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ABSTRACT 

Canada’s Wild Salmon Policy (WSP) requires that quantitative survey designs be 

used to monitor annual trends in Pacific salmon escapement.  Visual survey methods, in 

which periodic counts of spawning fish are made throughout a season, are often 

employed for this purpose.  Coho salmon populations are difficult to monitor using visual 

survey methods due low probability of fish detection and high variability in the annual 

timing of fish presence in the survey area.  I developed a Monte Carlo simulation 

procedure to evaluate the power of peak-count, mean-count, trapezoidal area-under-the-

curve (AUC), and likelihood AUC methods to detect 30% declines in coho salmon 

escapement over 10 years, which is the magnitude of trend that would warrant listing a 

population as threatened under the Canadian Species at Risk Act (SARA).  My results 

suggest that a simple mean-count method would be best suited for monitoring coho 

salmon abundance in relation to SARA and WSP guidelines. 

 

Keywords 
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CHAPTER 1  
INTRODUCTION TO VISUAL SURVEY METHODS 

Under Canada’s new Wild Salmon Policy (WSP), genetically and geographically 

similar spawning aggregations of Pacific salmon (Oncorhynchus spp.) will be grouped 

into conservation units (CUs), and for each CU, a monitoring plan will be developed to 

assess interannual trends in both the abundance and distribution of fish within the CU 

(DFO 2005).  These monitoring plans will include documentation of the survey methods 

that will be used to monitor salmon escapement (the number of salmon returning to a 

stream to spawn), as well as the identification of two benchmarks (upper and lower) 

against which the status of the CU can be assessed.  The annual status of a CU will be 

used to inform management decisions regarding harvest levels, enhancement activities, 

and habitat alterations.   

Monitoring plans will vary among CUs; however, the WSP outlines four broad 

requirements: (i) cost-effectiveness, (ii) ability to build on existing stock assessment 

programs and partnerships with First Nations and enhancement groups, (iii) utilization of 

statistically-based survey methods that accurately assess interannual trends in abundance 

with a high level of confidence, and (iv) all data collected should be relevant to the 

provision of management advice.  Visual survey methods, in which field personnel make 

periodic counts of spawner abundance throughout a spawning season, will likely play an 

important role in monitoring plans developed under the WSP.  While more intensive 

survey methods such as enumeration fences and mark-recapture studies will be used to 
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monitor a selected number of indicator streams within each CU, visual surveys provide a 

cost effective means of assessing the consistency of escapement trends across an entire 

CU.  Furthermore, the large number of streams monitored using visual survey methods 

allow for an easy division of survey effort among Fisheries and Oceans Canada (DFO), 

First Nations communities, and local enhancement groups.  The suitability of visual 

survey methods with regards to the first two requirements for WSP monitoring plans is 

thus well established.  For my 699 research project, I evaluate the suitability of visual 

survey programs for monitoring coho salmon (O. kisutch) escapements with regard to the 

third requirement of WSP monitoring programs: that survey methods accurately assess 

interannual trends in abundance with a high degree of confidence.   

In general, the ability of visual survey programs to detect trends in escapement 

depends on consistency in both the ratio of estimated abundance to true abundance 

(hereafter referred to as “observer efficiency”) and the timing of fish presence in the 

survey area among years (hereafter referred to as “run timing”).  Visual surveys for coho 

salmon are known to be especially problematic due to high inconsistency in both of these 

factors.  The camouflage colouration of coho salmon on the spawning grounds makes 

them difficult to detect, and their run timing dynamics can be highly variable between 

years.  The shape of the curve describing coho salmon run timing dynamics frequently 

deviates from a normal distribution to a highly skewed or bimodal distribution (Fraser et 

al. 1983, Holtby et al. 1984).   

I present my research in two chapters.  In Chapter 2, I review existing literature 

on alternative methods used to derive escapement estimates or indices from visual survey 

data, and highlight the key sources of uncertainty for each method.  In Chapter 3, I 
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present a Monte Carlo simulation study that evaluates the ability of four alternative visual 

survey methods (peak-count, mean-count, trapezoidal area-under-the-curve (AUC), and 

maximum likelihood AUC with a beta-distributed run timing model) to detect trends in 

coho salmon escapement to a single stream given realistic levels of variability in run 

timing dynamics and observer efficiency.  I use a range of scenarios about “true” 

population dynamics and survey designs to show that a simple mean-count method could 

be applied broadly to monitor coho salmon escapement in relation to rate-based 

benchmarks of population change, such as percent change in escapement over time.  The 

mean-count method uses the mean number of salmon counted over all surveys for a given 

stream within a single year to index escapement.   

 

 3



 

CHAPTER 2  
LITERATURE REVIEW 

Introduction 

To ensure both short- and long-term benefits from Pacific salmon fisheries, 

escapement goals are set for individual stocks and spawning populations are monitored 

annually in relation to these goals.  Accurate and precise estimates of salmon escapement 

are regarded as an essential component of all salmon management plans.  Escapement 

estimates are considered accurate when the estimated value is close to the true or 

accepted value, and precise when further sampling and calculations produce the same or 

similar result.  Depending on the salmon population, escapement estimates can be used to 

define stock recruitment relationships, forecast recruitment of future generations, make 

in-season management decisions, and set optimal harvest rates.   

Because time and budget constraints make it impossible to monitor all salmon 

populations on the Pacific Coast, populations are grouped into stock complexes and 

escapement monitoring is conducted on only a subset of populations.  These monitored 

populations are used as indicators of trends experienced over the entire stock complex 

and are used to make annual harvest decisions.  A wide range of methods are available 

for monitoring indicator populations, ranging from intensive mark-recapture programs 

and enumeration fences to less intensive visual survey programs (Cousens et al. 1982).     

Visual survey methods have been commonly used to monitor Pacific salmon since 

the 1950’s (e.g. Bevan 1961, Cousens et al. 1982, Bue et al. 1998).  Sampling protocols 
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typically involve field observers travelling a predetermined length of stream multiple 

times throughout a spawning season and counting the number of fish they observe on 

each visit.  Various modes of travel are used, including aerial overflights, snorkelling, 

rafting, and walking.  The relatively low cost and short time commitment required to 

complete each visual survey are significant advantages to monitoring programs operating 

on limited resources.  Monitoring programs based on visual surveys are frequently 

referred to as extensive survey programs because they allow for a wide range of 

spawning populations to be monitored with less certainty than more effort-intensive 

methods.  As a result, visual survey escapement estimates are often treated as relative 

indices, as opposed to absolute estimates of escapement.  Estimation methods have been 

developed to produce absolute estimates of escapement using visual survey data (Ames 

and Phinney 1977, English et al. 1992, Hilborn et al. 1999); however, as I will show, the 

level of effort required to produce accurate and precise estimates of absolute escapement 

can be higher than necessary for accurate trend detection.  Confidence in visual survey 

estimates generally decreases as the frequency of counts decreases (Hill 1997, Bue et al. 

1998, Korman et al. 2002), and thus, extensive survey programs must find a balance 

between program cost and the level of certainty in escapement estimates required for 

management decisions.     

Several estimation methods are available for deriving either a relative escapement 

index or an absolute escapement estimate from visual survey counts.  In this literature 

review, I evaluate the utility of three commonly used estimation methods (peak-live-

count, trapezoidal area-under-the-curve (AUC), and maximum likelihood AUC) for 

monitoring coho salmon escapement as part of an extensive survey program aimed at 
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detecting long-term escapement trends.  I chose to examine the peak-live-count and 

trapezoidal AUC methods because they are commonly employed by salmon management 

agencies along the Pacific coast. The maximum likelihood AUC method is of interest 

because it is relatively new (Hilborn et al. 1999) and allows uncertainty in count data, 

survey life, and observer efficiency to be taken into account when estimating escapement.  

Detailed reviews of other methods that I do not cover are provided in Cousens et al. 1982.   

An important difference among the three estimation methods I evaluate is the 

level of escapement information provided by estimates.  The peak-count method provides 

a relative estimate of escapement, while the two AUC methods attempt to provide 

absolute estimates of escapement.  Absolute estimates of escapement are necessary for 

some monitoring purposes, such as determining the probability of escapement dropping 

below a minimum acceptable population size.  However, when the primary purpose of 

escapement monitoring is to detect long-term trends in escapement, relative estimates of 

escapement are sufficient, as long as biases in escapement estimates remain constant over 

time.  In this literature review, as well as in Chapter 3, I have chosen to focus on the latter 

of these two monitoring purposes: the detection of time trends in escapement.   

In the first section of this literature review, I discuss key sources of uncertainty 

that are common to all visual survey monitoring methods.  In the second section, I 

present a more detailed review of the peak-live-count, trapezoidal AUC, and maximum 

likelihood AUC methods.  For each method, I highlight the advantages and disadvantages 

of its application to escapement monitoring, as well as how previous studies have 

assessed its performance relative to other methods.  Finally, in my concluding section, I 

summarize my findings, identify areas for further research, and propose a fourth 
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alternative for indexing escapement, a simple mean-count method that may reduce some 

of the uncertainty in estimated escapement trends.            

Uncertainty in Visual Surveys 

Sources of uncertainty in visual survey escapement estimates can be categorized 

as observation errors arising from measurement (i.e., counts) and process errors arising 

from natural variability in population dynamics (Hilborn and Mangel 1997).  While the 

key sources of uncertainty in escapement estimates vary with estimation method, all 

methods require that assumptions be made about the ability of observers to see fish and 

the timing and shape of the curve describing fish presence in the survey area (hereafter 

referred to collectively as “run timing dynamics”).  These two sources of uncertainty in 

escapement estimates represent observation and process errors, respectively.  I will show 

that both of these factors are highly variable and difficult to predict.  When possible, I 

refer to studies that have focused on coho salmon specifically, although when necessary, 

I draw from other species of Pacific salmon. 

Observer Efficiency 

Observer efficiency (i.e., the proportion of fish seen by observers) varies among 

streams, among years within streams, and among individual surveys conducted in a single 

stream in a single year.  Factors influencing observer efficiency include observer 

experience, weather conditions, fish behaviour, life history (adult or jack), survey 

method, and physical stream characteristics such as turbidity, water level, and habitat 

type (Bevan 1961, Shardlow et al. 1987, Jones et al. 1998, Korman et al. 2002).  As an 

additional complication, the accuracy of counts has been shown to decrease non-linearly 
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with increasing fish density (Jones et al. 1998).  The magnitude of variability in observer 

efficiency is difficult to quantify due to observation error in estimates of the “true” 

number of fish present on a given day; however, it is likely quite high.  For coho salmon 

foot surveys in Clear Creek, Alaska estimates of observer efficiency ranged from 25% to 

100% within a single spawning season (Hetrick and Nemeth 2003). Estimates of 

between-observer coefficients of variation for counts of pink salmon (O. gorbuscha) 

collected by foot surveys in Chaik Bay Creek, Alaska ranged from 30% to 49% (Jones et 

al. 1998).  Predictive relationships describing observer efficiency as a function of 

physical stream conditions (e.g., river discharge, turbidity, visibility; Korman et al. 2002, 

Hetrick and Nemeth 2003), or individual observers (Jones et al. 1998) have been 

developed for some salmon populations.   

Run Timing Dynamics 

The run timing of salmon into spawning streams is influenced by both heritable 

genetic traits (Hansen and Jonsonn 1991, Smoker et al. 1998, Stewart et al. 2002) and 

localized environmental factors (Fukushima and Smoker 1997, Hodgson and Quinn 2002, 

Keefer et al. 2004), and therefore, can also vary both between streams and between years.  

Variability in run timing dynamics can be broken down into two components: (i) 

variability in the timing of fish arrival into survey areas and (ii) variability in the length 

of time fish remain alive in the survey area (referred to as “survey life”).  When the entire 

spawning population enters a stream within a few days, the shape of the run timing curve 

describing fish abundance as a function of date will be narrower than when fish arrival is 

spread out over several days or weeks.  Similarly, for years in which the mean survey life 

is shorter, the shape of the run timing curve will be narrower.   
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Interannual variability in environmental factors has been shown to influence the 

timing of arrival of salmon into spawning streams.  Discharge levels in the Columbia 

River explain much of the among-year variation in migration timing of spring-summer 

chinook (O. tshawytscha) salmon (Keefer et al. 2004).  Hodgson and Quinn (2002) 

showed that among 129 summer sockeye (O. nerka) salmon populations ranging from 

Washington to Alaska, peak in-river temperature, as well as migration distance and 

latitude, contributed significantly to spawning date.  In years with peak temperatures 

exceeding an upper threshold of 19oC, sockeye tended to enter freshwater either prior to 

or after the warmest period.   

Several anecdotal accounts suggest that the influence of environmental factors on 

arrival timing dynamics may be particularly strong for coho salmon, which spawn later in 

the season than other species and frequently display pulsed and bimodal run timing 

distributions.  Coho often enter spawning streams during periods of increased water flow 

(Neave 1943, Fraser et al. 1983, Holtby et al. 1984), and the tendency of coho to migrate 

past enumeration fences during rainfall events is well known.  Holtby et al. (1984) 

observed coho milling around the mouth of a coastal spawning stream, presumably 

waiting for stream conditions to become suitable before entry.  He found that in years in 

which flow was constant, coho were constantly entering the stream, whereas in years 

with infrequent freshets, entry timing was pulsed.   

The second component of run timing dynamics, survey life, is alternatively 

referred to as “stream life” and “redd residence time” within the literature.  Stream life is 

used when the survey area covers the entire stream, whereas redd residence time is used 

when counts are restricted to spawning fish associated with redd nest sites.  I have chosen 
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to use the generic term survey life, which encompasses both of these metrics.  As with 

observer efficiency and arrival timing, average survey life can vary both among years and 

among streams within a given year (Perrin and Irvine 1990, English et al. 1992, Irvine et 

al. 1992).  For example, Irvine et al. (1992) found that for two Vancouver Island, BC 

streams located within 80 km of each other (Black Creek and French Creek), the 

estimated mean annual redd residence times for coho salmon in 1988 were 8.0 and 16.7 

days, respectively, compared with 15.0 and 15.5 days in 1989.  Over a period of three 

years, mean residence times in Black Creek ranged from 8.0 to 16.6 days, while those in 

French Creek ranged from 13.3 to 16.7 days.  

