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Abstract 

Using Indian Ocean swordfish-specific longline data, this paper explores some of 

the possible deficiencies of the most commonly used method (GLM method) for 

estimating an index of abundance and then answers two questions: 1) When estimating 

an index of abundance, can a structural equation model provide a viable alternative to 

the common GLM method? 2) How do the estimates derived from the GLM method and 

SEM method contrast? We discover that, at least for this data set, SEM-based methods 

consistently produce estimates for abundance that are significantly different from those 

produced by GLM-based methods. Considering the fundamental importance currently 

ascribed to the GLM-based methods for fisheries management, it is argued that further 

investigation of SEM-based methodologies is of high priority. 

 

Keywords:  CPUE; index of abundance; structural equation modeling; generalized 
linear model; swordfish 
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1 Introduction 

When making management decisions, a fisheries stock assessment is one of the 

key pieces of information utilized by a fisheries manager. Stock assessments describe 

the past status of a fish stock and make predictions about how a stock will respond to 

current and future management measures. With so much riding on these assessments, 

it is crucial that they be as accurate as possible. This requires the ongoing evolution of 

fisheries modeling techniques in the pursuit of increasingly accurate stock assessments. 

The process of stock assessment typically involves the use of population 

dynamics models, which function to estimate stock abundance through time (Maunder, 

2001). In addition to specific biological parameters (e.g. length, age, reproduction) 

unique to the population dynamics model being used, these models generally include an 

index of abundance and data on removals due to harvesting (Hilborn & Walters, 2013).  

An index of abundance is a relative measure of the population size for a fish 

species. It can be applied to the whole population of a species or a sub-unit of the 

population and is generally calculated using the number (or weight) of fish caught per 

standard unit of fishing effort (e.g. hooks, tows, days fishing) (Maunder & Punt, 2004). 

The catch per unit effort (CPUE) can be calculated based on fishery independent data 

such as scientific surveys or, as it is most commonly done, it can be calculated using 

fishery dependent data (catch and effort recorded by a fishery) (Ye & Dennis, 2009). At 

small spatial scales it is generally assumed that CPUE is related to density (N) through a 

constant of proportionality: 
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Where q is known as the catchability coefficient (the fraction of the population 

that is captured by one unit of effort). Equation (1) can be generalized to an entire 

population in which case N represents the population size. In order to use this 

relationship it is important that CPUE be first standardized over time in order to correct 

for systemic factors influencing the data such as fishing area, season, vessel type, and 

gear type. This process is referred to as CPUE standardization and without this process 

it is difficult to know whether changes in CPUE are indicative of changes in abundance 

or are due to other factors. 

Due to its importance in the stock assessment process, CPUE standardization 

has been the focus of significant academic study over the last 30 years. During this time, 

many different methods for standardization have evolved. When choosing a method, the 

choice should be based on an evaluation of the underlying assumptions of the models 

and the use of appropriate statistical tests and diagnostics (Maunder & Punt, 2004). An 

understanding of the fishery dynamics being modeled can also provide insight into which 

method should be used. 

Generalized linear models (GLMs) are the most commonly used method for 

standardizing catch and effort data (Maunder & Punt, 2004). The popularity of GLMs is 

due to the power of these models, their relative ease of use, and their familiarity to most 

scientists working in fisheries and the biological sciences (Maunder & Punt, 2004; Myers 

et al., 2012). However, GLMs as a method to standardize CPUE have a number of 

weaknesses and many of the alternative methods for standardization exist to address 

one shortcoming or another (Glaser et al., 2011; Maunder, 2001; Maunder & Punt, 2004; 

Venables & Dichmont, 2004). For example, many fishery systems are inherently 

nonlinear, but linearity is a key assumption of GLMs, so a generalized additive model 

(GAM), which is better suited to handle nonlinear relationships between catch rate and 

potential independent variables, may be more appropriate. Despite there often being a 

more nuanced standardization option available to fisheries scientists, GLMs continue to 

be widely applied to CPUE standardization due to the factors listed above. 
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This paper further investigates two potentially problematic assumptions made 

during the standard process of developing an index of abundance using GLM-based 

methods for standardizing CPUE and then explores, through the use of a case study, an 

alternate approach for estimating abundance based on Structural Equation Modeling 

(SEM). 

