECOLOGY

In the base case, with best guess parameters, I found that increasing patch

compaction increased kill rate, but changing patch size had no significant effect. In

contrast, when free flight was removed changing both patch size and the distance between

patches could alter spread rates dramatically. Thus, at face value the prediction from the

model is that landscape pattern at the scale and in the manner represented does not affect

the spread of mountain pine beetle infestations as much as expected, in part because free

flight reduces pattern sensitivity. There are several reasons, however, why this result

might be suspect. First, as noted earlier, free flight has other apparently unreasonable

consequences that give some reason to doubt the model, and it is probably wise not to

put too much faith in pattern predictions until these doubts are resolved.

Apart from the adequacy of the free flight model, there are at least three other reasons

why the small effect of pattern in the base case might not be entirely compelling. First,

parameter values or initial conditions might be wrong, or rather, landscape pattern might

have the expected effect given some other combination of parameter values and initial

conditions. I have not formally addressed this concern here, and systematic sensitivity

analysis could certainly make results more compelling.

Second, significant pattern effects in the base case might not be observed because

sample size and statistical power are too low (Peterman 1990). Most notably, in the profile

plots for the base case there appears to be an interaction between communication distance

and patch compaction (Figure 23). When patch compaction is low beetles with

intermediate communication distance spread slower than beetles with high

communication distance. However, when patch compaction is high the situation reverses.

This interaction is not statistically significant (p = 0.0701), but that the trend is consistent

over all patch sizes suggests that it may be real. Kill rate also appears to increase slightly
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with patch (p=0.077), and increasing sample size might well make these more subtle

effects significant. However, sample size was adequate to detect the effect of both patch

size and patch compaction on centre cluster size, so while the failure to detect significant

effects and interactions does not mean there are none, at least we can trust that the effect

of landscape pattern is not as strong as expected.

Finally, pattern effects could be small because something essential has been left out

of the model. At points throughout this text I have noted various omissions, and I will not

repeat the list here. However, upon reflection one omission deserves further notice.

There is a great deal of evidence that thinning reduces forest susceptibility to attack

(Cahill 1978; Cole et al. 1983; Mitchell et al. 1983; Waring and Pitman 1985; McGregor et

al. 1987; Amman et al. 1988; Mitchell 1994). Tree mortality rate decreases immediately

after thinning, suggesting that changing microclimate rather than changing host vigour is

responsible for this effect (Amman and Logan 1998). High bark temperatures on the

south sides of exposed trees can impede brood development, increased light intensity and

wind speed can alter or disrupt beetle flight patterns, and increased temperature

differentials and wind speeds in open forest stands can also disrupt pheromone plumes

and pheromone communication (Amman and Logan 1998). In other words, reproductive

rate, flight behaviour and pheromone decay and diffusion rates probably all vary with

forest structure, and from this it seems a small step to suppose that the spatial

arrangement of habitat might be important not because of some inherent effect of pattern

per se, but due to the indirect effects of pattern on these other factors. In fact, thinning

studies already provide some compelling evidence that this is probably so. However,

studies so far have only focused on the effects of thinning, rather than a more broad range

of cutting patterns and practices. The mechanisms by which thinning affects mortality

also remain speculative, so more work remains to be done.
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Others have pointed out that variable decay rates of pheromones may be essential

in determining the risk of beetle mortality (Amman and Logan 1998; Powell et al. 2000),

and it is not because I presumed these factors to be unimportant that I omitted them from

the model. Rather, it seemed worthwhile to understand the workings of a simple model

before adding complexity, even if indirect effects are most important. However, while this

analysis may not have been without reason, it remains incomplete. Even if pattern does

not affect beetles directly, it remains quite likely that indirect effects might occur.

In sum, pattern effects could be small in the base case because beetles are

insensitive to pattern, because essential aspects of beetle ecology are missing from the

model, because model form is wrong, because the wrong parameters were used, or

because sample size is inadequate. The two latter possibilities cannot be ruled out, but

seem unlikely to account for the unexpected result. More importantly, counterintuitive

model behaviour does suggest problems with model form, and knowledge of pine beetle

ecology suggests some key processes might be missing. Given this doubt, the robust

result is not that beetles are insensitive to pattern, but that predictions about the spatial

dynamics of infestation spread at small scales can depend strongly on relatively minor

details of dispersal behaviour. In particular, it seems that free flight, which has thus far

been omitted from beetle dispersal models, might be important. Thus, one lesson from

this work is that free flight behaviour deserves more attention. The other is that small-

scale pattern effects cannot be reliably predicted from current understanding.

Beetle free flight behaviour is one important area of uncertainty highlighted by this

work. Throughout the process of model building and testing a number of other significant

uncertainties also became clear. Having decided to force the aspatial model to behave

“reasonably”, I was stuck specifying what reasonable behaviour might be. A good deal is

known about the rate and sequence in which pheromones are produced by individual

nesting beetles at the scale of single trees. However, the area-wide consequences of
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pheromone dynamics, and overall consequences of pheromone-mediated communication

for mountain pine beetle success remain speculative.

Although based upon it, my modeling approach diverged from the MPBpde on

several counts, in part because I doubt some of the assumptions on which the MPBpde is

based. While the concerns seem reasonable, and I have constructed the most reasonable

alternative model within my grasp, both the criticisms and the solutions remain

speculative. Our differences in opinion highlight more areas of significant uncertainty

regarding mountain pine beetle ecology.