Variation among individual fish further complicates estimation of survey life.  For 

example, early arriving fish tend to have longer redd residence times than fish that arrive 

later in the spawning season (Neilson and Geen 1981, Neilson and Banford 1983, Perrin 

and Irvine 1990).  Van den Berghe and Gross (1986) found that life history, body size, 

and adult spawning density all contributed significantly to explaining variation in coho 

salmon stream life.  Stream discharge and stream temperature have also been shown to 

influence stream life of pink salmon in the Auke Lake system, Alaska (Fukushima and 

Smoker 1997).   

In summary, there are several sources of uncertainty arising from the 

measurement of fish abundance in spawning streams, as well as natural variability in run 

timing dynamics, that contribute to errors in visual survey escapement estimates.  The 

escapement estimation methods I review in the next section vary in the extent to which 

they take these uncertainties into account when analysing visual survey data, producing 

escapement estimates with variable levels of precision and accuracy. 
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Escapement Estimation Methods from Visual Survey Data 

Peak-Live-Count (Peak-count) 

In the peak-live-count method (hereafter referred to as simply “peak-count”), the 

highest count value observed over all surveys conducted in a year is used to index 

escapement (Bevan 1961).  The peak-count value is expected to be biased low because 

only a portion of the total escapement is in the stream and available for observation on a 

given day (Bevan 1961).  In order to use peak-count indices for annual management of 

salmon stocks, an absolute estimate of escapement is often obtained by multiplying the 

peak-count value by an expansion factor that accounts for fish not present in the stream at 

the time of counting and fish that were present but not observed (Jones et al. 1998, 

Parken et al. 2003).  Alternatively, peak-count values themselves have been used as 

escapement targets for a single stream or composite of streams (Shaul et al. 2003 for coho 

salmon). 

The accuracy and precision of escapement indices developed using the peak-count 

method are dependent on annual consistency in the ratio of observed peak-count to total 

spawner escapement.  There are thus two major sources of uncertainty in escapement 

indices developed using the peak-count method: (i) interannual variability in observer 

efficiency, and (ii) interannual variability in run timing dynamics.  As already shown, 

both of these factors can be highly variable between years.    

The advantage of the peak-count method over more complex AUC methods is 

that it can be used with as little as one survey count per year, although more commonly, 

two or three surveys are conducted near the historic date of peak spawning abundance 

(Jones et al. 1998, Parken et al. 2003).  A significant disadvantage of the peak-count 
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method is the requirement to schedule surveys to overlap with the date of peak spawning 

abundance, which can be difficult to predict due to high variability in the timing of peak 

abundance, both between years for a specific stream and between streams within a given 

year.  For example, over a period of three years, the dates on which the peak numbers of 

coho salmon were seen in Black and French Creeks on Vancouver Island, British 

Columbia had ranges of 26 and 16 days, respectively (Irvine et al. 1992).  In the Rakaia 

River system in New Zealand, the date of peak abundance for seven different chinook 

spawning aggregations located within the system extended over a range of 22 days within 

a single year (West and Goode, 1987).   

Trapezoidal AUC (T-AUC) 

The trapezoidal AUC method (hereafter referred to as “T-AUC”) differs from the 

peak-count method in that information from all surveys conducted in a year are used in 

escapement estimation, not just the survey that produces the highest count.  In the T-AUC 

method, an absolute estimate of escapement is obtained by (i) calculating the area under 

the observed run timing curve (also referred to as the escapement curve) using a 

trapezoidal approximation to the shape of the distribution, (ii) dividing the area-under-

the-curve by an estimate of survey life, and (iii) scaling the product from (ii) by an 

estimate of observer efficiency (see Chapter 3 for equations).  T-AUC escapement 

estimates have three major sources of uncertainty, one related to each of the above three 

components.  The first is associated with the ability of survey counts to accurately 

represent the shape of the run timing curve, while the second and third are the estimates 

of survey life and observer efficiency.  The application of this method requires the 
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analyst to assume that survey life and observer efficiency parameters are known without 

error. 

Ames and Phinney (1977) were the first to document the application of the T-

AUC method to salmon escapement estimation, and it has been commonly used since 

then by salmon management agencies along the Pacific Coast (Bue et al. 1998).  Most 

studies aimed at assessing the performance of the T-AUC method have been empirical, in 

which an T-AUC estimate of escapement for a given year is compared with that from a 

more reliable method such as mark-recapture or fence counts (although see Hill 1997, 

Manske and Schwarz 2000, and Korman et al. 2002 for simulation approaches).  The T-

AUC method has been shown to produce accurate escapement estimates when compared 

to fence counts and mark-recapture escapement estimates; however, the accuracy of T-

AUC estimates is highly dependent on the use of year- and stream-specific estimates of 

survey life and observer efficiency (English et al. 1992, Bue et al. 1998, Parken et al. 

2003).  The extrapolation of more general survey life or observer efficiency estimates 

among years or streams can lead to positively or negatively biased escapement estimates 

(Bue et al. 1998, Parken et al. 2003).  The precision and accuracy of T-AUC estimates 

generally improves with increasing survey frequency because a larger portion of the run 

timing curve is observed (Hill 1997, Bue et al. 1998). 

An obvious advantage of the T-AUC method over the peak-count method is that it 

provides an estimate of absolute escapement.  The disadvantages include greater survey 

effort (if less than three surveys per year are conducted, the analyst must make educated 

guesses to fill in missing count values) and the need for accurate year- and stream-

specific estimates of survey life and observer efficiency (English et al. 1992, Irvine et al. 
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1992, Bue et al. 1998).  The sampling methods required to estimate survey life and 

observer efficiency are usually intensive, requiring large financial and time commitments.  

Methods for estimating survey life include tagging programs and enumeration fences 

(English et al. 1992, Bue et al. 1998), capture-recapture studies (Manske and Schwarz 

2000, Parken et al. 2003) and daily observations (Van den Berghe and Gross 1986, 

Trouton et al. 2004).  The use of time-lapse-video technology has recently been shown to 

provide inexpensive estimates of redd residence time for sockeye salmon (Shardlow 

2004); however, this method may not be suitable for small populations with more 

dispersed redd sites such as coho salmon.  Methods for estimating observer efficiency 

include electrofishing, tagging programs, enumeration fences, and radio-telemetry (Irvine 

et al. 1992, Bue et al. 1998, Jones et al. 1998, Korman et al. 2002).  English et al. (1992) 

and Irvine et al. (1992) both suggest that the requirement for year- and stream-specific 

estimates of survey life and observer efficiency should limit the application of the T-

AUC method to high priority streams where absolute estimates of escapement are 

required. 

Maximum Likelihood AUC (L-AUC) 

The maximum likelihood approach to AUC escapement estimation (hereafter 

referred to as "L-AUC") was developed in response to concerns that the T-AUC method 

did not allow for the calculation of uncertainty in escapement estimates (Hilborn et al. 

1999; but see Parken et al. 2003 for an example using bootstrap sampling with the T-

AUC method).  The L-AUC method involves (i) a run timing model to predict daily fish 

abundance in the survey area, (ii) an observation model to predict count values based on 

predicted abundance and observer efficiency, and (iii) a statistical model with a goodness 

 14



 

of fit criterion to estimate total escapement using the predicted and observed count 

values.  The run timing model requires the specification of a cumulative distribution to 

model fish arrival and death, as well as a survey life parameter that specifies the offset (in 

days) between the location of the two distributions (see Chapter 3 for equations).   

The L-AUC method of escapement estimation is based on a framework for 

describing run timing dynamics initially developed by Quinn and Gates (1997).  Hilborn 

et al. (1999) expanded on the work of Quinn and Gates (1997) by using cumulative 

normal and beta distributions to describe fish arrival, developing methods for 

incorporating uncertainty in survey life and observer efficiency parameter values in 

escapement estimation, and showing how the likelihood method could be used to 

estimate confidence bounds on escapement estimates.  In addition, Hilborn et al. (1999) 

used pink salmon visual survey data from 18 streams with counting fences to compare the 

performance of the L-AUC method with that of the T-AUC method.  Their results 

showed that when stream- and year-specific estimates of survey life and observer 

efficiency were assumed to be known without error and were applied to both methods, 

the T-AUC method produced slightly less biased escapement estimates than the L-AUC 

method.  However, their results also showed that when stream life and observer 

efficiency were treated as uncertain parameters, the level of uncertainty in escapement 

estimates increased substantially compared to when they were treated as known using 

stream- and year-specific estimates, particularly in the case of observer efficiency.  The 

authors concluded that when an estimate of uncertainty is required, the likelihood method 

should be applied with year-specific estimates of survey life and observer efficiency.  

With the exception of bootstrap sampling of replicate survey data (Parken et al. 2003), 
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which can be highly effort-intensive, there have been no alternative methods developed 

for estimating uncertainty in visual survey escapement indices.    

Su et al. (2001) and Adkison and Su (2001) expanded on the methodology of 

Hilborn et al. (1999) by incorporating a decline in survey life over the course of the 

spawning season into the run timing model, and using a hierarchical Bayesian approach 

that allowed the estimation procedure to “borrow information” from years with ample 

survey data to apply to years with sparse survey data or no post-peak counts.  While the 

application of a hierarchical Bayesian approach reduces data requirements, this approach 

is more computationally intensive than other escapement monitoring options and, in the 

form used by Su et al. (2001), is only suitable for stocks with high annual consistency in 

run timing dynamics, which does not appear to be the case for coho salmon.  Korman et 

al. (2002) further expanded on the above studies by exploring alternative run timing 

models, including the beta distribution and a pulsed arrival model, demonstrating the high 

sensitivity of escapement estimates to assumptions about run timing dynamics, and 

developing a likelihood model that incorporated mark-recapture data. 

Two major uncertainties in the L-AUC method are the run timing model assumed 

(e.g. beta, normal, or pulsed) and the error structure assumed when fitting the run timing 

model to observed visual survey data.  Uncertainty arising from the selection of a run 

timing model would likely be particularly important in cases where the assumed model is 

unimodal, but the true run timing curve is bimodal.  In addition, L-AUC escapement 

estimates include uncertainties associated with the treatment of survey life and observer 

efficiency. 
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There are significant advantages to employing the L-AUC method.  It allows 

stock assessment scientists to produce annual estimates of escapement with measures of 

uncertainty, and it can produce escapement estimates for years with sparse count data 

when used in a hierarchical framework.  Disadvantages of the method include high 

computational requirements, especially in the case of the hierarchical Bayesian model, 

the required assumption of a statistical distribution to describe run timing dynamics, and 

the large number of survey counts required to estimate several model parameters.  For 

example, the application of a normally distributed run timing model with uncertainty in 

survey life and observer efficiency parameters requires a minimum of six surveys within 

a year to ensure that sample size is greater than the number of parameters being 

estimated.  Hilborn et al. (1999) recommended the development of run timing models 

using mixture distributions to describe arrival and death to deal with populations 

displaying highly skewed and bimodal run timing curves.  However, these models would 

further increase the number of parameters to be estimated, and thus, the minimum 

number of surveys required. 

Conclusions 

There are two areas where further research is needed with regard to extensive 

survey programs for coho salmon.  The first is the need to develop of an alternative 

estimation method that can accurately and precisely detect temporal trends in relative 

escapement with minimal survey effort and the second is a quantitative evaluation of the 

ability of several visual estimation methods to detect trends in escapement.  For the first 

issue, existing methods of estimating escapement have several drawbacks.  The peak-

count method is not able to deal with high interannual variability in the timing and shape 
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of run timing curves, which is commonly observed for coho salmon populations.  While 

the AUC methods may be useful for intensive monitoring programs in which stream- and 

year-specific values of survey life and observer-efficiency are estimated, they are likely 

not suitable for extensive survey programs that aim to monitor escapement trends across 

broad geographic ranges with minimum levels of effort.  In the absence of stream- and 

year-specific estimates of survey life and observer efficiency, which would be expected 

for extensive survey programs, the extrapolation of parameter values between years and 

streams has the potential to introduce an additional source of uncertainty into estimated 

escapement trends.          

Several factors should be considered when selecting an estimation method for 

application to extensive visual survey programs.  First and foremost, the level of detail 

extracted from visual survey programs should match the level of detail required for 

management.  For extensive survey programs aimed primarily at detecting escapement 

trends, absolute estimates of escapement are not necessary, unless the population is at an 

extremely low abundance.  Second, given the high levels of uncertainty in survey life and 

observer efficiency, and the high costs of estimating these parameters, a simple data-

based method that requires no assumptions about these values is desirable.  Finally, the 

application of an estimation method that utilizes information from all surveys conducted 

in a year on a given stream would be expected to reduce the level of uncertainty in trend 

detection caused by interannual variability in run timing.   

One potential estimation method that has rarely been used, yet may meet several 

of the above criteria, is a simple mean-count method that uses the mean survey count 

observed for a given stream in a given year to index escapement.  The application of an 
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adjusted mean-count method, in which the average survey count was multiplied by the 

ratio of total days of fish presence in a survey area to survey life, has been previously 

documented (Gangmark and Fulton 1952 in Cousens et al. 1982); however, it is not 

commonly used.  To the best of my knowledge, there have been no published studies that 

utilize a simple mean-count method.  

The second area for further research is to quantify the ability of visual survey 

monitoring programs to detect long-term trends in escapement.  Evaluations of visual 

survey methods have tended to focus on the utility of these methods for estimating 

absolute escapement within a single stream in a given year.  These studies have been 

primarily empirical, in which the visual survey escapement estimate for a given stream is 

compared with that obtained from a more reliable enumeration method. 