The first potentially problematic assumption is the presupposition of an 

exogenous relationship between the nominally “independent” observables and the 

nominally “dependent” variable, CPUE. A prerequisite for any GLM is that the 

independent variables must be exogenous (i.e., there can be no causal influence of a 

dependent variable on an independent variable) (Breslow, 1996). For example, fishing 

equipment can affect the CPUE, but the resulting CPUE must not affect fishers’ 

decisions about which equipment to use and/or purchase. Similarly, fishing area can 

affect CPUE, but the CPUE should not influence the fishing area in which effort is 

expended. One can imagine scenarios in which the assumption of exogeneity could be 

called into question. For instance, fishers may be inclined to utilize more expensive 

equipment when CPUE is high and less expensive equipment when it is low. If, in fact, 

the assumption of exogeneity does not hold for all independent variables, estimates 

obtained through a GLM-based methodology may exhibit an endogeneity bias (Hicks, 

2013; Marchal et al., 2006).  

A second problem with the standard process of developing an index of 

abundance using GLM-based methods for standardizing CPUE is that this process is 

rooted in the assumption that CPUE is proportional to fish density, N, through equation 

(1). When referring to the CPUE of a fleet fishing uniformly over the entire range of a 

particular species, this implies an assumption of proportionality between CPUE and 

stock abundance. 

In fact, CPUE may not be proportional to abundance.  Even if we assume that 

equation (1) is valid, fishermen are incented to expend effort in regions with high fish 

density.  If a fleet is able to identify such regions (e.g., through improved intra-fleet 

communication) and expend disproportionate effort in those regions, it is possible for 
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CPUE to remain high even as the overall stock is depleted.  Simulation studies confirm 

such “hyper-stability” when communication in a fleet is modeled (Gaertner & Dreyfus-

Leon, 2004). This phenomenon can be seen in many fisheries but is most evident for 

schooling fisheries. Paloheimo and Dickie (1964) have stressed the importance of 

understanding both the spatial distribution of fish and the spatial distribution fishing effort 

when interpreting CPUE data. Whether standardized commercial CPUE should be used 

as an index of abundance, is a topic of debate in the fisheries literature (Gaertner & 

Leon, 2004; Harley et al., 2001; Marchal et al., 2007; Richards & Schnute, 1986). 

Nevertheless, despite these well-documented shortcomings, CPUE remains a simple 

and attractive index of abundance and is commonly used for stock assessment by 

fishery agencies around the world. 

An alternate approach to estimating abundance may be available through 

Structural Equation Modeling (SEM). SEM deploys a fundamentally different modeling 

paradigm than GLM-based methods and, notably, does not suffer from the two 

theoretical shortcomings listed above. SEMs can incorporate endogeneity between 

observables within any given model.  Indeed, SEMs not only allow for endogenous 

relationships between modeled observables, they provide a theoretical framework by 

which to estimate endogeneity quantitatively. SEMs also allow for the estimation of latent 

observables, such as fish stock abundance, directly without the need for any assumption 

of proportionality to CPUE.  

A SEM is designed to examine a set of relationships between independent 

observables (often called exogenous in SEM literature) and dependent (endogenous) 

variables. Endogenous variables can be either measured (directly observed), or latent 

(not directly observed) (Ullman, 2006). SEMs are generally validated through 

confirmatory factor analysis (CFA). In such cases, the causal pattern of inter-variable 

relationships within the theory is specified based on prior experience with the modeled 

system. The SEM then enables confirmation through multivariate analysis. The goal is to 

determine whether newly collected data is consistent with a hypothesized model. 