First, since there is no link between the pheromone concentration at which an area

becomes unattractive (A=Ao) and the point at which landing rate declines to zero (R=0),

it seems that areas with very low resistance (and therefore low beetle capacity) might

never become unattractive, while areas with high resistance might become unattractive

before host resistance is overcome. I can imagine that some highly resistant trees might

become unattractive before they are overcome, but it seems unlikely that weak trees ever

become eternal sinks for real beetles. In contrast, my model assumes that beetles continue

to attack trees in an area until all susceptible hosts are killed. This is also not realistic, so

the link between resistance, capacity, and landing rate remains poorly understood.

My second concern was that a flying beetle in an area with no trees, ringed on all

sides by areas full of nesting beetles (and high, unattractive pheromone concentrations),

will tend to remain in place, even though there is nowhere for it to land. That verbenone

seems to act more as a neutralizer than an antiaggregant lends support to the idea that

whole areas do not become actively repellent to mountain pine beetles (Shore et al. 1992).

It is also an interesting possibility that beetles might rise above the canopy to avoid

overcrowding (Safranyik et al. 1989; Safranyik, L., personal communication).

Finally, the situation is complicated by observations that beetle size and condition (and

hence dispersal ability) vary with beetle population density and host condition (Amman
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and Cole 1983; Safranyik 1976). It is not known how all these factors might interact, and

it remains that the behaviour of beetles in crowded situations is not well understood.

In sum, on the basis of this work I cannot answer whether or how small scale

pattern might affect the spread of mountain pine beetle infestations. Mainly, the work has

helped clarify some outstanding questions and identify missing information that might be

particularly important. The hope is that this may be useful in guiding future thinking and

research about mountain pine beetle spatial ecology.

4.4 ON PREDICTIONS REGARDING THE EFFECT OF PATTERN

Apart from the general expectation that pattern should affect infestation spread, I

began this work with two predictions based on a review of past theoretical work. First,

percolation theory points out that if agents spread only between “connected” habitat

patches, then the extent of spread will the limited by habitat connectivity. Proposing that

only patches nearer to each other than communication distance will be “connected” if

aggregation is important for success, I reasoned that infestation extent should be limited

by pheromone connectivity. This was not the case in any of my experiments, which in

retrospect is no great surprise. If the density of dispersing beetles is high then enough may

reach the same susceptible habitat by chance, even if they are not drawn there by

pheromones. Thus, it makes sense that infestations could spread across gaps larger than

communication distance if mountain pine beetle density is high, and that infestation

extent is not strictly limited by pheromone connectivity.

The second prediction from previous theory was that within habitat clusters,

increasing habitat clumpiness or patch size should increase spread rate. The other effect of

increasing patch size is to increase the distance between patches, which in turn will

decrease the size of habitat clusters when patch compaction and communication distance
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are high (Figure 21). Thus, if infestation extent was limited by centre cluster size, the net

effect of increasing patch size should be to increase infestation spread rate, decrease

infestation extent when patch compaction and communication distance are high, and

increase infestation extent otherwise. Since infestation extent is not limited by centre

cluster size, the subtleties of this prediction are lost in practice. If anything, kill rate tends

to increase with patch size, suggesting that any slowing of spread rate due to increased

distance between patches is more than compensated for by larger patch sizes. In as far as

it goes, this seems consistent with predictions from epidemiology that increasing the

clumpiness of hosts should increase infection spread rates (Bolker 1999).

4.5 ON MOVEMENT MODELING

Whether or not actual beetles are pattern sensitive, it is interesting that a simple

change in free flight behaviour changes organism response to pattern so significantly.

Others have recognized that organisms often deviate from random walk or correlated

random walk movement patterns (Okubo 1980; Levin 1992; Turchin 1998), but the

consequences of deviation have not been systematically studied. Real-world successes

with correlated random walks and related diffusion approximations indicate that these

models are robust to some behavioural complexity, and more general than their simplicity

suggests (Levin 1992; Turchin 1998). However, the strong effect of free flight here

suggests that not all behavioural complexity is without consequence. It would be

interesting to better understand the limits of diffusion and correlated random walk

models, and the types of behaviour that render these models inadequate.

It is easy to state that more understanding would be nice, and much harder to get

it. The array of possible dispersal behaviours is bewildering enough that I doubt whether

testing arbitrary possibilities is a good use of time or effort. It is probably more productive
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to focus on understanding the behaviour of particular organisms in particular situations.

However, studies of the dispersal of particular organisms do not automatically contribute

to more general understanding. Thus far, general insight from individually based models

has been hampered by lack of systematic reference to theory and lack of a common

framework that would make it possible to meaningfully compare models (Turchin 1998;

Grimm 1999; Grimm et al. 1999). In response, some authors have advocated a hierarchical

approach, where understanding is sought by comparing the behaviour of simple models

to those incrementally more complex (Turchin 1998; Grimm et al. 1999). This is the

approach I have attempted, and I agree in general that it is useful. My only comment in

passing is that many of the criticisms of individual based modeling (and spatio-temporal

simulation in general), while valid, are also not easily addressed. It is true that many

simulation efforts would benefit from more comprehensive experimentation and more

systematic reference to the framework of classical theoretical ecology (Grimm 1999).

However, those setting out with ambition to right the wrongs of spatial modeling should

probably do so with a realistic view of the technical and computational challenges

involved. For instance, in one memorable encounter, a friendly statistician suggested that

if I just ran 1000 replicates of each simulation instead of five, I could circumvent many of

my statistical challenges. He is correct, of course, but on a PC with 1 GHz of processing

speed it would take approximately 1200 months of continuous computing to run these

simulations. While I am sure that with effort and expertise this model could be further

optimized to reduce processing time, the essential problem remains: spatial simulation is

computationally demanding.