In Chapter 3, I use simulation modelling to address both areas for future research 

on extensive monitoring programs that I identified in the above literature review.  I 

develop and implement a Monte Carlo simulation procedure to evaluate the ability of 

three commonly used visual survey estimation methods (peak-count, T-AUC, and L-

AUC), as well as a mean-count method, to detect long-term escapement trends given 

realistic levels of process variation in coho run timing dynamics and observation error in 

count data and survey life estimates.   
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CHAPTER 3  
EVALUATION OF VISUAL SURVEY PROGRAMS FOR 
MONITORING COHO SALMON ESCAPEMENTS: A 
SIMULATION MODELLING APPROACH 

Introduction 

As shown in Chapter 1, the ability of visual survey estimation methods to detect 

escapement trends depends upon annual consistency in (i) observer efficiency (Bevan 

1961, Shardlow et al. 1987, Bue et al. 1998), and (ii) run timing, which is itself dependent 

on arrival timing into the survey area and survey life (English et al. 1992, Irvine et al. 

1992, Bue et al. 1992).  Visual surveys for coho salmon are known to be especially 

problematic due to high inconsistency in the above factors.  In this Chapter, I present a 

Monte Carlo simulation procedure to evaluate the power of four estimation methods 

(peak-count, mean-count, trapezoidal AUC [T-AUC], and maximum likelihood AUC 

with a beta-distributed run timing model [L-AUC]) to detect long-term declines in coho 

salmon escapement given realistic levels of variation in observer efficiency and run 

timing.  The specific objectives of this study are three-fold: (i) to compare the power of 

alternative estimation methods to detect declines in coho salmon escapement within a 

single stream that would warrant listing a population as “threatened” under the Canadian 

Species at Risk Act (SARA), (ii) to examine the effect of survey frequency on power, and 

(iii) to test the sensitivity of my results to a wide range of scenarios about survey designs 

and true population dynamics.  A simulation modelling approach is well suited to these 

objectives because it allows for the evaluation of several escapement monitoring methods 
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using a generated data set for which the true escapement is known.  By creating a 

declining time series of escapement data, which represents the true state of nature, I can 

compare the predicted escapement time series for all four estimation methods with the 

true escapement time series.  An additional advantage of a simulation modelling 

approach is the ease of incorporating hypothetical components into the analysis, such as 

the frequency and timing of visual surveys throughout a season, the rate at which the 

population is declining, and the level of interannual variability in run timing dynamics.    

To measure the performance of trend detection, I chose power, which is defined 

as the probability of correctly rejecting the null hypothesis (in this case, that the rate of 

decline in escapement is less than or equal to the critical rate of decline specified in 

SARA).  One minus power represents the probability (β) of the worst-case scenario 

occurring from a conservation point-of-view; that is, making a Type II error where the 

population is threatened due to a decrease in abundance, but we fail to realize it and take 

the appropriate conservation actions (Peterman 1990).   

The results of this study will provide stock assessment scientists and fisheries 

managers with insight into the utility of alternative estimation methods for monitoring 

coho salmon escapement within a single stream.  I provide specific recommendations for 

the design of visual survey monitoring programs, and discuss suitable performance 

measures that could be used to assess stock status in relation to escapement benchmarks 

that are yet to be developed under the WSP. 
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Methods 

Methods are described in two sections: (i) model parameterization through 

analyses of existing data sets, and (ii) simulation of alternative monitoring options over a 

10-year period and evaluation of performance of different monitoring methods. 

Model Parameterization 

Data Sources 

Thirty-three existing coho salmon visual foot survey data sets were used to select 

an appropriate run timing model for simulating visual survey data, and to estimate 

interannual variability in run timing parameter values.  Data sets were collected from 11 

streams over a period of three years.  Nine of the streams were tributaries to the North 

Thompson River in the Fraser River system, British Columbia, and the other two were 

located on the east coast of Vancouver Island, British Columbia.  All data sets had a 

minimum of five surveys per year.  Data from a subset of streams are presented in Figure 

1, while Appendix A contains all data sets used to parameterize run timing dynamics.   

Data on observer efficiency for adult coho salmon foot surveys were obtained 

from previous studies conducted on Black Creek, Vancouver Island, BC (Figure 2; 

unpublished data provided by J. Irvine, Fisheries and Oceans Canada and in Irvine et al. 

1992).  The study design, in which observers visually inspected fenced-off segments of 

stream prior to electrofishing, was repeated for 50 surveys occurring over seven years.  A 

more detailed description of the study design and an analysis of the first three years of 

data are available in Irvine et al. (1992).   
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Analysis of Run Timing Data 

Analysis of run timing data consisted of two basic steps.  First, I used the 33 coho 

salmon visual survey data sets to select the best of five candidate models for describing 

coho salmon run timing dynamics (a normal distribution, a beta distribution, and three 

mixture models comprised of two normal distributions).  In the second step, I used the 

“best” model from the first step to estimate interannual variability in run timing 

dynamics.   

Model Selection 

Equations describing the five run timing models considered are shown in Table 1 

with model notation defined in Table 2.  Model parameters are denoted using italicized 

lower-case letters (e.g. m), state variables are denoted using italicized upper-case letters 

(e.g. A), and functions are denoted using bold upper-case letters (e.g. F).  Two probability 

density functions are used in the run timing models in Table 1.  The first is the 

cumulative normal distribution function, 
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and the second is the cumulative beta distribution function, 
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Vectors of parameters estimated using maximum likelihood estimation for each of the run 

timing models are denoted .  modelΦ̂
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Run timing for the normal model (equations 3-6) is characterized using a 

cumulative normal distribution of fish arrival (Hilborn et al. 1999) that is scaled by the 

total number of fish observed over all surveys conducted on a single stream in a given 

year, CT (equation 4).  The cumulative number of counted fish that arrive by survey day, 

d, ( )dÂ  is a function of the mean date of arrival into the survey area, m, and the standard 

deviation of arrival date, σ.  The model used to describe fish death, ,  is the model 

used to describe fish arrival, offset by the average survey life, s (equation 5).  The 

predicted count of fish during a given survey is the difference between  and  

(equation 6).  Run timing for the beta model (equations 6-9) is characterized using 

cumulative beta distributions for fish arrival and death (Hilborn et al. 1999, Korman et al. 

2002).  Two shape parameters, α and β, describe the shape of the beta distribution.  

Application of the beta model requires that start and end dates for stream arrival are 

explicitly specified so that day can be scaled between 0 and 1.  Start and end dates are 

assumed to be the date of the first and last surveys each year, and n is the number of days 

between these two dates.  As with the normal model, continuous arrivals and departures 

are scaled by the total number of fish observed over all surveys.   

dD̂

dÂ dD̂

Run timing for the mixture models (equations 10-15) is characterized as two 

separate normal run timing models.  When describing the mixture models, I use a 

superscript to denote which of the two component models a given parameter or state 

variable refers to (e.g.  is the standard deviation of arrival for the first component and 

 is the standard deviation of arrival for the second component).  The standard 

deviation for both component models was constrained to be equal to or greater than two 

1'σ

2'σ
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days during estimation.  The mean date of arrival for the second model is assumed to 

occur k days after that of the first model.  A parameter, z, is used to assign relative weight 

between 0 and 1 to the two component models in the mixture.  The number of data points 

for most streams limited the number of parameters that could be estimated for the mixture 

models to four (equation 10), making it necessary to assume constant values of s and z to 

ensure parameter stability.  The value of s was held constant at the mean of coho survey 

life estimates obtained from empirical studies (12.8 days; Table 3), while three different 

values of z were considered for each of the three mixture models (z = 0.3, 0.5, 0.7).  The 

mixture models differed from the normal and beta models in that they could display both 

unimodal and bimodal shapes through adjustment of the k parameter.  Small k values 

tended to create unimodal distributions while large values tended to create bimodal 

distributions.                   

Candidate models were fit to the observed count data sets using a maximum 

likelihood estimation (MLE) procedure assuming a Poisson error distribution for the 

counts, which is a commonly used distribution for dealing with discrete count data arising 

from continuous random sampling (Hilborn and Mangel 1997).  The likelihood function 

for the Poisson distribution is, 

 dd CC
d

d
dd eC

C
CL(C ˆˆ

!
1  )ˆ | −= . (16) 

For each data set, the five candidate models were ranked using a small-sample version of 

Akaike’s information criterion (AICc; Burnham and Anderson 2002).  For each candidate 

model, an AICc value was calculated based on the maximum log-likelihood value ( ), as 

well as the number of parameters: 

l

 25



 

 ( )
1

1222AIC
−−

+
++−=

Kf
KKK

max
c l , (17) 

where K is the number of parameters to be estimated and fmax is the number of surveys.  

The “best-model” for each of the 33 data sets, given the candidate models considered, 

was the one that produced the smallest AICc value.   

The results of the AICc test showed that the mixture model with z = 0.3 was the 

best of the five candidate models for the largest number of data sets (Table 4).  Based on 

these results, I selected the mixture model (z = 0.3) to estimate interannual variability in 

run timing parameters for the simulation procedure (below).  While the use of a mixture 

model may seem unwarranted given the small number of data points and the possibility 

of over-fitting, its use is justified by the high interannual variability and bimodality in 

coho run timing dynamics and that arise from infrequent precipitation events (Figure 1; 

Appendix A).  It is apparent that coho salmon are more likely to enter streams during, or 

immediately after, several days of high intensity precipitation, and that bimodal run 

timing curves are more common in years when dry periods are interspersed with periods 

of high precipitation.  This level of variability cannot be produced using normal or beta 

run timing models that restrict run timing curves to a single mode.        

Estimation of Interannual Variability 

Interannual variation for each of the four mixture model parameters was 

determined by fitting the mixture model (z = 0.3) to each of the 33 visual survey data 

sets.  I assumed that each stream i had a set of stream-specific mean parameter values 

(m'1, k, σ'1, and σ'2 in Table 2) from which run timing dynamics deviated each year.  For a 
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given mixture model parameter θ, the actual parameter value observed for stream i in 

year t was a function of the stream-specific mean as follows, 

 t,iit,i εθθ += , (18) 

where iθ  is the stream-specific mean and t,iε is the deviation in year t.  The assumption of 

mean parameter values was necessary to allow for the presence of stream-specific factors 

influencing arrival timing, such as local adaptation and migration distance (Smoker et al. 

1998; Hodgson and Quinn 2002; Keefer et al. 2004).  For each of the 33 data sets, an 

estimate of t,iε  was calculated for each year by subtracting iθ  from t,iθ . The standard 

deviation of t,iε  within each stream, τi, was then calculated using the three estimates of 

t,iε  (t = 1, 2, 3).  The 11 values of τi were used to develop alternative scenarios for the 

simulation of interannual variability in run timing dynamics (see below).      

Analysis of Observer Efficiency Data  

Analysis of the Black Creek observer efficiency data showed that the relationship 

between “true” abundance estimated from electrofishing, N, and survey counts, C, was 

linear, and that the intercept of the linear best-fit line did not differ significantly from 

zero (C = a + bN; H0: a = 0; p = 0.412, r2 = 0.92).  There was no significant difference in 

the slope of the regression between years (analysis of covariance; F = 2.09, p = 0.155).  

Based on these results, I estimated the average observer efficiency over all surveys as the 

slope of the zero-intercept linear regression between “true” abundance and counts (Figure 

2; r2 = 0.95).  The estimated slope was 0.865, indicating that on average, 86.5% of fish 

alive in the stream during a survey were detected by observers. 
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Simulation Procedure 

The simulation procedure consisted of four major components: (i) a model of 

“true” population dynamics, including annual escapement and daily run timing into 

spawning streams, (ii) generation of survey count data with observation error, (iii) 

calculation of alternative visual survey indices from those simulated survey count data 

using four different estimation methods, and (iv) evaluation of monitoring performance 

for each visual survey estimation method (Figure 3).  When describing the simulation 

procedure, I use the same notation for parameters, state variables, and functions described 

in the previous section.  In addition, I use a capital letter in normal font to denote a 

variable that is assumed to be random in the simulations.  A summary of parameter 

values used in the baseline scenario is provided in Table 5.  The basic steps in the 

simulation procedure are as follows: 

i)     Generate a “true” 10-year escapement time series with a rate of decline less than 

or equal to the critical rate of decline (r = -0.04) that would result in a spawning 

aggregation being assessed as “threatened” under SARA listing criteria. 

ii)    For each year t in the escapement time series, generate “true” daily run timing 

dynamics with random variation. 

iii)   For each survey frequency considered (fmax = 1, 2, … 8 surveys per year), select 

survey dates.  

iv)   For each selected survey date, generate count data with observation error. 

v)    For each of the four escapement estimation methods (peak-count, mean-count, 

T-AUC, and L-AUC), calculate an index of escapement for year t based on the 

count data from fmax surveys. 
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vi)   Using the 10 years of observed index values, calculate probability associated 

with null hypothesis H0: stock is “not threatened” (r > -0.04) 

vii) If the probability of H0 is less than a pre-specified confidence level (e.g. 20%), 

reject H0 and designate stock as “threatened”. 

viii) Repeat steps (i) to (vii) for 1000 simulation trials. 

viii)  For each combination of estimation method and survey frequency considered, 

calculate power as the proportion of simulation trials that correctly assess stock 

status as “threatened”. 

Population Dynamics 

I used an exponential growth model to generate a declining time series of “true” 

escapement values, 

 , (19) rt
0t eEE =

where E is true escapement, t is time in years, and r is the intrinsic rate of population 

growth (i.e., for a declining population, r < 0).  For the baseline scenario, in which the 

true percent change in escapement, p, was a 40% decline over 10 years (p = -40%), the 

value of r was -0.057 (Appendix B).  In comparison, the critical SARA rate of decline 

used to designate a population as “threatened” was a 30% decline in escapement over 10 

years (p = -30%; r = -0.04).  