Consistency is evaluated through model-data fit, which indicates the extent to which the 

postulated network of relations among variables is plausible (Lei & Wu, 2007).  
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It is also possible to arrive at a SEM through exploratory factor analysis (EFA). 

With EFA, several plausible models may be compared and evaluated for quality of fit 

with the data set. However, when a model is derived, even partly, through EFA (as we 

shall do in this paper), much caution must be taken to validate the model with an 

independent data set and thereby demonstrate that the quality of its fit cannot be 

ascribed to over-tuning.   

A further important difference between GLMs and SEM is worthy of note, and, in 

fact, will be of central importance in the analysis we perform in this paper.  GLM-based 

methodologies seek to identify linear correlations between independent and dependent 

variables through a purely statistical methodology. No presumption of causation is 

implied or even relevant to the process.  By contrast, a SEM is an expression of 

presumed causal relationships within the system being modeled. A SEM is therefore, 

fundamentally an expression of theoretical considerations deduced through a process 

not grounded in the data set.  As a consequence, a SEM will often be framed in terms of 

observables that would not normally be selected for a GLM-based approach. For 

example, whereas with a GLM one might seek to remove systemic “area” effects with 

arbitrarily selected regions of the ocean, with a SEM one would attempt to define an 

observable for the fishing area that is sensitive to known regional dynamics of the 

fishery. 



 

6 

2 Materials and Methods 

2.1 Data Set 

This study utilizes publicly available longline data from the Indian Ocean Tuna 

Commission (IOTC). The original data set can be found at: 

http://www.iotc.org/English/data/databases.php.  

In order to better associate effort with catch for a specific species, we decided to 

exclude all but data for which “Gear Type” is identified as “ELL” (i.e., swordfish specific 

longline).  Effort expended with this gear has swordfish as the targeted species. Acting 

on this premise and the fact that swordfish catch accounted for between 50-70% of the 

total catch for other European fleets, we associated all effort with the recorded swordfish 

catch in our models. 

The data was further filtered exclusively for swordfish specific longline gear 

deployed by the Spanish fleet.  This provides three advantages. First, unlike several 

other fleets, the Spanish fleet consistently had a reporting quality ranking of 3 (i.e., 

good). These quality scores (on a scale of 0-3) indicate the IOTC’s confidence that the 

data represents the effort and catch in the stratum concerned. Second, unlike some 

other fleets, throughout the study period, the Spanish fleet consistently reported 

swordfish catch using a single metric (i.e., tonnage as opposed to number of fish 

caught). This allowed us to avoid having to posit a methodology for converting between 

fish number and tonnage for the study period. Third, throughout the study period, the 

Spanish fleet had consistently higher than average effort for swordfish longline. In fact, 

http://www.iotc.org/English/data/databases.php
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the Spanish fleet alone accounted for 15% of total swordfish catch and 40% of catch 

with a reporting quality ranking of 2 or greater. 

It should be noted that, due largely to its public and international nature, this 

dataset does suffer from some important deficiencies. First, the data set is not vessel 

specific. As a consequence, our models account for dynamics and systemic effects at 

the fleet level only. Second, effort and catch are aggregated into relatively large grid 

cells (i.e., 5˚ latitude by 5˚ longitude) and into month-long intervals. Correspondingly, our 

analysis attempts to model only macro-dynamics of the Spanish fleet. Third, in the first 

eight years of the study period, effort as recorded by month and grid cell for the Spanish 

fleet was relatively sparse.  

Acknowledging these deficiencies, the goal of this paper is not to deduce specific 

results for swordfish abundance, but rather to contrast paradigmatic elements of GLM 

and SEM-based methodologies, therefore specifics of our selected data set are 

ultimately of lesser significance. 