Apart from theoretical concerns and concerns over inadequate data, complex

individual based models have been criticized because they are hard to develop, hard to

communicate, and hard to understand (Grimm et al. 1999). Individual based models

implemented with general purpose programming languages have been plagued by
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software bugs, awkward software design, and general incomprehensibility (Grimm et al.

1999). In response to these challenges, a number of software tools have been developed

to help separate the details of model form from model implementation, and thus make

implementation, verification and communication easier (Lorek and Sonnenschein 1998,

1999; Fall and Fall 2001). I did not try alternative methods for implementing this model,

so I cannot systematically compare their relative merits in this case. However, the process

of incremental component testing and experimentation was greatly aided by the modeling

tool that I used, and some aspects of this experience are worth note.

In the gap between general purpose programming languages and system specific

models are domain specific modeling languages that provide support for a particular class

of model. SELES (spatially explicit landscape event simulator) is one of several such tools

available to support landscape ecology models (Fall and Fall 1999 a, b; Fall and Fall

2001). Although initially designed to represent continuous spatial attributes and the

processes or events that alter them, the SELES framework has recently been expanded to

accommodate individuals (contact A. Fall for updated documentation).

There is a necessary tradeoff between the simplicity and flexibility of modeling

tools, and SELES is no exception. However, while it is certainly not suitable for all

applications, my experience is that the SELES framework can be remarkably flexible.

Most notably, SELES allows discrete entities (mountain pine beetles) and continuous

quantities (pheromones) to spread and change at different time-scales, while still

interacting with one another, and more complex mixed-type models could also be

accommodated. Solving partial differential equations with SELES is challenging, as the

conceptual framework is not geared towards such applications. The capability for implicit

and spectral methods is lacking entirely, but with a little creativity explicit finite difference

schemes can be solved. Undoubtedly this is not the best tool for all modeling purposes,

but I found the transparency, modularity, computational efficiency, and capacity for
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mixing model types without immense programming effort and expertise immensely

useful in this case, and would encourage others to consider this option.

One of the strengths of the diffusion approach is that diffusion approximations

can be derived directly from individual based movement models, making underlying

assumptions about movement clear and explicit (Turchin 1991, 1998). Several types of

tactic search behaviour have been modeled in this way, including area-restricted search

strategies, in which animals turn more frequently or move more slowly in response to

high levels of environmental attractant, and directionally tactic strategies, in which animals

turn less frequently or move more rapidly in response to positive environmental gradients

(see Grunbaum 1996 for summary). The former has been used to describe the response of

foragers to changing prey density (Kareiva and Odell 1987; Dukas and Real 1993; Veit et

al. 1993), while the latter were developed largely with bacterial and cellular chemotaxis in

mind (Keller and Segel 1971; Segel 1978, 1982). Presumably mountain pine beetles

respond to pheromone gradients, rather than concentration, but beyond this it is not

known what search strategy these beetles use. Do they turn less abruptly when faced with

attractive gradients, or less often, or do they speed up? Different search strategies have

different consequences for success, and better mountain pine beetle models will require

more information about beetle search behaviour. In individual based or random walk

models assumptions about movement behaviour are explicit and difficult to ignore, but

the assumptions underlying diffusion approximations are easier to miss. Thus, it seems

worth emphasizing that diffusion approximations also embody particular assumptions

about the behaviour of organisms, and that no matter which modeling approach is used

some care should be given to understanding the suitability and consequences of these

assumptions.
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4.6 ON FUTURE RESEARCH – DIRECTIONS AND TRADEOFFS

Clearly, more research is necessary to understand the effect of pattern variation on

infestation spread. So what research would be most useful? Loosely, there are two

alternative approaches to the issue at hand. First, research can focus on better

understanding the mechanisms of infestation spread, either by more detailed field studies

of beetle dispersal behaviour and pheromone dynamics, or by more modeling work. The

second alternative, which has received less attention through this discussion so far, is to

study infestation spread directly through either experimental manipulation of landscapes

or retrospective analysis of past infestations.

 Regarding more basic mechanistic understanding, throughout this discussion I

have noted a number of questions regarding mountain pine beetle ecology that must be

answered before we can hope to predict the effect of pattern. Broadly, these questions can

be subsumed under a declaration that in order to predict the spread of infestations we

must better understand how flying beetles move, and what prompts them to attack. More

particularly, free flight behaviour, movement decision hierarchies, and area-wide

relationships between host carrying capacity, host resistance, nesting beetle abundance,

pheromone production, and the movement and landing of flying beetles all require further

study.

There is also more work that could be done with modeling. My exploration of the

behaviour of this model is not complete, and it would be interesting to do more sensitivity

analysis, to better understand the effect of free flight, and to explore the effect of

landscape pattern on beetles with free flight behaviour that is not detrimental to overall

beetle success. It would also be interesting to add wind and variable pheromone decay
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rates to explore the possibility that landscape pattern might affect infestation spread

indirectly through these mechanisms.

Finally, the effect of pattern on infestation spread could be studied directly, either

experimentally or through retrospective pattern analysis. Experimental analysis could be

feasible for pattern effects on a small scale within forest stands, but might be prohibitively

difficult and expensive at larger spatial scales. Historical sketch map data is generally too

coarsely resolved and inaccurate to be useful for small scale pattern analysis. More

promisingly, red mountain pine beetle attacked trees can be identified from Landsat

satellite imagery at 30 m resolution with a relatively high degree of accuracy. Forest

pattern can also be characterized from Landsat imagery so it should be possible to

measure infestation spread and landscape pattern over time and space, and test for

relationships between these variables. Recent and current outbreaks across British

Columbia could provide ample opportunities for study (Hughes and Drever 2001).