To simulate daily run timing dynamics for year t, the mixture model (z = 0.3) was 

modified slightly so that the cumulative normal distributions presented in equations 11-

14 were scaled by total escapement, Et, instead of total counts.  This allowed for the 

prediction of the total number of arrivals and deaths that actually occurred up to a given 
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day d, as opposed to the total number of arrivals and deaths counted up to d.  The 

difference between cumulative arrivals and cumulative deaths on day d thus determines 

the total abundance of fish that are alive and in the survey area on that day (Nd).  The total 

duration of fish presence in the survey area ranged from 17 to 91 days (mean = 51.5 days, 

n = 1000) for the simulated “true” run timing dynamics, which was realistic compared to 

the range of 19 to 82 days (mean = 47.3 days, n = 33) observed for the 33 visual survey 

data sets used to parameterize run timing dynamics. 

Interannual variability in run timing dynamics was incorporated into simulated 

“true” data using the following variation of equation (18) to describe a given run timing 

parameter θ, 

 Y, += iti θθ , (20) 

where Y is a year-specific random effect.  For each parameter θ, Y was assumed to be a 

normally distributed random variable with a mean of zero and standard deviation of τ, 

 ( )τ,0~Y N , (21) 

where the value of τ was specific to each parameter (denoted as τm, τk, τσ1, and τσ2 in Table 

5).  In the baseline scenario, values of τ were set equal to the mean τi value estimated 

from visual survey data sets, as described in the model parameterization section. 

Visual Survey Model 

For each of the four escapement estimation methods evaluated, I considered a 

range of survey frequencies extending from one to eight surveys per spawning season.  

The mean-count, T-AUC, and L-AUC methods required a minimum of two, three, and 
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five surveys per year, respectively.  Only the peak-count method allowed for the 

consideration of a single-survey scenario.   

Survey dates were selected based on the assumption that observers would have 

some knowledge of historic run timing within a study stream.  On average, survey dates 

were centred around the historic peak day of spawning abundance for the stream, dPK, 

however, the start date for surveys each year was randomly selected from a seven-day 

window.  In the baseline scenario, a simple algorithm was developed that clustered 

survey events near dPK when survey frequency was low.  The single survey for the one-

survey case of the peak-count method was conducted on dPK, while the surveys for the 

two-survey case were conducted one week before and one week after dPK.  For the three- 

to eight-survey cases, the total number of days over which counts were conducted (l) was 

dependent on survey frequency as follows: 

  (22) 
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where fmax is the total number of surveys per year.  While the number of days of 

simulated fish presence was often shorter than l, the advantage of a longer survey period 

derives from the increased probability of observing both the start and end of fish presence 

in years that the peak date of fish abundance occurs either several days (or weeks) before 

or after dPK.  The first survey date (d first) was randomly selected from a seven-day period 

that occurred 0.5l days before the historic peak date, 

 ( )3l5.0d,3l5.0dUd PKPKfirst +−−−= , (23) 
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and the remaining surveys were evenly spaced over the next l days so that the last survey 

date (d last) was always    

 ldd firstlast += . (24) 

Observation error in survey counts was simulated using a Poisson distribution.  

The number of fish observed on day d was a random Poisson variable with a rate 

parameter λ, defined as 

 dvN=λ , (25) 

where v is the average observer efficiency of 0.865 estimated from Black Creek observer 

efficiency studies (described above).             

Alternative Escapement Estimation Methods 

Peak-count 
 

The highest count value generated for each year in the time series was used as an 

index of escapement for the peak-count method: 

 ( )CI PK max= . (26) 

Mean-count 
 

The mean of count values generated for each year in the time series was used as 

an index of escapement for the mean-count method: 
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Trapezoidal-AUC (T-AUC) 
 

In the T-AUC method, a simple trapezoidal approximation was used to calculate 

the area under the observed run timing curve for each year, 
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where j is 2 plus the number of surveys conducted in a season, x represents a survey 

event, and ux is the day that the xth survey was conducted.  To calculate area under the 

curve prior to the first count (AUCfirst), and after the last count (AUClast), I used the same 

approximation as Bue et al. (1998): 
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where  is an annual estimate of survey life.  When year- and stream-specific estimates 

of survey life are not available, as would be expected for extensive survey programs that 

monitor a large number of streams with minimal budget and personnel, survey life 

estimates must be extrapolated between years and/or streams.  In the baseline scenario, I 

model a monitoring program in which a year-specific survey life value is estimated for a 

single stream and then applied to multiple streams within that year.  An annual 

escapement estimate is derived from equation 28 as,  

tŝ
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where v  is an estimate of average observer efficiency.  The selection of  and  values 

for each simulation trial was based on the assumption that stock assessment analysts had 

some knowledge of the “true” underlying parameter distributions.  This assumption is 

reasonable given the numerous studies that have been conducted on these parameter 

values.   

ˆ v̂ tŝ

The value of  was held constant at 0.865, which was the average observer 

efficiency value used to generate “true” count data in equation 25.  Observation error in 

 was incorporated into the simulation procedure by assuming that  was a random 

normal variable with a mean, µs, equal to s and a coefficient of variation, CV( ), of 0.2.  

While the selection of a CV=0.2 for survey life estimates in the baseline scenario was 

somewhat arbitrary, studies of the length of time coho salmon spend on their redds (redd 

residence time) in two coastal streams suggest that this value is reasonable for monitoring 

programs that estimate survey life for a single stream each year and then extrapolate that 

value to other streams.  Over a period of four years, the redd residence time estimates for 

French Creek and Black Creek on eastern Vancouver Island, BC differed from each other 

by an average of 4.5 days (range of difference = 0.5 to 8.7 days; English et al. 1992, 

Irvine et al. 1992).   

v̂

tŝ tŝ

ŝ

Likelihood AUC (L-AUC) 
 

The L-AUC method (Hilborn et al. 1999) estimates escapement by treating it as a 

free parameter in a maximum likelihood estimation procedure.  The application of the 

beta-distributed run timing model to the L-AUC method requires a slight modification 

from the version presented in equations 6-9.  The scalar CT in equations 7-8 is replaced 
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with a total escapement parameter for year t, Et.  This modification allows equation 6 to 

predict the total abundance of fish alive in the survey area on day d, .  A deterministic 

observation model is then used to predict the number of fish counted, , as a function of 

 and an estimate of observer efficiency , 

dN̂

dĈ

dN̂ v̂

 . (32) dd NvC ˆˆˆ =

Using the modified run timing model and the observation model, maximum likelihood 

estimation was used to fit predicted counts to observed counts by estimating four 

parameters: total escapement ( )Ê , survey life ( )ŝ , and two shape parameters of the beta 

distribution (α̂  and ).  The L-AUC method was only applicable to survey frequencies 

of 5 per year or greater to prevent model over-parameterization.         

β̂

Parameters were estimated using a penalized likelihood function that assumed a 

Poisson error distribution for the count data (equation 16) and a normal prior distribution 

on the parameter s, with a mean of µs and a standard deviation of σs.  The total likelihood 

was thus, 
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where Cd is the actual count value observed on day d (equation 25) and  is the 

predicted count value for day d (equation 32).  As with the T-AUC method, the value of 

µs was set equal to the true value of s used to generate data (above) and the value of  

was held constant at 0.865 (equation 25).  The inclusion of a prior distribution on s was 

necessary to ensure parameter stability in the estimation procedure.  In some cases, v can 

dĈ

v̂
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be treated as a free parameter in the maximum likelihood estimation procedure (Hilborn 

et al. 1999); however, parameter estimates of α, β, and s were highly correlated at all 

survey frequencies examined when v was estimated rather than assumed.     

Evaluation of Monitoring Performance 

Trend Detection 

For each Monte Carlo trial, an observed escapement index, I (I = It=1, It=2, ... 

It=tmax), was generated for each combination of estimation method and survey frequency 

considered (henceforth referred to as “monitoring designs”).  Performance of each design 

was evaluated based on its power, which was the probability that a simple linear 

regression of the logarithm of the observed index on t would correctly conclude that the 

value of r was less than or equal to the critical r value, -0.04, (reject H0: r > -0.04) that 

would lead to a population being assessed as “threatened” under the SARA assessment 

criteria (i.e., a 30% decline in abundance over 10 years; Appendix B).  To calculate a 

predicted rate of population growth from each simulated escapement index I that could be 

compared with both the true r and the critical r value of –0.04, I used a simple regression 

on log-transformed index data, 

 , (34) trII t ˆ)ˆ(log)(log 0ee +=

where r̂  is the predicted rate of population growth, calculated as the slope of the best-fit 

line to simulated index values.    

Uncertainty in r̂ was incorporated into trend detection using a Bayesian approach 

to regression analysis.  I used a sampling-importance-resampling algorithm (SIR) to 

construct a joint probability density function (pdf) for the linear regression, P(r, | I), 0I
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from which I obtained the marginal posterior pdf, P(r | I) (Rubin 1988, Gelman et al. 

2004; Appendix C).  The probability that r was within a specified range was thus the 

proportion of P(r | I) that fell within that range (Figure 4).  To evaluate the bias of each 

monitoring design, the expected r value from each Monte Carlo trial, E[r | I], was used 

over 1000 simulation trials.     

Power Analysis 

I used the Monte Carlo simulation procedure to approximate the statistical power 

of alternative monitoring designs to detect an r value ≤ -0.04 using a Bayesian approach 

to hypothesis testing (Gelman et al. 2004).  In each trial, the posterior probability 

distribution P(r | I) was used to calculate the probabilities for two competing hypotheses 

about the true value of r (H0: r > -0.04 [or p > -30%]; H1: r ≤ -0.04 [or p ≤ -30%]).  Two 

examples of the calculation of probabilities for H0 and H1 are shown in Figure 4.  In panel 

A of Figure 4, only 3% of P(r | I) falls above -0.04, indicating a 3% probability that the 

rate of decline is less than that associated with r = -0.04 (i.e., that the time trend is less 

steep than r = -0.04).  In this case, the probability assigned to H0 is 3% while that 

assigned to H1 is 97%.  In panel B, 86% of P(r | I) falls above -0.04, so the probabilities 

assigned to H0 and H1 are 86% and 14%, respectively.   

I placed equal weight on the probabilities of type I and type II errors for detecting 

trends in escapement (α = β = 0.20; power = 1-β = 0.80).  Because the r value used to 

generate escapement dynamics in the baseline scenario (r = -0.057) followed H1 (-0.057 

≤ -0.04), I considered trend detection successful when the probability that the slope 

declined less steeply than r = -0.04 was less than 0.2 (i.e., the probability for H0, P(r > 
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-0.04), was < 0.2).  The power of each monitoring design was the percentage of Monte 

Carlo trials in which trend detection was successful.   

While classical hypothesis testing is sometimes considered incompatible with 

Bayesian analysis, posterior probabilities can correspond to conventional p-values for 

simple, one-sided hypothesis tests such as this (Gelman et al. 2004).  I have chosen 

hypothesis testing to measure performance because I am primarily interested in whether 

the correct management decision will be made in my hypothetical monitoring program 

(i.e., whether the population is assessed as “threatened” and appropriate management 

action taken).  I chose to employ a Bayesian approach to trend detection analysis, as 

opposed to a simple linear regression, to demonstrate how Bayesian methods can be used 

to produce estimates of r that communicate measures of uncertainty. 

In addition to using the power of a monitoring program to detect r ≤ -0.04 as a 

performance measure, I used power to examine two alternative performance measures for 

the baseline scenario that would likely be of interest to fisheries managers.  The first was 

the minimum number of years required to detect r ≤ -0.04 with 80% power and the 

second was the minimum “true” percent decline over 10 years that would allow for the 

detection of r ≤ - 0.04 with 80% power. 

Sensitivity Analysis 

I used sensitivity analyses to examine how deviations from three key assumptions 

about the “true” state of nature affected the power of each monitoring design to detect r ≤ 

-0.04: (i) interannual variability in run timing, (ii) among-survey variability in observer 

efficiency, and (iii) the true rate of population decline (Table 6).  For the first analysis, 

three additional levels of variability in run timing were examined (none, low, and high) 
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by changing the values of τ in equation 21.  To cover the range of between-year 

variability observed among the 11 streams analyzed, the value of τ in the low and high 

variability scenarios was set equal to the highest and lowest τ i values estimated from the 

11 streams.  In the second sensitivity analysis, three alternative levels of variability in 

observer efficiency were examined (none, low, and high).  Because the variance of a 

Poisson distribution is equal to the mean, variability in observer efficiency was altered by 

changing v in equation 25.  For a given level of N, the variance of C was increased when 

v was increased.  In the no-variability scenario, the number of fish observed was not 

treated as a random Poisson variable.  Instead, Cd was set equal to Nd for all surveys.  In 

the final sensitivity analysis, a range of alternative rates of population decline (p = 0, -2, 

-4, … -60% change over 10 years) were examined by changing the value of r in equation 

19.  For this analysis, I was interested in the ability of each monitoring design to correctly 

respond to changes in the “true” percent decline by adjusting the level of power achieved 

when detecting the SARA critical rate of decline of r ≤ -0.04.  I use the term “responsive” 

in my Results section to describe a monitoring program in which the power to detect r ≤ 

-0.04 changes considerably per unit change in the true percent decline.      

Survey Design Scenarios 

To determine how the design of visual survey monitoring programs could affect 

the power of trend detection, I examined a range of alternative scenarios on (i) the level 

of error in estimates of survey life [CV( )], (ii) the method used to select survey dates 

within a season (hereafter referred to as survey spacing), (iii) variation in survey 

frequency across years, and (iv) the number of years over which monitoring was 

conducted (Table 7).  In the first of these analyses, I examined the sensitivity of the T-

ŝ
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AUC method's performance to three alternative scenarios for CV( ) (none, low, high).  