2.2 GLM-based Method 

Adopting common practice for evaluating fish stock abundance indices (Maunder 

et al., 2004; Maunder et al., 2006) and, in particular, for swordfish in the Indian Ocean 

(Kolody et al., 2010; Mejuto et al., 2013; Uozumi, 1998; Wang & Nishida, 2011) we 

standardized CPUE through a GLM. Using the software “R” and the steps detailed 

below, we compared GLMs to find the most appropriate model (Richards et al. 2011; 

Wagenmakers & Farrell, 2004): 

1. We identified all possible predictor variables. Three predictor variables were 

reported in the source data set and were suitable for use in the GLM: 

a. Year - A categorical variable ranging from 1993-2011. The variable was 

converted to a factor. 
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b. Season – The year was divided into four quarters: January-March, April-June, 

July-September, and October-December. The variable is categorical and was 

converted to a factor. 

c. Area – In the dataset fishing area was divided into 5˚ by 5˚ grid cells. We 

regrouped area into fours quadrants that cover contiguous areas: 

o Southeast: 20˚-45˚ south and 30˚-70˚ east.  

o Southwest: 20˚-45˚ south and 70˚-105˚ east.  

o Northeast: 20˚ south-10˚ north and 30˚-70˚ east.  

o Northwest: 20˚ south -10˚ north and 70˚-105˚ east.  

The variable is categorical and was converted to a factor. 

2. We fit all combinations of predictor variables to the natural log of CPUE. We 

further investigated any interactions between the predictor variables. Interactions 

involving the year effect would invalidate the year effect as an index of 

abundance; therefore we did not investigate any possible interactions including 

the year variable (Hinton and Maunder, 2003). In total, 9 distinct models were 

evaluated. 

3. We calculated AICs and AIC weights for each model. The preferred GLM was 

determined by selecting the model with the lowest AIC value and by following the 

procedure for model selection using Akaike weights outlined by Wagenmakers 

and Farell (2004). We further calculated residual plots, QQ plots, and Cook’s 

Distance plots for each model. Plots for the preferred GLM are discussed in 

further detail in Appendix A. The plots suggest no significant violation of standard 

GLM statistical assumptions.  

4. The preferred model’s resulting coefficients for the factor “Year”, were used to 

derive the nominal and standardized CPUE indices using equations (2) and (3) 

below: 
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Where         is the coefficient for the current year and          is the coefficient 

for the base year (1993). 

2.3 SEM-based Method 

SEM analysis is categorized as either exploratory or confirmatory (Lei & Wu, 

2007). To our knowledge, no SEM has yet been constructed that predicts Swordfish 

abundance, so SEM analysis conducted here is necessarily exploratory.  

Correspondingly, the model developed here should be viewed with caution.  As with all 

exploratory models, ours must be validated with independent data sets before it can be 

viewed as a legitimate foundation for prediction. Having said this, the focus of this paper 

is not to defend any particular model nor any estimates it might generate, but rather to 

address foundational questions about SEM and GLM-based methodologies for 

estimating fish stock abundance. 

2.3.1 Definition of Observables 

It is neither necessary nor even desirable that GLM and SEM models reference a 

common set of observables.  Unlike a GLM, a SEM is rooted in a theoretical model of 

causation.  Observables for the SEM should be selected to best isolate causal 

relationships within the system being modeled. It is important that the selected 

observables lead to a model that is both simple and predictive. Meanwhile, when 

selecting variables for GLM-based analysis, we have opted to mimic methodologies 

most widely used in standard CPUE studies. Typically, these are selected without 

sensitivity to the dynamics of the modeled system. For instance, fishing area is most 

often treated as a categorical variable, grouped into contiguous regions of ocean having 

approximately comparable size (Garcia-Cortez et al., 2012; Mejuto et al., 2013; Wang & 