Discontinuous infestation spread, multiple infestation centres, spatially autocorrelated

data, variation in climate, microclimate and topography, and uncertainty about which

aspects of pattern to measure would make this a challenging endeavor. However, it seems

at least promising.

All of these areas of research are interesting, and all of them could use further

study and effort. However, rather than glibly conclude with a recommendation to study

everything more, I would like to encourage some attention to the costs, benefits and

tradeoffs between these different approaches. In particular, I suggest that enthusiasm for

more comprehensive modeling should be tempered by a realistic assessment of the time

and effort required. Just because modeling involves no field time does not mean it is

effortlessly quick and easy, and in this case attempts to thoroughly explore the potential

effects of uncertain factors and their interactions could easily be bogged down in an

overwhelming morass of possibility. There may be benefits and insights to be gained from
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more modeling that are worth the effort, and we may not know what is worthwhile until

we try. However, future research would benefit from careful consideration of the costs

and benefits of alternative approaches.

4.7 ON MANAGEMENT

There is nothing in the results of my study to alter the initial management premise

that small scale fragmentation might alter infestation spread. There is still reason to believe

that forest pattern might affect the spread of beetle infestations, and it remains that

management could benefit from further consideration of this possibility (Bentz et al. 1993;

Hughes and Drever 2001). This point deserves emphasis, but is neither new nor

surprising. So what more, if anything, can be learned that applies to management from

my particular results?

Essentially, I began with predictions from simple spatial models, tried to replicate

these results in a slightly more complicated model system, and was surprised by

unexpected results. One lesson from this might be that simple models are not necessarily

robust or generally correct. Certainly, this is true, and for those inclined to overstate the

certainty or generality of theoretical results it might be worth emphasizing. However, in

the case of mountain pine beetle management, I do not think the problem is that

managers put too much stock in theoretical predictions about the effect of pattern. Rather,

I would emphasize that failure to observe strong pattern effects in this case does not mean

that pattern effects do not occur, nor that important lessons cannot be learned from

simple models.

The main surprise in this exercise was that free flight changed model behaviour so

significantly. I retreated to an individually based modeling approach for technical reasons,

and included free flight as an afterthought. I did not set out thinking that free flight would
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be particularly important. In retrospect it is quite reasonable that free flight should

significantly alter the effect of pattern. However, it still seems noteworthy that an

apparently minor detail of mountain pine beetle behaviour has such dramatic

consequences for overall model behaviour.

That one uncertain and apparently minor aspect of mountain pine beetle biology

can substantially change the effect of pattern would not be so concerning if there were

only a few such uncertainties to investigate. However, a second important point about this

system is that much remains unknown. Since its first scientific description in 1902

(Hopkin 1902), mountain pine beetle has been one of the most studied insects in North

America (Furniss 1997; Amman and Logan 1998). Many fascinating details of beetle

pheromone ecology, dispersal behaviour and population ecology are known, but despite

100 years of research not enough is known to adequately parameterize or even dictate the

form of this model. It might be that mountain pine beetle dispersal ecology is inherently

complex, and understanding the spatial dynamics of other organisms would be easier.

Certainly, this system is interesting in part because of its complexity. However, a more

likely possibility is that we would find other organisms equally complex if we knew

enough about them.

That life is complex and difficult to understand is certainly nothing new in

ecology. Indeed, one could argue this is among the most robust, important and central

results of a discipline sometimes overwhelmed by variety. Management theorists are also

not strangers to complexity, and finding ways to accommodate both diversity and

uncertainty has been a central focus of much recent thinking about resource management

in general and forest management in particular (Walters and Holling 1990; Franklin 1994;

Grumbine 1994; Holling and Meffe 1995; Christensen et al. 1996; Ludwig et al. 2001).

While some effort has been made to broaden the scope of forest management (Forest

Ecosystem Management Team 1993; Clayoquot Sound Scientific Panel 1994; British
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Columbia Ministry of Forests 1995, 1999), more could certainly be done (Cashore et al.

2001; Page et al. 2002).

In this management context, mountain pine beetles are an interesting and

important case. First, they are not merely an ecological curiousity but a direct and

conspicuous agent of enormous ecological and economic impact, historically second only

to fire, and arguably more important now (Rogers 1996; McCullough et al. 1998). Second,

while the wisdom and long term consequences of fire suppression may be questioned,

there is no doubt that we have been quite good, on average, at putting out fires (Whelan

1995). In contrast, the record for mountain pine beetle suppression is thus far poor (Klein

1978; Wood et al. 1985; Amman and Logan 1998). It may be that this failure is in part

technical, and that if we were as aggressive with small beetle infestations as we are with

small fires we could have the same measure of success with beetles (Borden, J., personal

communication). It may also be that the effects of forest landscape pattern on infestation

spread, if they exist, are too subtle and variable to be useful for management. However,

whether or not understanding landscape pattern is the key to mountain pine beetle

management, it seems noteworthy that, after 100 years and a huge amount of effort, there

are still so many important things we don’t understand about the most economically

important and abundantly studied insect in forestry. That ecological systems are complex

and difficult to understand is nothing new, but until management actions adequately

address this complexity it is a point worth emphasizing.
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Table 1: Probabilities for transitions between five beetle modes. Each individual beetle can be either waiting to emerge, flying and
unreceptive to pheromones or kairomones (uflying), flying and receptive to pheromones and kairomones (rflying), nesting once they
have landed, or dead, and each beetle may undergo one mode transition per beetle time-step (∆t). T is the length of the annual flight
period, ω1 is the death rate of flying beetles and rf is the rate at which unreceptive free flying beetles become receptive to pheromones.
The landing rate of flying beetles at each location (landing ratei,j) depends on the number of nesting beetles (Q), host capacity (K) and
host resistance (R) at that location. See the model description in the Methods section for more detailed explanation.