Only the T-AUC method was considered in the analysis because it is the only method 

that requires an annual estimate of s.  In comparison, the L-AUC method treats s as an 

unknown parameter in maximum likelihood estimation.  I considered CV( ) a 

component of the survey design through the assumption that stock assessment personnel 

have some control over this value based on the level of funding they choose to allocate 

towards obtaining year- and stream-specific estimates of .  To examine how the spacing 

of survey events within a year affected the power of trend detection, I considered two 

alternatives to the baseline scenario shown in equations 22-24.  The first was an even 

spacing design, in which surveys were evenly spaced over l = 77 days.  The second was a 

random spacing design in which the survey period of l = 77 days was stratified into fmax 

intervals of even size and one survey date was randomly sampled from each interval 

using a random uniform distribution.  To examine how across-year variation in survey 

frequency affected the power of trend detection, I considered four alternative scenarios, 

in addition to the constant frequency scenarios used in the baseline case.  For each 

scenario, the survey frequency for a given year was selected from a random uniform 

distribution (Table 7).  Due to the requirement for a minimum of five surveys per year for 

the L-AUC method, only one of the four alternative scenarios (low variability / high 

frequency) was applicable. 

ŝ

ŝ

ŝ

Results    

Baseline Scenario 

In the baseline scenario, which provided the closest representation to “true” 

population and survey dynamics based on my analysis of coho visual survey data, all 
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survey designs considered produced relatively unbiased estimates of r when averaged 

across 1000 simulations.  Percent bias remained within ± 3% for all monitoring designs 

evaluated.      

The power of all four estimation methods to detect r ≤ -0.04 increased with 

increasing survey frequency; however, the mean-count method was able to achieve 

greater power than the peak-count, T-AUC, and L-AUC methods (Figure 5).  In the 

baseline scenario, the mean-count method achieved over 75% power at five or more 

survey counts per year and over 95% power at seven or more survey counts per year 

when the true rate of decline was 40% over 10 years (r = -0.057).  The L-AUC method 

achieved only slightly lower power than the mean-count method at all survey frequencies 

examined, but it required at least five surveys.  In contrast, the peak-count and T-AUC 

methods only achieved a maximum of 56 and 60% power, respectively, at eight survey 

counts per year.  The single-survey case of the peak-count method had the lowest power 

of all monitoring programs considered, with “successful” trend detection occurring in 

only 39% of the simulation trials. 

At survey frequencies of six or greater, the mean-count and L-AUC methods were 

able to achieve 80% power to detect r ≤ -0.04 within six to eight years (Table 8).  When 

only four surveys were conducted in a year, the mean-count method achieved 80% power 

to detect r ≤ -0.04 in 13 years, whereas the L-AUC method could not be applied with so 

few surveys per year.  The peak and T-AUC methods required as few as 16 years to 

achieve 80% power, but seven survey counts per year were required to achieve this. 

The mean-count and L-AUC methods were able to achieve 80% power to detect r 

≤ -0.04 at seven or more survey counts per year when detecting declines in escapement of 
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36% or greater over 10 years (Table 8).  Using the same power level, the peak-count and 

T-AUC methods were only able to detect 50% declines in escapement over 10 years at 

seven or eight survey counts per year.    

Sensitivity Analysis 

The power of all four monitoring methods depended on the level of interannual 

variability in run timing (τ in equation 21 and Table 6); however, the mean-count method 

maintained the highest power to detect r ≤ -0.04 at all levels of variability examined 

(Figure 6).  At five of more survey counts per year, the L-AUC method achieved levels of 

power only slightly less than the mean-count method.  The power of the mean-count and 

L-AUC methods to detect r ≤ -0.04 in the baseline, low variability, and no variability 

cases converged towards 100% at survey frequencies greater than or equal to five survey 

counts per year.  In the high variability case, the mean-count method was able to achieve 

up to 65% power to detect r ≤ -0.04, whereas the L-AUC never got above 50%.  The 

peak-count method required perfectly consistent run timing over all years (τ = 0) to 

achieve the level of power achieved by the mean-count method in the baseline scenario.  

The T-AUC method was unable to achieve greater than 60% power to detect r ≤ -0.04, 

even when run timing was held constant.   

The range of among-survey variability in observer efficiency examined, from v 

known with perfect information (Cd = Nd) to v = 0.96, had a relatively small effect on the 

power for all estimation methods to detect r ≤ -0.04 (Figure 7).  While all four methods 

experienced some decline in power when variability in observer efficiency was increased 

above the baseline level of 0.865 to 0.965, differences in power between the baseline 

scenario and the high variability scenario did not exceed 5.5% for any monitoring 
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program examined.  The gains in power achieved by eliminating among-survey 

variability in observer efficiency in the “no variability” scenario were also relatively 

small (< 6.6%).     

The power of all four estimation methods to detect r ≤ -0.04 was highly 

dependent on the “true” p value used to generate escapement dynamics (Figures 8-9).  

The effect of survey frequency on power depended on the value of p relative to that 

associated with the null hypothesis used in trend detection analysis (H0: r > -0.04 [p > 

-30%]).  When the null hypothesis was false (p = -40% and p = -60% in Figure 8), the 

power of all four estimation methods to detect r ≤ -0.04 (i.e., correctly reject H0) 

increased with increasing survey frequency.  As in the baseline scenario, the mean-count 

and L-AUC methods were able to achieve greater gains in power with increased survey 

frequency than the peak-count and T-AUC methods.  Conversely, when the null 

hypothesis was true (p = -20% in Figure 8), the power of all four methods to detect r ≤ 

-0.04 (i.e., incorrectly reject H0) decreased with increasing survey frequency. 

When the responsiveness of monitoring performance to changes in the “true” 

percent decline was examined over smaller increments of p, it was evident that the power 

of the mean-count and L-AUC methods to detect r ≤ -0.04 became increasingly 

responsive to changes in the “true” percent decline as survey frequency increased, as 

shown by the narrowing of the contour lines in Figure 9.  As noted in the methods 

section, I refer to a monitoring design as responsive when its power to detect r ≤ -0.04 

changes considerably in response to slight changes in the “true” percent decline.   In 

comparison, the peak-count and T-AUC methods were less responsive, displaying more 

gradual changes in power per unit change in the “true” percent decline.   

 43



 

The high responsiveness of the mean-count and L-AUC methods to the “true” 

percent decline increased the probability of correctly assessing a population as 

“threatened” when it really was threatened and reduced the probability of incorrectly 

assessing a population as “threatened” when it was not.  As an example of the latter case, 

when the true percent decline was only 20% over 10 years (i.e., not threatened), the 

mean-count method had a less than 10% probability of incorrectly assessing the 

population as “threatened” at five or more survey counts per year, while the peak-count 

and T-AUC method had greater than 10% probability (Figure 9).  The single survey case 

of the peak-count method was highly unresponsive to the “true” rate of decline.  This 

method had only a 60% probability of correctly assessing the population as “threatened” 

when the true percent decline was 60% over 10 years, and had a greater than 10% 

probability of incorrectly assessing the population as threatened when escapement 

remained constant (0% decline over 10 years).  

Survey Design Scenarios 

The power of the T-AUC method to detect r ≤ -0.04 was highly sensitive to the 

level of error in estimates of survey life, [CV( )] (Figure 10).  Perfect information about 

survey life (CV( )=0) was needed to obtain the high level of power achieved by the 

mean-count method in the baseline scenario (CV( )=0.20).  In the low error case 

(CV( ŝ ) = 0.10), the T-AUC method was unable to achieve more than 78% power at eight

survey counts per year.  In the high error case (CV( ŝ ) = 0.30), it achieved a maximum o

48% power at eight survey counts per yea

ŝ

ŝ

ŝ

 

f 

r.    

The power of all four monitoring methods to detect r ≤ -0.04 was dependent on 

the spacing of survey events within a year, although this was particularly true for the 
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mean-count and L-AUC methods (Figure 11).  For most combinations of survey 

frequency and estimation method, power to detect r ≤ -0.04 was greatest when surveys 

were spaced according to the baseline algorithm that increasingly clustered surveys 

around the historic peak date of spawning abundance when survey frequency was low 

(equations 22-24).  Between three and five survey counts per year, gains in power 

achieved by using the baseline algorithm over even spacing became smaller with each 

additional increment in survey counts per year due to increased similarity of survey 

spacing between the two designs.  At six or more survey counts per year, survey spacing 

was the same under the baseline and even spacing design, which resulted in comparable 

levels of power to detect r ≤ -0.04.  The random spacing design resulted in the lowest 

performance for all methods; however, the loss of power under the random spacing 

design was especially large for the mean-count and L-AUC methods.  In the baseline and 

even spacing designs, the mean-count and L-AUC methods achieved over 95% power to 

detect r ≤ -0.04 at six or more survey counts per year, while in the random spacing 

design, these methods were unable to achieve greater than 85% power at eight survey 

counts per year.  The reduced power of all four methods to detect r ≤ -0.04 under the 

random spacing design, compared to the baseline and even spacing designs, shows that 

monitoring performance is greatest when the number of days between surveys remains 

constant between years.      

Examination of alternative scenarios regarding among-year variability in survey 

frequency revealed that when survey frequency varied among years, power to detect r ≤ 

-0.04 tended to be limited by the lowest survey frequency in the time series.  While this 

effect was observed for all estimation methods, it was particularly notable for the mean-
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count and L-AUC methods, which achieved the greatest gains in power with increased 

survey frequency.  For example, when survey frequency varied between three and five 

counts per year, the power of each method to detect r ≤ -0.04 was similar to that achieved 

with a constant survey frequency of three, and when survey frequency varied between 

three and eight, power was similar to that achieved with a constant survey frequency of 

four.              

The power of all four estimation methods to detect r ≤ -0.04 increased as the 

number of years of escapement monitoring increased (Figure 12).  For a given survey 

frequency, larger gains in power associated with increased duration of monitoring would 

be accured to the mean-count and L-AUC methods, as shown by the narrower spacing of 

contour lines for these two methods in Figure 12. 

Discussion 

Performance of Alternative Estimation Methods 

The results of these power analyses suggest that a simple mean-count method is 

more suitable than commonly used visual survey estimation methods for monitoring coho 

salmon escapement for a variety of reasons (Table 9).  While all four methods that I 

examined estimated the “true” rate of population decline with relatively low bias, the 

mean-count method consistently achieved higher levels of precision (as reflected by 

greater power for trend detection) than peak-count, T-AUC, and L-AUC methods over a 

wide range of scenarios about true population parameters and survey design.  High 

precision is a desirable property for monitoring programs because it increases the 

probability of correctly estimating the true status of a population.  In the baseline 
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scenario, in which the true rate of decline was 40% over 10 years, the mean-count 

method was able to achieve 75% or greater power when detecting declines in coho 

escapement of 30% over 10 years with five or more survey counts per year.  In order for 

the power of the T-AUC method to be comparable to that of the mean-count method, 

survey life estimates must be constant among years.  Similarly, in order for the 

monitoring performance of the L-AUC method with a beta-distributed run timing model 

to be comparable to the mean-count method, observer efficiency estimates must remain 

constant, as was done in the baseline scenario.  In both of these cases, escapement 

estimates should be viewed as relative indices instead of absolute escapement estimates 

because survey life and observer efficiency vary annually.  While the two AUC methods 

may be more appealing for management purposes because they produce index values on 

a scale comparable to actual escapements, the application of a constant scalar to annual 

mean-count values would have the same effect.  The poor performance of the peak-count 

method when interannual variability in run timing dynamics was set at the baseline level 

suggests that this method is not suitable for monitoring coho salmon populations because, 

as I have shown, they generally display high interannual variability in run timing 

dynamics.   

The level of power achieved by the L-AUC method with a beta-distributed run 

timing model was only slightly less than that of the mean-count method; however, the L-

AUC method is limited to survey designs with five or more survey counts per year, which 

is not always possible for extensive survey programs (D. Peacock, Fisheries and Oceans 

Canada, Prince Rupert, BC, pers comm.).  The mean-count method compared to the L-

AUC method, the mean-count method is better suited for extensive monitoring of coho 
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salmon escapements given its higher levels of power, the simpler estimation procedure, 

and the smaller minimum survey frequency (as few as two surveys per year).   

This study differed from previous studies evaluating the utility of visual survey 

programs for monitoring Pacific salmon escapement in two important ways.  First, 

because I was interested in the utility of visual survey programs for monitoring time 

trends in escapement as opposed to estimating absolute escapement, I measured 

performance as the power of trend detection over a period of several years.  Previous 

studies have tended to focus on the ability of visual surveys to estimate absolute 

escapement within a single year (e.g. English et al. 1992, Hilborn et al. 1999).  However, 

when the objective of a monitoring program is to detect trends in escapement, which is 

the case for extensive survey programs described in the WSP, the accuracy of annual 

escapement estimates is not of direct interest.  Of greater interest is the ability of visual 

survey indices to detect biologically important trends in escapement in a time frame that 

is relevant to management.  This is not to say that absolute estimates of escapement are 

not important for other assessment purposes.  However, because I have chosen to focus 

on the extensive survey component of WSP monitoring plans, I am not interested in 

absolute estimates of escapement because they are not essential for detecting time trends 

in escapement.  

The second way in which this study differs from others is that I used a simulation 

modelling approach that allowed me to explicitly incorporate observation error in visual 

survey methods and interannual variability in coho run timing dynamics into the 

generation of count data, and to identify an estimation method that is reliable at detecting 

time trends under a wide range of scenarios about these factors.  Korman and Higgins 
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(1997) used Monte Carlo simulations to examine the utility of escapement data based on 

visual surveys to monitor changes in chinook salmon escapements caused by habitat 

alterations.  However, they did not explicitly model the individual components of a visual 

survey program.  Specifically, while their results showed that the power of visual survey 

methods to detect trends increased substantially with increased precision in escapement 

estimates, they were unable to provide insight about the specific components of the visual 

survey process that limited power (e.g. estimation method, survey frequency, spacing of 

surveys, variable observer efficiency).   