Nishida, 2011). Similarly, fishing season is most frequently decomposed into contiguous 

three month intervals according to the Julian calendar.  .   
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When defining SEM observables, we initially thought to isolate factors that would 

determine whether, where, when, and how intensively each captain would fish. An 

immediate challenge we confronted, however, is that the source data set provides no 

information that can identify individual captains or vessels.  A further challenge is that 

data is not available for the Spanish fleet in every grid cell for every month or for that 

matter, for every year. Therefore, in our exploratory factor analysis, we have attempted 

to identify observables that illuminate causal relations evident in the macro-dynamics of 

the entire Spanish fleet.  We identified the following observables as worthy of 

exploration: 

Observables: 

1.         : Swordfish catch in grid cell   during month   as measured in metric 

tonnes. 

2.          : Effort expended in grid cell   during month   as measured in number of 

fish hooks. 

3.             : A latent variable indicating the abundance in grid cell   during 

month  . 

4.             : Catch for the entire study region (i.e., the Indian Ocean) during the 

month   of a given calendar year normalized by the maximum catch for any 

month during that same year.  This variable is intended to provide a measure of 

annual cyclicality of the fishery. It should be noted, however, that considerable 

change occurred over the course of the nineteen years covered by the data set. 

It is for this reason that we opted to normalize relative to the current calendar 

year rather than relative to a mean measure for the entire study period.  

5.          : Catch in grid cell   for the entire calendar year normalized by the 

maximum catch for the same year in any one grid cell. This variable is intended 

to provide a measure for the spatial distribution patterns of swordfish catch in the 

Indian Ocean. Again, we note that the distribution of catch and effort changed 

considerably over the course of the nineteen years in the study period. Much of 

this change was likely influenced by factors other than abundance (e.g., piracy, 

exploration, weather, convenience, etc.). Therefore, we again opted to normalize 
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with reference to a maximum for the current calendar year rather than with 

reference to a single measure defined for the study period as a whole.  

6.            : Catch for the Spanish fleet over the entire Indian Ocean during the 

past calendar month.  

7.            : Catch for the Spanish fleet over the entire Indian Ocean during the 

past calendar year. 

8.           : Nominal CPUE for the Spanish fleet over the entire Indian Ocean 

during the past month. 

9.           : Nominal CPUE for the Spanish fleet over the entire Indian Ocean 

during the past calendar year. 

10.                  : Catch for the entire Indian Ocean during the same calendar 

month 1 year ago normalized by the maximum catch for any month during that 

same calendar year. 

11.           -     : Catch in grid cell “X” for the entire previous calendar year 

normalized by the maximum catch for the same year in any one grid cell. 

2.3.2 Model Specification 

A priori we identified the following causal relationships as worthy of exploration: 

1.                     : We postulated that changes in Effort result in correlated 

changes in Catch. Conversely, we postulated that changes in Catch lead to 

correlated changes in Effort as the fleet attempts to maximize overall return. This 

is an example of an endogenous relationship that cannot be modeled by 

standard GLM-based analysis. 

2.                        : We postulated that a change in abundance within 

grid cell   during month   results in correlated changes in catch within the same 

grid cell and time period. 

3.                          and                            : We postulated 

that changes in abundance in grid cell   during month   give rise to correlated 

changes in both normalized catch for that grid cell and normalized catch for that 

month.  
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4.                          and                         : We postulated that 

changed catch during month   results in a correlated change in effort both in the 

following month and in the same month of the immediately following year. 

5.                            and                           : We postulated 

that changes to total catch throughout the Indian Ocean in a given calendar 

month results in anti-correlated changes in abundance in each grid cell both in 

the immediately following calendar month and in the following calendar year.  

6.                              : We postulated that changes in catch throughout 

the Indian Ocean during a given calendar month result in correlated changes in 

effort in any given grid cell the same calendar month of the immediately following 

year. 

7.                             : We postulated that changes in catch within a given 

grid cell and calendar month result in correlated changes in effort in the same 

grid cell and month of the immediately following year. 