waiting uflying rflying nesting dead
waiting 1-1/T 1/T 0 0 0
uflying 0 1-rf-(1-rf)ω1 rf 0 (1-rf)ω1

rflying 0 0 1-ω1 -(1-ω1)*
landing ratei,j

(1-ω1)*
landing ratei,j

ω1

nesting 0 0 0 1 0
dead 0 0 0 0 1

Beetle Mode at Time t+1

B
ee

tle
 M

od
e

at
 T

im
e 

t
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Table 2: Summary of model processes and relationships between state variables within the flight period. A process is anything that
alters the value of a state variable. Arrows indicate material flow between states, where the same process affects the value of more than
one variable.

State Variable
Description

State Variable
Name

Process State variables on which
the process depends

Beetles
waiting to emerge waiting • emergence • none

flying, unreceptive
to pheromones

uflying • emergence
• death
• spread
• transition to receptive

• none
• uflying
• uflying
• uflying

flying, receptive to
pheromones

rflying • transition to recepti ve
• death
• spread
• landing

• uflying
• rflying
• rflying, A, C
• rflying, Q, K, R

nesting Q • landing • rflying, Q, K, R

Pheromones A • production
• diffusion
• decay

• Q, K, R
• A
• A

Kairomones C • production
• diffusion
• decay

• R
• C
• C

Forest
capacity for

beetles
K • static within flight period

resistance to
beetles

R • static within flight period
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Table 3: Model parameters and their associated base values. Where available, sources of parameter estimates are cited. Parameters for
which no estimates are available were chosen either by calibration, reasoning, or (reasonable) arbitration. Values marked by (*) are
subject to sensitivity analysis because they are uncertain, values marked by (**) are subject to sensitivity analysis because they are
variable and important, and values marked by (***) are also uncertain or arbitrary, but are not subject to sensitivity analysis. See model
description and parameterization sections for more complete explanation. Units are: µg = 10-6 grams; ha = hectare; fh = flight-hour
(~5fh/day); TMPB = thousands of mountain pine beetles.

Parameters Description Base Value Units Source
Flight (Figures 1-3)

αm approximately average turning angle in the absence of pheromone or
kairomone cues

35o degrees arbitrary *

 al pheromone sensitivity parameter 1.3 .. arbitrary *

ar minimum detectable pheromone concentration 0.1 µg ha-1 Geiszler et al.
1980

as pheromone sensitivity parameter 4 .. arbitrary *

cl kairomone sensitivity parameter la .. reasoning

cr minimum detectable kairomone concentration ar µg ha-1 reasoning

cs kairomone sensitivity parameter as .. reasoning

rf free flight parameter 0.65 fh-1 Borden et al.
1986**

Landing (Figures 4,5)

rm maximum possible landing rate 0.8 fh-1 arbitrary *

rb maximum pioneer landing rate
(landing = rb when R = 0 and Q = 0)

0.2 fh-1 arbitrary *

r1 controls the rate at which landing increases with Q 20 .. arbitrary *

r2 controls the effect of R on pioneer landing rate 2 .. arbitrary *

r3 determines the persistence of preference for low R areas as Q increases 0.3 .. arbitrary *

r5 controls the rate at which landing decrease with crowding 4 .. arbitrary *
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Table 3 continued:

Pheromone
(Figures 6, 7, 13 and 22)

am maximum possible pheromone production rate 20 µg ha-1 Biesinger et
al. 2000

a1 controls the rate at which pheromone production declines with Q 20 .. arbitrary *

a3 determines the effect of R on the Q value at which pheromone
production reaches half of maximum

0.3 .. arbitrary *

a6 ensures that beetles that land in areas with no resistance (R = 0) do not
produce pheromones, but beetles that land anywhere else produce

pheromones at maximum rate until resistance is overcome.

0.001
(very small)

.. reasoning *

ba pheromone diffusivity 0.685 ha fh-1 Biesinger et
al. 2000

δa pheromone decay rate 180 µg ha-1 Biesinger et
al. 2000

Kairomone (Figure 25)
cm maximum kairomone production rate am*1000 µg fh-1 reasoning

bc kairomone diffusivity ba ha fh-1 reasoning

δc kairomone decay rate δa µg ha-1 reasoning

Survival
(Figures 9,19 and 11)

ω1 flying beetle death rate 0.01 fh-1 Biesinger et
al. 2000

rw maximum per capita beetle reproduction rate
(Qwaiting, n / Qnesting, n-1)

3.5 year-1 arbitrary*

s1 controls the rate at which beetle success increases with Q a1 .. reasoning

s3 determines the effect of R on the Q value at which beetle success
reaches half of maximum

a3 .. reasoning

s4 determines the average reproductive rate at carrying capacity (Q = K) r5 + 1 .. reasoning

s5 determines the rate at which reproductive success decreases to
minimum as Q approaches K.

r5 .. reasoning

s6 ensures beetles landing in areas with no resistance reproduce at
maximum, but beetles landing elsewhere are not successful unless

resistance is overcome.
a6

.. reasoning
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Table 3 continued:

Landscape
PI initial beetle population 1250 TMPB arbitrary *

R0 average initial resistance 0.5 .. arbitrary

Rdev standard deviation of initial resistance 0.3 .. arbitrary *

K0 average initial carrying capacity 1000 TMPB Biesinger et
al. 2000**

Kdev maximum deviation of initial carrying capacity from average initial
carrying capacity

500 TMPB arbitrary

M spatial extent 100 cells reasoning ***

h spatial resolution 0.25 ha cell-1 reasoning ***

Time
T length of annual flight period 40 fh year-1 Logan et al.