The usefulness of employing a simulation modelling approach to evaluate visual 

survey designs and estimation methods has been demonstrated for monitoring programs 

for migratory birds (Thomas 1996) and marine mammals (Adkison et al. 2003).  Hill 

(1997) used simulation modelling to determine the effect of survey frequency on the 

precision of AUC escapement estimates for Nechacko River chinook salmon; however, 

he focused on the escapement estimate derived from a single year and did not consider 

variable run timing dynamics or alternative estimation methods.  Korman et al. (2002) 

used a similar approach to mine to examine how survey design affected the reliability of 

an annual escapement estimate for a stock of winter-run steelhead (O. mykiss) returning 

to spawn in a single year.  To the best of my knowledge however, my evaluation of visual 

survey programs for monitoring coho salmon populations is the first to use simulation 

modelling to examine how interannual variability in salmon run timing dynamics and 

survey design affect the power of long-term trend detection for alternative estimation 

methods.    
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Sensitivity Analysis of Power 

Power is a function of effect size, sample size, sample variance, and the specified 

significance level (Peterman 1990).  Thus, the levels of power to detect r ≤ -0.04 

achieved by the alternative estimation methods are contingent on model assumptions 

made about these four factors.  My sensitivity analyses provided insight about how the 

first three factors affect the power of trend detection for coho salmon visual survey 

programs.  Power to detect r ≤ -0.04 was positively related to effect size and sample size, 

as evident from the increases in power associated with increasing rates of decrease in 

escapement and number of years of monitoring, respectively.  Positive relationships 

between effect size and power, and sample size and power, are well known (Zar 1999), 

and have been demonstrated in previous power analyses of fisheries monitoring programs 

(Peterman and Bradford 1987, Maxwell and Jennings 2005).  Changes in power 

associated with different levels of variability in run timing, survey frequency, survey 

spacing, precision in survey life estimates, and variability in observer efficiency can be 

explained in terms of the effect these variables have on sample variance, which is 

negatively related to power (Peterman 1990).   

The varied response of the peak-count, mean-count, T-AUC, and L-AUC methods 

to the level of variability in run timing is a function of the assumptions required by each 

estimation method with regard to run timing.  The peak-count method utilizes 

information from only one survey event each year (i.e., the survey in which the highest 

count value was obtained) and therefore does not incorporate any information about the 

shape of the run timing curve.  Instead, it relies on the assumption that the ratio of the 

peak-count to total escapement is constant across years.  My results show that this 
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assumption is weakly supported for coho salmon stocks.  Visual survey data used to 

parameterise run timing dynamics showed high interannual variability in both the timing 

of fish presence and the shape of the observed run timing curve.  The high sensitivity of 

monitoring performance of the peak count method to the level of variability in simulated 

run timing dynamics further supports this conclusion.  While increases in survey 

frequency produced slight improvements in the power of the peak-count method by 

increasing the probability of observing the “true” peak abundance, variability in the width 

of the run timing curve and the number of modes limited performance of peak-counts.  In 

contrast, the mean-count method incorporates all available information on the shape of 

run timing curves into the escapement index by using data from all surveys conducted in 

a year and is thus able to achieve large gains in power with increased survey frequency.   

The T-AUC method also uses information from all survey events conducted in a 

year; however, error in survey life estimates limited its ability to achieve the large gains 

in power associated with increased survey frequency that were observed for the mean-

count method.  Even when variability in run timing was low, the T-AUC method was 

unable to achieve greater than 65% power with the level of error in survey life estimates 

assumed in the baseline scenario [CV( ) = 0.20].  When error in survey life estimates 

was low [CV( ) = 0.10] or absent [CV( ) = 0], increased survey frequency had a 

positive effect on power.  Hill (1997) also found that when errors in survey life were 

relatively low (i.e., survey life treated as a random normal variable with mean =10 days, 

standard error = 0.5 days, and CV[ ] = 0.13), the reliability of annual escapement 

estimates derived using the T-AUC method increased with increasing survey frequency.  

The lower level of error assumed by Hill (1997), compared to my baseline scenario, was 

ŝ

ŝ ŝ

ŝ
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because he was simulating a monitoring program that obtained year- and stream-specific 

estimates of survey life. 

The low sensitivity of monitoring performance for all estimation methods to 

among-survey variability in observer efficiency is likely a result of the small differences 

in variability among the four scenarios.  For each scenario, I assumed that observation 

error followed a Poisson distribution with a constant rate parameter set at the mean 

observer efficiency value estimated from Black Creek observer efficiency studies (Irvine 

et al. 1992).  While varying the mean observer efficiency between different scenarios 

allowed me to affect the variance of the Poisson distribution, the overall change in the 

coefficient of variation decreased as daily abundances increased.  The assumption of a 

Poisson error distribution for generating count data is highly uncertain.  Unfortunately, 

the limited data available on between-survey variability for coho salmon and the 

challenge of separating observation errors from process errors when calculating observer 

efficiency made it necessary for me to assume an error structure.  A Poisson distribution 

was used because it is commonly associated with count data (Hilborn and Mangel 1997).  

Korman et al. (2002) also assumed observation error followed a Poisson distribution for 

visual surveys of spawning steelhead, while Hill (1997) randomly sampled from 

empirically-derived estimates of observation error for chinook salmon visual surveys.  In 

my study, the equal sensitivity of all estimation methods to variability in observer 

efficiency suggests that, even if a Poisson distribution is not suitable, the approach I have 

taken is sufficient for comparing the relative performance of the four methods.   

While escapement monitoring programs should be able to reliably detect 

situations of concern, such as a rate of population decline that would result in a stock 
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being assessed as “threatened” under SARA, they should also minimize the probability of 

falsely detecting these situations.  My sensitivity analysis of the response of power to 

changes in the “true” percent decline showed that the mean-count and L-AUC methods 

performed better than the other two methods using both criteria.  While the power of the 

mean-count and L-AUC methods to detect the critical SARA rate of decline increased 

quickly as the “true” rate of percent decline increased, power also decreased quickly as 

the “true” rate of decline decreased, resulting in a lower probability of false positives 

(incorrectly rejecting H0: r > -0.04) for these two methods than for the peak-count and T-

AUC methods.  The performance of the single survey case of the peak-count method was 

especially poor using the above criteria.  Even when escapement was constant, this 

monitoring design incorrectly "detected" the critical SARA rate of decline in greater than 

10% of simulations. 

Survey Design Scenarios 

The requirement for highly precise estimates of survey life in order for the T-

AUC method to achieve high power in trend detection analysis is consistent with 

previous studies showing that the accuracy of annual AUC escapement estimates is 

highly dependent on both year- and stream-specific estimates of survey life (English et al. 

1992, Irvine et al. 1992, Bue et al. 1998).  Unfortunately, the cost and effort requirements 

of survey methods used to estimate this parameter can be high.  Previously applied 

methods for estimating survey life for Pacific salmon include tagging programs and 

enumeration fences (English et al. 1992, Bue et al. 1998), capture-recapture studies 

(Manske and Schwarz 2000) and daily observations (Van den Berghe and Gross 1986).   
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If year- and stream-specific estimates of survey life are not used for the T-AUC 

method, the costs of all four estimation methods are expected to be comparable.  In 

addition to fixed costs associated with operating visual survey field programs that are 

independent of survey frequency (e.g. administration, data analysis and equipment), there 

are variable costs linearly related to survey frequency (e.g., field personnel hours, travel 

expenses). The requirement for an additional field program aimed at estimating survey 

life for the T-AUC method would greatly increase both variable and fixed costs for this 

method, making it less attractive for extensive monitoring from a budgetary point of 

view.  While the increase in cost incurred in this case would be dependent on the method 

used to estimate survey life, most methods are highly effort-intensive, requiring field 

personnel to be present in the survey area on a daily basis while fish are present.  Irvine et 

al. (1992) found that, while each visual survey count required only two person-days (i.e,, 

10 person-days for a survey frequency of five counts per year), the estimation of observer 

efficiency and survey life required an additional 22 person-days.  Equipment costs, such 

as radio telemetry gear or enumeration fences, would further increase budgets for 

programs estimating survey life annually. 

When year- and stream-specific estimates of survey life are not available, there 

are two ways in which survey life estimates can be extrapolated between years and 

streams (Perrin and Irvine 1990).  The first approach is the one assumed in the baseline 

scenario, in which a year-specific survey life value is estimated for a single stream and 

then applied to multiple streams within that year.  The second approach is to apply a 

constant survey life estimate to all years in a time series.  While the second approach of a 

constant survey life would reduce the accuracy of annual escapement estimates by 
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ignoring interannual variability in that parameter, the high levels of power to detect r ≤ 

-0.04 achieved by the T-AUC method when survey life was held constant shows that this 

approach provides a more reliable index of escapement than the first approach, which 

was used in the baseline case.  In this case however, the T-AUC method would serve as 

only a relative index of escapement, providing the same level of information as the mean-

count method. 

The evaluation of alternative survey design scenarios regarding the spacing of 

surveys within a year and variability in survey frequency across years demonstrates the 

importance of establishing a standardized sampling protocol that can be applied 

consistently over multiple years.  In order for the mean-count and L-AUC methods to 

achieve the high levels of power for trend detection seen in the baseline scenario, both the 

spacing of surveys and the frequency of surveys should remain constant between years.  

The simple algorithm for spacing surveys used in the baseline scenario (equations 22 -

24), in which survey dates were increasingly clustered around the historical peak date of 

spawning abundance at low survey frequencies (3 – 5 surveys per year), tended to 

produce higher levels of power at these frequencies than when surveys were spaced 

evenly over the historic spawning period.  While the particular spacing design that 

maximizes power would likely differ between streams due to varying lengths of 

freshwater residence, the advantage of generally clustering surveys near the historic peak 

date of spawning abundance is expected to apply to all streams.  The decreased levels of 

power for trend detection achieved by the mean-count and L-AUC methods when survey 

dates were spaced randomly shows that, in order for these methods to achieve maximum 

levels of power, the number of days between surveys should be held constant among 
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years.  These results have implications not only for the design of coho visual survey 

programs, but also for the application of these methods to historic time series of coho 

count data that have not followed a consistent sampling protocol.  When inconsistencies 

in survey spacing and frequency exist within a time series, the gains in power achieved 

by the mean-count and L-AUC methods compared to the other two methods will be 

reduced.  However, the mean-count and L-AUC methods still achieved higher power than 

the other two estimation methods in all survey design scenarios considered. 

While my results are specific to coho spawning aggregations from the interior 

Fraser River and the east coast of Vancouver Island, British Columbia, the sensitivity 

analyses and the examination of alternative survey design scenarios can be used to make 

inferences about the suitability of alternative estimation methods for other species of 

Pacific salmon.  For example, pink and sockeye salmon tend to have relatively low 

interannual variability in run timing dynamics (Burgner 1991, Heard 1991), and thus, the 

peak-count method may be able to achieve higher levels of power in trend detection than 

was observered for coho salmon.  Conversely, chum salmon (O. keta) are similar to coho 

salmon in their strong dependence on environmental cues for initiating upstream 

migration (Salo 1991), potentially making the peak-count method less suitable.  While 

the extrapolation of survey life estimates between multiple streams within a single year 

had a strong negative effect on the power of the T-AUC method when CV( ) was 

assumed to be 0.2, which I based on coho salmon populations on the east coast of 

Vancouver Island, this may not be the case for streams that display high regional 

consistency in survey life within a year, resulting in a lower CV( )  value.    

ŝ

ŝ
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Establishing Benchmarks for Extensive Surveys 

My results suggest that a goal of obtaining accurate estimates of absolute coho 

salmon escapement is unrealistic given the limited information available from extensive 

survey programs. Escapement estimates produced by the T-AUC method were unreliable 

and the L-AUC method was not able to estimate absolute escapement for fewer than five 

surveys per year, or to estimate observer efficiency as part of the maximum likelihood 

procedure.  While the application of benchmarks based on absolute escapement are 

commonly employed for salmon management, the development of rate-based 

benchmarks, such as the rate of change in escapement over time, or relative benchmarks, 

such as the mean-count over all surveys in a year, may be more suitable for the extensive 

survey component of WSP monitoring plans.  Through the application of a Bayesian 

approach to trend detection analysis, I have shown how uncertainty in escapement 

monitoring can be incorporated into extensive monitoring programs using rate-based 

benchmarks.  The calculation of a probability distribution to summarize information 

about estimated rates of change in escapement provides decision-makers with a simple, 

visual representation of uncertainty in estimated rates of change and encourages 

discussions about the biological relevance of the results (Wade 2000).  For example, a 

person presented with the two plots in Figure 4 can easily infer that the “best-estimate” of 

r (the r value with the highest probability given the data) in plot A is more certain than 

that in plot B, as shown by the narrower distribution for plot A.  An alternative approach 

to using rate-based benchmarks would be to establish benchmarks in the units of a 

relative index, such as the mean-count.  Relative indices based on peak-counts are 

currently used for monitoring by some management agencies (e.g. Geiger and McPherson 

2004); however, to my knowledge, the mean-count has not been applied for this purpose. 
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In this study, I focused on the ability of visual survey methods to monitor 

escapement within a single spawning stream.  However, given that the primary purpose 

of extensive visual survey programs, as identified the WSP, is to examine distribution 

and consistency in escapement trends throughout a region by monitoring a subset of 

streams within a large geographic area, future research is needed to develop a means of 

combining data from several streams into a single performance measure.  There are two 

ways in which the approach taken here could be adapted for application to extensive 

survey programs that monitor multiple streams within a CU.  The first is to develop a 

composite index that represents all streams monitored (e.g. the sum of coho salmon peak-

counts over all streams in a year).  For example, composite indices of several vulnerable 

species have been shown to have a greater power to detect trends than individual species 

indices for the English bottom trawl survey when all composite species displayed similar 

trends (Maxwell and Jennings 2005).  Composite indices of peak-counts from several 

streams are currently used to monitor escapement relative to escapement goals in 

southeast Alaska (Geiger and McPhearson 2004).  The second approach is to apply 

monitoring criteria consisting of three components (Peterman 2004): (i) a biologically 

significant rate of decline, (ii) a statement about the proportion of spawning aggregations 

within a CU that have rates of decline greater than the biologically significant rate of 

decline (e.g. 3 out of 10 spawning aggregations), and (iii) a statement about the 

probability of component (ii).  Using this approach, an example benchmark for assessing 

status could be “less than a 40% probability that more than 3 out of 10 spawning 

aggregations within a CU are declining at a rate greater than 30% over 10 years”.   
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The number of years of escapement monitoring and the significance level used for 

hypothesis testing should be selected based on the specific objectives of individual 

escapement monitoring programs.  The two additional performance measures I examined, 

the minimum detectable “true” rate of decline with 80% power and the number of years 

of monitoring required to achieve 80% power, demonstrate alternative options for 

communicating the results of power analyses that explicitly highlight trade-offs between 

power and the minimum detectable effect size or sample size.  For example, if the goal of 

a visual survey monitoring program is to detect the critical SARA rate of decline in 10 

years with 80% power, my results indicate that the mean-count and L-AUC methods are 

able to do so for rates of decline of 36 % or higher, while the other two methods require 

rates of at least 50%.  The latter two methods would be unacceptable because they require 

at least a 50% decline in escapement before achieving a probability of 80% or greater of 

detecting the critical SARA rate of decline.  If the goal of a monitoring program is to 

detect the critical SARA rate of decline with 80% power, my results indicate that the 

mean-count and L-AUC methods require as little as six or seven years of escapement 

monitoring to do so, while the other two methods require between 15 and 17 years.  Once 

again, the mean-count and L-AUC methods are obviously preferable.     