8.                         and                        : We postulated that 

changes in CPUE throughout the Indian Ocean within a given month result in 

correlated changes in effort in each grid cell within the following calendar month 

and in the same month of the immediately following calendar year. 

These relationships result in the initial exploratory SEM path diagram shown in 

Figure 1.   
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Figure 1.        Initial exploratory SEM for Spanish swordfish fishery in the Indian 
Ocean 

2.3.3 Model Identification 

Before a model is estimated, it must be properly identified. A model is identified if 

there is a unique numerical solution for each of the parameters in the model (Ullman, 

2006). In general, each model in the study should be over justified (enough 

independently measured variables to estimate the parameters), have the variance (or 

one of the coefficients) of the latent variable fixed at one, and have at least 3 indicators 

for the latent variable. A discussion of the model identification process used in this study 

can be found in Ullman (2006) and Bollen (1989). 

2.3.4 Criteria and Methods for Model Evaluation 

There is no universally accepted methodology for exploratory SEM model 

evaluation - the process of refining and selecting a SEM that best represents the system 
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under study. The process can involve some judgment calls, so not all researchers will 

arrive at the same exact model given the same data. Grace (2006) and Hooper et al. 

(2008) offer excellent reviews of best practices for SEM model evaluation.  

In this study, our EFA process was governed by three major practices. First, we 

evaluated each distinct SEM model relative to the following four criteria:  

1. Overall fit of the model as indicated through Chi Square tests, Root Mean 

Square Error of Approximation (RMSEA) values, and Standardized Root 

Mean Square Residual (SRMR) values,  

2. Individual parameter significance as indicated through p-values, 

3. Modification indices indicating changes in Chi Square values resulting from 

freeing fixed parameters, 

4. Theoretical considerations: to help avoid over-fitting to the source data set, 

changes to a model suggested by some other factors can only be 

implemented if there is a strong theoretical argument supporting the change. 

Second, when the above criteria suggested several modifications to a given 

model, we made such modifications in isolation from each other while evaluating the fit 

of all resulting models. We followed this practice to avoid missing a preferred model that 

might otherwise be hidden through making several concurrent changes to an antecedent 

model (Grace, 2006). 

Third, throughout our EFA we “trained” all models using only data from the first 

15 years of the 19 year data set. We followed this practice so that the residual data 

could be used to provide evidence to help confirm or invalidate models selected through 

the exploratory modeling process. 15 years equates to approximately 75% percent of the 

data and also represents the minimum amount of data required to make the model run 

reliably. 
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3 Results 

3.1 GLM Results 

Table 1 displays the AIC values and AIC weights for each of the generalized 

linear models investigated. The following GLM had the lowest AIC value and was the 

only model that had a significant Akaike weight.  All other AIC weights were << 0.01. 

                                                                                     

Table 1.        AIC values and AIC weights for the 9 GLMs examined 

Independent Variables for the Model AIC Value AIC Weight 

Year 1572 4.58x10-31 

Area 1737 6.78x10-67 

Month 1735 2.38x10-66 

Year and Month 1518 3.03x10-19 

Year and Area 1539 6.84x10-24 

Area and Month 1690 1.07x10-56 

Area and Month with Interaction 1614 3.01x10-40 

Year, Area and Month 1488 8.16x10-13 

Year, Area and Month with Area/Month 
Interaction 

1432 1.00 

Figure 2 shows nominal and standardized CPUE indices as calculated using the 

GLM methodology of section 2.2. The gap at year 5 corresponds to an absence of data 

for the Spanish fleet in calendar year 1997.  
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Figure 2.        Nominal versus standardized CPUE index obtained with the 
preferred GLM. 

 

3.2 SEM Results 

The SEM in Figure 1 is properly identified and therefore we were able to estimate 

the model parameters, resulting in Figure 3. Figure 3 shows the path coefficients for this 

model as calculated using the LAVAAN package in R. Detailed results for path 
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coefficients, variances, and fit measures for Model 1 and all other models evaluated in 

this study are shown in Appendix B. 