1998
∆t beetle time step ¼ fh calibration

∆ta pheromone time step 1/500 fh reasoning
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Table 4: Summary of experimental results. Abbreviations: Experimental factors are denoted by w (patch size), p (patch compaction),
and d (communication distance). kr indicates overall kill rate response, rpt refers to response variable (gw or dw – if rpt is significant
then gw and dw differ in their response to the experimental factors), and op is overall outbreak probability. In Experiment II, atr refers
to requirement for mass attack – cooperation can either be required (rq), or not (nrq). Similarly, vty is volatile type, which can be either
pheromones (pher), kairomones (kai), or no volatiles (nv). Other parameters are as in Table 3. n: Two sample sizes given for each
experiment are the number of model runs (between*within subject factors) and, in brackets, the number of landscape instances
(between subject factors only). Design: All experiments have fully crossed factorial designs. For example, “kr ~ d|w|p” indicates that
all independent effects (d, w, p) and all possible interactions (d*w, d*p, w*p, d*w*p) were tested for. Test Results: Only significant
interactions are shown. Statistical p values are distinguished from patch compaction references by bolding and context. Summary of
Effects: Only interesting trends are notes – for more complete picture of trends and interactions see appropriate figures. Up (↑ ), down
(↓ ) or sideways (↔) arrows indicate positive, negative or neutral relationships, respectively, between the response variable (right side)
and the experimental factor (left side). Notably strong and consistent effects are shown in bold (⇑). Effects that are conditional upon
the value of other factors are qualified with the key word given, followed by a list of conditions. For qualitative variables, the keyword
when followed by one or more conditions indicates that response in these conditions is higher (↑ ) or lower (↓ ) than in other possible
conditions. See sections, figures and tables as indicated for more details.

Experiment n Design Test Results Summary of Effects Notable Results
I

base case
Section 3.2,

Figures 23 and 24

240
(80)

kr ~
d | w | p | rpt

op ~ w | p

kr ~ d* rpt,  p < 0.0001
kr~p, p = 0.0003

no op effects significant

kr  ⇑ d
kr ↑  p

• no effect of patch size (w)
• effect of patch compaction (p) not
as strong as expected.

II
The uniqueness of

pheromones

Section 3.3,
Figure 26

240
(40)

kr ~
atr| vty| w | p |

rpt

kr ~ atr* vty* w*p*rpt,
p = 0.014

no op tests because no variation
in response.

gw ↓  when nrq
gw ↑   p given pher (??)
gw ↓   p  given rq, w0,  kai (??)
gw ↓   p  given nrq, kai or nv (??)
dw ↑  when nrq
dw ↑  when rq,  pher
op ⇑  when nrq
op ⇑  when rq,  pher

• pheromones are functionally
unique when mass attack is required
for success.
• effects of patch size (w) and patch
compaction (p) statistically
significant but difficult to interpret.
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Table 4 continued:
III

the effect of free
flight

Section 3.4,
Figures 27 and 28

240
(40)

kr ~
rf | d | w | p | rpt

op ~
rf | w | p

kr ~ rf* d* rpt,  p < 0.0001
kr ~ rf * p* rpt,  p = 0.0486
kr ~ rf * d* w,  p = 0.0053

op ~ rf,  p < 0.0001

when rf = base, effects are as in
the experiment I extension.
kr ⇑ when rf = 4 given d=0-50
kr ↑ when rf = 4
        given d=50-100 and p<30
kr ↓  when rf = 4
        given d=50-100 and p>20
kr ↓  when rf = 4
        given d=100-200
op ⇑ when rf = 4

• free flight (rf=base)
disadvantageous to beetles unless
communication distance (d) is high,
or communication distance is low
and patch compaction (p) is also
low.
• effect of communication distance
(d) and patch compaction (p) not
robust to absence of free flight
(rf=4).

III extension
sensitivity without

free flight
Section 3.5,

Figures 29 and 30

240
(40)

kr ~
rw| d | w | p | rpt

op ~
rw | w | p

kr ~ rw* d*w* rpt,  p = 0.0002
kr ~ p* rpt,  p < 0.0001

kr ~ rw* w*p,  p = 0.0124

op ~ rw,  p < 0.0001

kr  ⇑ p given rw=3, w0, d=0-50
kr ↑ p given rw=3, w0, d=50-100

• patch compaction (p), patch size
(w) and communication distance (d)
effects significant in the absence of
free flight (rf=4) when overall
success rate is reduced.
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Figure 1: Effect of am on the distribution of mountain pine beetle turning angles in free
flight or the absence of chemical attractants. The quantity (1-cos(ai+m,j+n)) is exponentially
distributed with parameter am, which is approximately equal to the average turning angle
when am is small (~<60o). Average turning angle does not continue to increase indefinitely
with am because the finite range of possible turning angles truncates the exponential
distribution.
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Figure 2: The sensitivity of attractiveness to the gradient sensitivity parameters, al (a), and
as (b). The attractiveness parameter, al, controls the sensitivity of mountain pine beetles to
pheromone gradients, and as determines the relative preference of beetles for low
pheromone over no pheromone areas. Curves derived from Equation 14.