Limitations 

My use of existing coho visual survey data sets to parameterize run timing 

dynamics for this study was somewhat problematic due to the large portion of the run 

timing curve not observed during surveys.  The data sets I used had between five and ten 

survey counts per year, making it necessary to assume that count values between surveys 

could be described by the estimated mixture model.  Given the available data however, 
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there was no better alternative.  An additional complication arises from variable survey 

frequency among data sets.  Presumably, data sets with only five count values would be 

more likely to miss bimodal run timing distributions than data sets with ten count values.  

Fortunately, the data sets used to parameterize run timing tended to have high survey 

frequencies.  Only five out of 33 data sets (15%) were limited to five count values per 

year, while 18 data sets had eight or more count values per year (55%).  Finally, the time 

series of visual survey data sets I used to parameterize interannual variability in run 

timing was restricted to three years for each stream.  The use of a time series of daily 

coho migration past an enumeration fence may have addressed some of these concerns.  

Daily fence counts would have allowed for the entire run to be observed, thus 

standardizing the proportion of the run observed among years.  Furthermore, some coho 

enumeration fences have been operated over several consecutive years, which would 

have increased the length of the time series.  However, the tendency of fish to hold in 

pools below fences and wait for environmental cues before migrating past the fence could 

potentially increase the number of modes in run timing distributions above what would 

occur in an unfenced stream.  If this was the case, the use of fence data to parameterise 

run timing dynamics could overestimate interannual variability because visual surveys 

are usually conducted on streams without enumeration fences.  Ideally, a time series of 

visual survey data sets from an unfenced stream with almost daily surveys should be used 

to parameterize run timing dynamics. However, such data sets are rare.   

The small number of counts within each data set restricted the biological 

information on run timing dynamics that could be extracted from the maximum 

likelihood models.  While the assumptions of constant survey life and proportion 
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parameter values in the mixture run timing model are not expected to be biologically 

realistic, these assumptions were necessary given the small number of counts in visual 

survey data sets.  Because the primary purpose of fitting a run timing model to the count 

data was to generate plausible levels of interannual variability in coho salmon run timing 

dynamics, a biologically realistic model was not required, as long as the selected model 

adequately represented interannual variability in coho salmon run timing dynamics, 

which the restricted mixture model appeared to do. 

While my simulation modelling approach allowed for a detailed examination of 

how uncertainty in coho run timing dynamics and visual survey count data affected the 

relative performance of alternative estimation methods, all models are approximations of 

the true state of nature, and the results of this study should be interpreted accordingly.  

Simulation models are a useful tool for selecting survey designs that help achieve specific 

monitoring objectives; however, empirical studies are necessary to ensure that the results 

produced by the model are consistent with reality.  In order to address this discrepancy 

for visual surveys of salmon escapements, long-term monitoring programs should be 

established in which visual survey data are collected from streams, in addition to using an 

alternative means of estimating annual escapement, such as mark recapture methods or 

resistivity counters.  By comparing escapement trends observed for the absolute 

escapement time series with those observed for the visual survey time series, the accuracy 

and power of trend detection for alternative estimation methods could be better assessed.    

Extensions 

The application of a hierarchical Bayesian model (HBM) to run timing parameter 

estimation (Adkison and Su 2001, Su et al. 2001) would likely increase the number of 
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parameters that can be estimated for the mixture run timing model.  Adkison and Su 

(2001) found that escapement estimates of Alaskan pink salmon populations obtained 

using a HBM formulation for the L-AUC method were more reliable than separate 

L-AUC estimates for each year.  The HBM allowed the estimation procedure to borrow 

information for years with sparse survey data from years with substantial data, which was 

well suited for Alaskan pink salmon populations displaying high interannual consistency 

in run timing (Su et al. 2001).  While high interannual variability in coho run timing 

dynamics as a result of precipitation patterns may limit the utility of a HBM that assumes 

similar run timing parameters among years, there may be regional similarities in run 

timing dynamics that would allow for a spatially explicit HBM.  For example, run timing 

parameter estimates for neighbouring streams with similar rainfall patterns could 

potentially improve escapement estimates for each stream within a single year.         

The apparent relationship between the timing of precipitation and coho arrival 

into spawning streams lends itself to the development of coho run timing models that 

relate fish arrival to environmental variables.  Incorporating such models into the 

simulation framework I have developed would allow for the evaluation of systematic 

sampling designs that are based on observed environmental conditions.  For example, it 

may be found that surveys conducted immediately after a high intensity rainfall event are 

more useful than surveys conducted during an extended period of no rain.  This type of 

information could be used to increase the efficiency of extensive visual survey programs 

by maximizing the amount of information available on interannual run timing dynamics 

for a given survey frequency.   
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Another useful extension of the simulation framework would be the expansion of 

the current single-stock model to a multi-stock model, in which individual populations 

with co-varying escapement and run timing dynamics are randomly selected for 

monitoring.  The development of a multi-stock model would allow for the evaluation of 

alternative multi-stock performance measures, as discussed above, as well as explicit 

consideration of the effects of different spatial and temporal allocation of survey effort on 

the power of trend detection within a CU.  For example, the question of “what is the 

optimal allocation of effort between the number of streams monitored with a given 

method and the frequency applied to each stream?” could be examined for individual 

CUs.  This type of information would be useful for the development of WSP monitoring 

plans aimed at maximizing the power of trend detection while minimizing survey costs.      

Another priority for future research is an evaluation of visual survey methods with 

regard to the fourth requirement of WSP monitoring plans described in Chapter 1, which 

asserts that all data collected should be relevant to the provision of management advice.  

In order to meet this requirement, clear management actions should be established to 

ensure that appropriate management or conservation actions are taken when the status of 

a CU falls below pre-specified benchmarks.  Given that the level of information available 

for management decisions regarding a CU will be partially dependent on the level of 

effort allocated to visual surveys, it follows that proposed alternative designs for 

extensive monitoring programs should be evaluated as part of a larger management 

system that includes data collection, stock assessment, management actions based on 

stock assessment results, and the responses of the fishery and stock dynamics to 

management decisions (de la Mare 1998, Cooke 1999).  The evaluation approach 
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presented in the current chapter could be used as one component of such a larger closed-

loop policy simulation framework (Walters 1986) that evaluates the ability of alternative 

visual survey methods to achieve management objectives.  The development of a closed-

loop simulation procedure would allow for the comparison of management systems 

relying on relative indices of escapement, as provided by the mean-count method, with 

those that derive absolute estimates of escapement using AUC methods.    

Conclusions 

Simulation modelling provides a useful tool for evaluating the ability of 

alternative visual survey estimation methods and survey designs to detect changes in 

salmon escapement.  The results of my Monte Carlo simulations show that when trend 

detection is the primary goal of escapement monitoring, as is true for extensive survey 

programs in the WSP, a simple mean-count method could be applied broadly to monitor 

rates of change for coho salmon escapements.  Despite high interannual variability in 

coho run timing dynamics and variable observer efficiency, the mean-count method 

provides a higher level of confidence in trend detection than peak-count, T-AUC and L-

AUC methods when survey dates are constant between years.  The success of the mean-

count method can be attributed to its simple, data-based estimation procedure that 

requires no assumptions about the shape of the run timing curve or the length of time fish 

remain in the survey area.   

The power of trend detection for the mean-count method increased with increased 

survey frequency within a year.  While the level of effort afforded to visual survey 

programs will depend on trade-offs made by fisheries managers between program costs 

and the level of detail required to assess status of fish populations relative to management 
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and conservation goals, applying a mean-count method and maintaining constant survey 

dates among years will maximize the power of trend detection for a given level of effort. 

 65



 

Tables  

Table 1 Alternative run timing models used in model selection analysis.   The 
functions FN and FB are defined in equations (1-2).  Symbols defined in 
Table 2. 

Normal run timing model 
Parameters 
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Mixture run timing model 
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Table 2 Definition of symbols used to describe run timing models in Table 1.  

Symbol Definition 
 
Index variables 
f Survey index (f = 1, 2, … fmax surveys) 
fmax Total number of surveys conducted on a given stream within a year 
d Day (from annual calendar; January 1 = day 1)  
n Total number of days of fish presence in survey area 
 
Observed data 
Cd Number of fish counted within a single stream on day d  
CT Total number of fish counted within a single stream over all surveys in a 

year 
 
Predicted states 
Normal and beta models 

dÂ   Cumulative number of fish arriving by survey day d 

dD̂  Cumulative number of fish departing by survey day d 

dĈ  Predicted number of fish counted on survey day d 
Mixture models 

d
1'Â  Cumulative number of fish from first component model arriving by d 

d
2'Â  Cumulative number of fish from second component model arriving by d 

d
1'D̂  Cumulative number of fish from first component model departing by d 

d
2'D̂  Cumulative number of fish from second component model departing by d 

 
Run timing model parameters  
Normal model 
m Mean date of arrival (from annual calendar) 
σ Standard deviation of arrival date 
s Stream life (days) 
Beta model 
α Beta shape parameter 1 
β Beta shape parameter 2 
Mixture models 
m'1 Mean date of arrival for first component model 

k Number of days that the mean date of arrival for second component    
model is offset from that of the first component model 

σ'1 Standard deviation of arrival for first component model 
σ'2 Standard deviation of arrival for second component model 
z Proportion of counted fish belonging to first component model 
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Table 3 Summary of survey life estimates collected from the literature (Location 
codes: AK = Alaska, BC = British Columbia, OR = Oregon, WA = 
Washington State).    

Stream Location Year Estimate Source  
Spring Creek OR 1952 11.5 Perrin and Irvine 1990 
Flynn Creek OR 1966 13.1 Perrin and Irvine 1990 
Oregon streams OR 1980 11.0 Perrin and Irvine 1990 
Harris Creek WA 1980-3 10.0 Perrin and Irvine 1990 
Deer Creek WA 1981 9.2 Perrin and Irvine 1990 
Eagle River BC 1982 12.5 Perrin and Irvine 1990 
Salmon River BC 1982 15.0 Perrin and Irvine 1990 
Adams River BC 1982 10.0 Perrin and Irvine 1990 
Coldwater River BC 1982 12.5 Perrin and Irvine 1990 
Keogh River BC 1985 13.0 Perrin and Irvine 1990 
Little Qualicum BC 1986 13.3 Perrin and Irvine 1990 
French Creek BC 1987 13.3 Irvine et al. 1992 
Black Creek BC 1987 16.6 Irvine et al. 1992;  

English et al. 1992 
Trent River BC 1987 7.1 Perrin and Irvine 1990 
French Creek BC 1988 16.7 Irvine et al. 1992 
Black Creek BC 1988 8.0 Irvine et al. 1992;  

English et al. 1992 
Trent River BC 1988 9.6 Perrin and Irvine 1990 
French Creek BC 1989 15.5 Irvine et al. 1992;  

English et al. 1992 
Black Creek BC 1989 15.0 Irvine et al. 1992;  

English et al. 1992 
Chase River BC 1989 16.3 Manske and Schwarz 2000 
French Creek BC 1990 20.3 English et al. 1992 
Black Creek BC 1990 15.0 English et al. 1992 
Chase River BC 1990 10.4 Manske and Schwarz 2000 
All streams, OR OR - 11.3 Perrin and Irvine 1990 
Clear Creek AK 1996 13.8 Hetrick and Nemeth 2003 
Mean   12.8  
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Table 4 Results of model selection using Akaike’s Information Criterion (AIC) to 
select the “best” of five candidate run timing models for describing coho 
salmon visual foot survey data sets. 

Candidate 
run timing model 

Number of data sets for which 
model was the “best-fit” 

Normal    1 (3%) 
Beta    7 (21%) 
Mixture (z = 0.3)  10 (31%) 
Mixture (z = 0.5)    7 (21%) 
Mixture (z = 0.7)    8 (24%) 
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Table 5 Simulation parameters for the baseline scenario.  The symbol “++” 
indicates that sensitivity analyses were conducted on the parameter value (see 
Tables 6 – 7). 