101

Figure 3: Sensitivity of the relative attractiveness of pheromones to gradient size (∇A) and
gradient sensitivity parameters al and as. The probability a beetle will choose high
pheromone location over a lower pheromone location is given by the attractiveness ratio,
(Atthigh/Attlow). The attractiveness ratio depends on (a) the difference in pheromone
concentration between the two locations (∇A), (b,c) the attractiveness parameters al and
as, and the base pheromone concentration (x-axis). The attractiveness function is
designed so that beetles are more sensitive to differences in pheromone concentration
when pheromone concentrations are low. Curves derived from Equation 14.
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Figure 4: Sensitivity of the relationship between per beetle landing rate and number of
nesting beetles (Q) to host resistance (R). Note that the measure is of permanent landings
or attacks, and does not include beetles that land and then take off again. Curves derived
from Equation 18.
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Figure 5: Sensitivity of landing rate to 6 model parameters. Solid lines indicate the case
where resistance (R) is 0.5. Dotted lines indicate R = 0. Curves derived from Equation 18.
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Figure 6: Sensitivity of per beetle and per area pheromone production rates to host
resistance (R). Curves derived from Equation 19.
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Figure 7: Sensitivity of per capita and per area pheromone production to 3 model
parameters. Solid lines indicate the case where resistance (R) is 0.5. Dotted lines indicate
R = 0. Curved derived from Equation 19.
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Figure 8: Summary of model within the flight period. Continuous state variables are
represented by grids, while individually modeled flying beetles are drawn in separately.
Descriptions of each state variable are given on the left hand side, with variable names
following in brackets. Material flows of pheromones and beetles are indicated by white
block arrows. Flows can either be between states (beetles only, vertical arrows), between
locations within the same state (horizontal arrows), or between the modeling system and
the external world (vertical arrows beginning or ending in clouds). Flow processes are
labeled on the right hand side. Black dotted arrows indicate the effects of state variables
on flow rates.
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Figure 9: Sensitivity of (a) per capita reproductive rate, (b) total reproductive rate, and (c)
forest kill rate to host resistance. Curves derived from Equations 29 and 31.
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Figure 10: Sensitivity of per capita and per area reproductive rate to 3 model parameters.
Solid lines indicate the case where resistance (R) is 0.5. Dotted lines indicate R = 0.
Curves derived from Equation 29.
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Figure 11: Sensitivity of per capita and per area reproductive rate to 3 model parameters.
Solid lines indicate the case where resistance (R) is 0.5. Dotted lines indicate R = 0.
Curves derived from Equation 29.
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Figure 12: Distances flown by mountain pine beetles in the absence of pheromones or
kairomones on a) contiguous habitat (100% of the landscape suitable for landing b) sparse
habitat (10% of the landscape suitable) and c) no habitat (0% of the landscape suitable).
In the first two cases beetles can either die or land, but in the absence of habitat flight
distance is limited by death alone. The average flight distance on contiguous habitat is
0.64 km, and the median is 0.48 km. With no habitat the average flight distance is 1.3 km,
and the median is 1.2 km. Note that beetles cannot fly more than 3.5 km from their source
at the centre pixel because the square landscapes are only 5 km across. The flight distance
distributions suggest that when habitat is available edge effects are not severe, but in the
absence of habitat they are more so.
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Figure 13: Sensitivity of pheromone plume size and shape to (a) pheromone decay rate
(δ1) and (b) pheromone diffusivity (b1). The number of nesting beetles, Q, is 3/5 of
carrying capacity (K).
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Figure 14. Experimental design scheme showing variation in patch size and patch
aggregation. Variation in the Weibull scale parameter (θ), but the shape (γ) of the
distribution remains constant. The mean and standard deviation (SD) are given for the
case where patch compaction is low (p10). Realized patch size will increase with patch
compaction as close patches merge. Each group contains 5 replicate patterns, one of
which is shown here. Communication distance and other experimental factors are
repeated within pattern in a split plot experimental design.

Patch
Size (w)

Patch Compaction
(percent of core area covered by habitat)

W0
   Parameters
       θ = 1
       γ = 1
   Mean =0.39 ha
   SD = 0.11 ha

W10
   Parameters
       θ = 10
       γ = 1
   Mean =3.25 ha
   SD = 0.56 ha

W30
   Parameters
       θ = 30
       γ = 1
   Mean = 4.99 ha
   SD = 0.94 ha

p10 (10%)

w50
  Parameters
       θ = 50
       γ = 1
   Mean = 14.2 ha
   SD = 3.79 ha

p20 (20%) p30 (30%) p40 (40%)
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Figure 15: Characteristic model output. If conditions allow mountain pine beetles to
overcome host defenses then outbreak extent increases exponentially until beetle
populations are limited by habitat supply. Total available habitat is held constant across all
landscapes at 250 ha.
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Figure 16: Sample fits and residuals for four alternative sinusoidal curves. The Weibull-
type curve (a) has lower maximum and average residuals than the Mercer-Morgan-Flodin
(b), the Gompertz (c) and the logistic (d) curves. Pattern in the residuals shows that
residual variation is left unexplained by all four curves, but models with more parameters
are more difficult to interpret biologically.
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Figure 17: Sensitivity of Weibull-type curve to aw parameter.
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Figure 18: Sensitivity of Weibull-type curve to gw and dw parameters.
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Figure 19: Bimodal distribution of kill data. In most cases, mountain pine beetles kill
either nearly all or almost none of available hosts by the end of the simulation. Thus, the
distribution of maximum area killed (killf) is bimodally distributed, with all of simulation
runs having less than 15% or more than 95% of available habitat killed after 25 years. For
analysis, data classified into outbreak (>95% kill) or non-outbreak (<95% kill) cases.