Parameter Value Description 
 
True population parameters 
   
tmax 10 ++ Number of years in time series 
E0 500 Initial escapement in year 0 
p - 40 % ++ Percent change in escapement over tmax years 
r - 0.057 ++ Annual rate of population growth associated with p 
m 301.8 Stream-specific mean date of arrival (annual days) 
k 12.4 Stream-specific distance parameter 
σ'1 4.7 Stream-specific standard deviation of arrival timing for first 

curve in mixture model 
σ'2 5.7 Stream-specific standard deviation of arrival timing for 

second curve in mixture model 
τm 7.1 ++ Standard deviation of year-specific random effect for m 
τk 8.1 ++ Standard deviation of year-specific random effect for k 
τσ1 2.3 ++ Standard deviation of year-specific random effect for σ1

τσ2 3.0 ++ Standard deviation of year-specific random effect for σ2

s 12.8 Survey life for fish arriving on the median arrival date 
z 0.3 Proportion parameter for the mixture run timing model 
v 0.865 ++ Average “true” observer efficiency 
 
Survey parameters 
 
fmax (1, 2, 3, … 8) ++ Number of surveys per year 
v̂  0.865 Estimated observer efficiency 
CV( ) ŝ 0.2 ++ Co-efficient of variation of survey life estimate 
µs 12.8 Mean of prior distribution on s 
 
Trend detection parameters 
 
p* - 30% Critical percent change in escapement over tmax years 
r* - 0.04 Critical annual rate of population growth associated with p* 

 

 70



 

Table 6 Alternative scenarios about “true” population dynamics tested in 
sensitivity analyses. 

Variable Scenarios Values 
Variability in run timing 
τ = {τm, τk, τσ1, τ σ2} 
 

None 
Low 
Baseline 
High 

τ = (0, 0, 0, 0) 
τ = (2.5, 1.4, 2.6, 2.9) 
τ = (6.7, 5.6, 2.9, 2.4) 
τ = (9.4, 8.9, 4.0, 1.0) 

Variability in observer efficiency 
 

None  
Low 
Baseline 
High 

see text 
v = 0.76 
v = 0.86 
v = 0.96 

Percent population change over 10 years  p = (0, -2, -4, … -60 %) 
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Table 7 Alternative survey design scenarios tested in sensitivity analyses.  The 
function U(g,h) denotes the random generation of a number from a 
uniform distribution with a lower bound of g and an upper bound of h.   

Variable Scenarios Values 
Error in survey life estimate None 

Low 
Baseline 
High 

0)ˆ(CV =s  
1.0)ˆ(CV =s  
2.0)ˆ(CV =s  
3.0)ˆ(CV =s  

Survey spacing Even 
Baseline 
Random 

 
See text 

Survey frequency Constant 
High variability 
Moderate variability  
Low variability / low frequency 
Low variability / high frequency  

fmax = (1, 2, 3 … 8) 
fmax = U(3, 8) 
fmax = U(4, 7) 
fmax = U(3, 5) 
fmax = U(3, 6) 

Number of years monitored  tmax =  (5, 6, 7, … 20) 
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Table 8 Minimum number of years required to detect a 30% decline in 
escapement over 10 years with 80% power (top) and minimum detectable 
“true” rate of decline when 80% power is required for trend detection 
analysis (bottom) in the baseline scenario. 

 Survey frequency 
 1 2 3 4 5 6 7 8 
 Minimum number of years 
Peak > 20 20 19 19 19 18 16 16 
Mean - 20 16 13 11 8 7 6 
Trapezoidal - - 19 18 17 17 16 16 
Likelihood - - - - 12 8 7 7 
 Minimum detectable “true” percent of decline (% over 10 years) 
Peak > 60 > 60 58 54 54 52 50 50 
Mean > 60 > 60 50 44 42 38 36 36 
Trapezoidal - - 56 52 50 50 50 50 
Likelihood - - - - 44 40 36 36 
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Table 9 Summary of monitoring performance, data requirements, and recommended features for each estimation method. 

 
 
 

Method 

Max. 
power to 

detect  
r ≤ -0.04a  

Absolute or 
relative 

escapement 
estimates 

Min. No.  
of 

Surveys 
per Year

 
Annual 

estimates of 
OEb and SLc

Measure of 
uncertainty 
in estimated 
escapement  

 
 
 
Recommended features 

Peak-
count 

56 % Relative 1 Not required No (unless 
replicate 
surveys 
conducted) 

- Not suitable for stocks with high interannual 
variability in run timing  

- Maintain a constant number of days between 
surveys each year 

- Cluster surveys around historical mean peak 
date when ≤ 5 surveys per year conducted 

Mean-
count 

99 % Relative 2 Not required No (unless 
replicate 
surveys 
conducted) 

- Maintain a constant number of days between 
surveys each year 

- Cluster surveys around historical mean peak 
date when ≤ 5 surveys per year conducted 

T-AUC 60 % Absolute 3 Required No  
(unless 
replicate 
surveys 
conducted) 

- Use year- and stream-specific estimates of SL 
and OE 

- Maintain a constant number of days between 
surveys each year 

- Cluster surveys around historical mean peak 
date when ≤ 5 surveys per year conducted 

L-AUC 96 % Absolute 5 (or 
more) 

Depends on 
number of 
surveys used 

Yes (but 
dependent on 
prior 
information 
about OE and 
SL) 

- Use estimates of SL for prior information 
- Use stream- and year-specific estimates of OE 
- Maintain a constant number of days between 

surveys each year 
- Cluster surveys around historical mean peak 

date when 5 surveys per year conducted 
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a At eight survey counts per year when the true r value is -0.057 over 10 years  b OE = observer efficiency  c SL = survey life 
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Data sources: Observed spawner abundance data provided by Fisheries and Oceans Canada, Interior Fraser 
River and South Coast stock assessment divisions. Daily precipitation data was taken from Environment 
Canada's online database (http://climate.weatheroffice.ec.gc.ca/climateData/canada_e.html) 
 

Figure 1 Daily precipitation levels (dashed lines) plus observed (dots) and predicted 
(solid lines) spawner abundance from visual survey counts for coho 
salmon visual survey data sets from Blue River and Cook Creek, North 
Thompson Watershed, BC and Bonnell Creek, Vancouver Island, BC. 
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Data source: Jim Irvine, Fisheries and Oceans 
Canada (unpublished data) and Irvine et al. 1992 
 

Figure 2 Predicted relationship (solid line) between abundance estimates from 
electrofishing ("true" abundance) and the number of coho estimated 
during visual foot surveys for Black Creek, Vancouver Island between 
1987 and 1993.  Multiple surveys (black dots) were done in each year.  For 
comparison, the 1:1 line is also shown (dashed line). 

 

 76



 

Start

Generate a “true” escapement time 
series for a threatened population with 

a 40% decline in escapement 
over 10 years

Select survey dates for year t with 
randomly chosen start date

Generate count data for each survey in year 
t with observation error

Use count data to estimate escapement 
index for year t for each of the four 

estimation methods

Assess population status as “threatened” (escapement 
has declined = 30% over 10 years) or “not threatened”
based on estimated escapement indices for each of the 

four estimation methods

Generate seasonal run timing 
dynamics with random variation 
for each year t (t = 1, 2, … 10)

End

Calculate the probability of 
correctly assessing population 

status as “threatened”

"True"
Population 
Dynamics

Survey
Model

Escapement
Estimation

Trend
Detection

Loop over 
1000 trials

Loop over 
10 years

 

Figure 3 Flow diagram for Monte Carlo simulation procedure used to estimate the 
statistical power of alternative estimation methods to detect a 30% decline 
in escapement over 10 years (r ≤ -0.04).   
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Figure 4 Two examples of approximate marginal posterior distributions for r constructed using a sampling-importance-
resampling (SIR) algorithm (Appendix C).  The dashed line shows the critical r value associated with a 30% decline 
in escapement over 10 years, r*, and the dotted line shows the true r value used in the baseline scenario which 
corresponds with a 40% decline over 10 years.  The probability assigned to the null hypothesis r > r* [P(r > r*)] is 
the proportion of simulations for which the predicted rate of decline is less steep than r* (shaded regions on plots A 
and B).  Plot A represents a trial for which trend detection is “successful” [P(r > r*) = 0.03], while plot B represents a 
trial for which trend detection is “not successful” [P(r > r*) = 0.86].     
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Figure 5 Power to detect r ≤ -0.04 as a function of survey frequency for each of the 

four estimation methods in the baseline scenario.  The mean-count, 
trapezoidal AUC, and likelihood AUC methods require minimum survey 
frequencies of 2, 3, and 5 surveys per year, respectively. 
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Figure 6 Sensitivity of power to detect r ≤ -0.04 to the level of interannual 
variability in run timing dynamics, τ (Table 6), for each of the four 
estimation methods. 
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Figure 7 Sensitivity of power to detect r ≤ - 0.04 to the level of among-survey 
variability in observer efficiency, as determined by the value of v (Table 
6), for each of the four estimation methods. 

 81



 

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Peak Count

- 60%

- 40%

- 20%

1 2 3 4 5 6 7 8 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Mean Count - 60%

- 40%

- 20%

1 2 3 4 5 6 7 8

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Trapezoidal AUC

- 60%

- 40%

- 20%

1 2 3 4 5 6 7 8 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Likelihood AUC - 60%

- 40%

- 20%

1 2 3 4 5 6 7 8

Survey Frequency

Po
w

er
Po

w
er

Survey Frequency

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Peak Count

- 60%

- 40%

- 20%

1 2 3 4 5 6 7 8 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Mean Count - 60%

- 40%

- 20%

1 2 3 4 5 6 7 8

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Trapezoidal AUC

- 60%

- 40%

- 20%

1 2 3 4 5 6 7 8 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Likelihood AUC - 60%

- 40%

- 20%

1 2 3 4 5 6 7 8

Survey Frequency

Po
w

er
Po

w
er

Survey Frequency

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Peak Count

- 60%

- 40%

- 20%

1 2 3 4 5 6 7 8 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Mean Count - 60%

- 40%

- 20%

1 2 3 4 5 6 7 8

2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Trapezoidal AUC

- 60%

- 40%

- 20%

1 2 3 4 5 6 7 8 2 4 6 8

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0 Likelihood AUC - 60%

- 40%

- 20%

1 2 3 4 5 6 7 8

Survey Frequency

Po
w

er
Po

w
er

Survey Frequency
 

Figure 8 Sensitivity of power to detect r ≤ - 0.04 to the “true” percent change in 
escapement (-20%, -40%, or -60% decline over 10 years) for each of the 
four estimation methods.   
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Figure 9 Power (contour lines) to detect r ≤ -0.04 (30% decline in escapement over 
10 years; p ≤ - 30%) as a function of the “true” percent change in 
escapement and survey frequency within each year for each estimation 
method.  Note that x-axes have different scales for each estimation 
method. 
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Figure 10 Sensitivity of power to detect r ≤ - 0.04 to the level of error in annual 
survey life estimates for the T-AUC method (none: , low: 

, baseline: 
0)sCV( =ˆ

0.1)sCV( =ˆ 0.2)sCV( =ˆ , high: ).  0.3)sCV( =ˆ
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Figure 11  Sensitivity of power to detect r ≤ - 0.04 to the spacing of survey dates   
within a year (baseline = dates selected using equations 22-24, even = 
dates evenly spaced within a year, random = dates randomly selected 
from one-week strata) for each of the four estimation methods. 
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Figure 12 Power (contour lines) to detect r ≤ - 0.04 as a function of the number of 
years of escapement monitoring and survey frequency within each year 
for each of the four estimation methods.  Note that x-axes have different 
scales for each estimation method. 
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Appendix A 

Figure A-1.  Thirty-three data sets of daily precipitation levels (dashed lines) plus 
observed (dots) and predicted (solid lines) spawner abundance from visual surveys of 
tributary streams to the North Thompson River in interior British Columbia (N. Thomp) 
and coastal streams on the east coast Vancouver Island, British Columbia (Van. Is).    
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Appendix B 

For a specified percent change p in escapement E over t years,  

 100*
0

0

E
EEp t −= , (B1)  

escapement in year t can be written as 

 )
100

1(0
pEEt

−
−= . (B2) 

To calculate the intrinsic rate of population growth, r, required to produce an exponential 

escapement time series,  

 , (19) rt
0t eEE =

with p percent decline, equation 19 was rearranged to solved for r 
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and B2 was substituted into B4 as follows: 
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Using equation B6, the “true” value of r used in equation 19 to generate a “true” 

escapement time series with a 40% decline in escapement over 10 years (p = - 40%) was 

calculated as -0.057.  Similarly, the critical SARA rate of decline associated with a 30% 

decline in escapement over 10 years (p = -30%) that was used in hypothesis testing for 

the trend detection analysis was calculated as -0.04. 
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Appendix C 

I used the sampling-importance-resampling algorithm (SIR; Rubin 1988) to 

approximate the marginal posterior distribution of the population growth rate r in the 

growth model: 

 rtII ete += )(log)(log 0  (C1) 

where It is the escapement index in year t, and I0 is the y-intercept, which represents the 

predicted index value in year 0.  The algorithm outlined below is based on the SIR 

algorithm presented in Rubin (1988) and McAllister et al. (1994).  For computational 

efficiency, I fit a simple linear model to I (I = It=1, It=2, ... It=tmax) to construct a joint prior 

distribution for (r, I0).  The prior distributions for each variable were assumed normally 

distributed with means and standard errors equal to those predicted by the linear model.  

1) For simulation k (k = 1,2, … m; m = 10,000), randomly draw (r, I0)k from the joint 
prior distribution p(r, I0) 

 
2) Calculate a predicted escapement index, ,  by using (r, I0)k in the regression 

equation  
tX̂

  (C2) trIX kkt += )ln()ˆln( 0

 
3) Calculate the normal log-likelihood of (r, I0)k,  [L(rk, I0k | I)] proportional to the 

sums-of-squares between observed and predicted escapement indices over t years 
 

4) Calculate the importance ratio w(rk, I0k) as, 
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where, h(rk, I0k) is the importance function, which is a common probability 
density function that can be used to generate samples for all parameters in the set 
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(rk, I0k).  For simplicity, I set h(rk, I0k) equal to the prior p(rk, I0k) (e.g. McAllister 
et al. 1994), simplifying the importance ratio to, 
 

 ),(),( 00 IIrLIrw kkkk =  (C4) 

 
5) Repeat steps 1 to 4 over m simulations 
 
6) Randomly draw m samples, with replacement, from rk using probabilities 

proportional to w(rk, I0k), where k = (1, 2, ... m).  Because w(rk, I0k) can be used to 
approximate the joint posterior distribution of (r, I0) using 
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the generated sample is an approximation of the marginal p(r | I).  
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