Figure 20: Definition and calculation of centre cluster size. Patches nearer together than
communication distance (200 m, in this case) are joined to delineate connected "clusters"
of habitat (b). The centre cluster consists of the habitat patch at the centre of the
landscape, and all habitat patches to which it is connected (c). Centre cluster size is the
sum of habitat area within this cluster.
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Figure 21: The effect of patch compaction (p), patch size (w), and communication
distance (buffer width, d) on centre cluster size (see text and Figure 19 for detailed
explanation of centre clusters). If infestations can only spread efficiently over habitat gaps
across which beetles can communicate then centre cluster size should predict final
infestation extent. Thus, panels 1-4 show the experimental effects expected if this
hypothesis is correct. Overall, the interaction between all three variables is significant
(p=0.0001). Open symbols show group means that are not significantly different from the
maximum (250 ha), while closed symbols indicate no significant difference from the
minimum. Group means marked with stripes are significantly different from both the
maximum and the minimum. Each point marks the mean value for five replicate patterns.
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Figure 22: Pheromone plumes used in base experiment. Graphs a) through c) show how
changing pheromone decay rate (δ1) alters the relationship between pheromone plume
size and shape and the number of nesting beetles, Q.       : Q = 0.001*K,      : Q = 0.2*K,
…: Q = 0.6*K,      : Q = 0.996*K. A decay rate of δ1 = 300 (a), given a communication
distance of 0-50 metres (d50), δ1 = 180 (b) gives a distance if 50-100 metres (d100), and δ1

= 300 (c) gives a distance of 100-200 metres (d200).

0.001

0.01

0.1

1

10

100

-200 0 200

0.001

0.01

0.1

1

10

100

-200 0 200

0.001

0.01

0.1

1

10

100

1000

-200 0 200

0

10

20

30

40

-200 0 200

0

20

40

60

-200 0 200

0

100

200

300

-200 0 200

Distance From Source (metres)

Standard Scale Log Scale

P
he

ro
m

on
e 

C
on

ce
nt

ra
tio

n 
(µ

g 
ha

-1
)

a)

b)

c)

δ1 = 300 δ1 = 300

δ1 = 180δ1 = 180

δ1 = 30 δ1 = 30



120

Figure 23: The effect of patch compaction (p), patch size (w) and communication distance
(d) on kill rate (gw, dw) in the base case. Note that the interaction between communication
distance and response variable is significant (p<0.0001), as is the effect of patch
compaction (p=0.0003), but the effect of patch size is not. Open symbols show group
means that are not significantly different from the maximum, while closed symbols
indicate no significant difference from the minimum. Groups marked with stripes are not
significantly different from either the maximum or the minimum. Outbreak probabilities
are shown for interest, but the data could not be analyzed in this form due to lack of
variation when communication is maximum (100-200 m).
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Figure 24: The effect of patch compaction (p) and patch size (w) on the average number
of outbreaks (op) in the base case. Outbreaks are tallied across three levels of
communication distance for each pattern, so the maximum number of outbreaks possible
is 3, and the minimum is 0. However, no landscape had less than 1 outbreak in this case
because outbreaks always occurred when communication distance was large (Figure 22).
Unlike in the case of kill rate, patch size (w) and patch compaction (p) do not have a
significant effect in this analysis.
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Figure 25: Kairomone plume used in Experiment II (a), with pheromone plume for
comparison (b).       : Q = 0.001*K,      : Q = 0.2*K,      : Q = 0.6*K,      : Q = 0.996*K.
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Figure 26: The effect of patch compaction (p), patch size (w), communication system
(vty), and requirement for mass attack (atr) on kill rate (gw, dw). Mass attack can either be
required (rq) or not required (nrq) for success. Note that the interaction between all
factors (vty*atr*w*p*rpt) is significant (p=0.014). See Figure 22 for more explanation.
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Figure 27: The effect of patch compaction (p), communication distance (d) and free flight
(rf) on kill rate (gw, dw) in Experiment III. Note that the interaction between patch size,
communication distance, and free flight is significant (p = 0.0053), as is the interaction
between free flight, response variable and patch compaction (p = 0.0486) and the
interaction between free flight, response variable and communication distance (p <
0.0001). Grey panels are repeated from Figure 24, shown here for comparison. See Figure
22 for more explanation.



125

Figure 28: The effect of patch compaction (p), patch size (w) and free flight (rf) on the
average number of outbreaks (op) in Experiment III. Note that outbreak frequency
increases significantly with free flight (rf) status (p<0.0001), but no other experimental
effect are significant.
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Figure 29: The effect of winter reproductive rate (rw) on the results from Experiment III.
The interaction between reproductive rate, communication distance, patch size, and
response variable is significant (p=0.0002), as is the interaction between patch compaction
and response variable (p<0.0001) and the interaction between reproductive rate, patch size
and patch compaction (p=0.0124). Symbols are filled as in Figure 22.
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Figure 30: The effect of winter reproductive rate (rw) on the results from Experiment III.
Note that outbreak frequency increases significantly with free flight (rf) status (p<0.0001),
but no other experimental effect are significant.