 

Figure 3.        Initial SEM with path coefficients and error estimates. 

 

Upon estimation of Model 1 it was determined that the model had a poor overall 

fit to the data ( 427 p-value = 0.00; RMSEA: 0.170 p-value= 0.00; SRMR: 0.082).1 

The decision metrics associated with the modification indices did not indicate that any 

new relationships should be added to the model. However, there were 5 relationships 

with high p-values and relatively low path coefficient values (0.00, 0.00, -0.05, 0.02, and 

0.00). After re-examining the 5 relationships from a theoretical perspective, in spite of 

our a priori expectations, it is plausible that current effort within any given grid cell is not 

significantly influenced by catch or CPUE throughout the Indian Ocean in the previous 

month or in the corresponding month of the previous year. Similarly, given that most 

studies conclude that swordfish catch was below the Maximum Sustainable Yield (MSY) 

 
1
 Note that with EFA for SEM the null hypothesis is that the model fits the data, so larger p-values 
confirm the fit. Common practice is to accept p-values > 0.1 as confirmation of a good model fit.   
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for most of the study period (IOTC Swordfish report, 2014), it is plausible that current 

abundance within any given grid cell is not significantly affected by catch throughout the 

Indian Ocean in the previous month or in the corresponding month of the previous year.  

The above considerations caused us to evaluate several models resulting from 

removal of different combinations of the five suspect relationships in Model 1. Following 

the procedures detailed in section 2.3.4, we determined that all five of the suspect 

relationships should indeed be removed. We labeled the resulting SEM as “Model 2”. 

Figure 4 shows the path coefficients estimated through LAVAAN for this model.   

 

Figure 4.        SEM for "Model 2" obtained by removing five suspect relationships 
from Model 1. 

While the fit of Model 2 improves relative to Model 1, it is still poor ( 190 p-

value = 0.00; RMSEA: 0.147 p-value= 0.00; SRMR: 0.075).  Using the methodology 

detailed in section 2.3.4, we identified seven additional models (models 3-9) to evaluate, 

each with at least one relationship from Model 2 removed.  Results of this analysis are 

detailed in Appendix B.   
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From this new set of models, “Model 9” shown in Figure 5 is preferred.  

 

Figure 5.        SEM for Model 9 obtained by removing 3 relationships from Model 2. 

 

This new model has three more relationships removed (                 

         ,                       , and                      ), all of which had low or 

negative path coefficients in Model 2.  

Removal of these three relationships to produce Model 9 is theoretically 

consistent with the removal of the five relationships from Model 1.  The model suggests 

that CPUE, Locality, Seasonality, and Catch results from the immediately preceding 

month and the corresponding month of the previous year do not significantly affect 

current Effort or Abundance in a given grid cell. Model 9 is preferred because it is the 

most parsimonious model and it has a good overall fit:   = 0.008 p-value = 0.93; 

RMSEA: 0.000 p-value= 0.98; SRMR: 0.001. 
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To validate the EFA above, we re-trained Model 9 and all other Models using all 

data from the entire 19 year study.  When trained with the entire data set, path 

coefficients and variances can change by up to ~10% for each model. Nevertheless, the 

overall preferred fit for Model 9 (as well as the respective deficiencies of the other 

models) remains unchanged.  When fit with the entire 19 year data set, Model 9 path 

coefficients and variances are as shown in Figure 6. 

 

Figure 6.        Path coefficients and variances for Model 9 when fit using all 19 
years of data. 

Estimates for variation in abundance are shown in Figure 7. The figure shows 

curves derived from Model 2 through Model 9 as trained on the entire 19 year data set. 

All estimates are in units of standard deviation and are obtained using the “predict” 

function of LAVAAN (Muthen, 2004 p.47). Excluding 1997 (for which there is no data), 

estimates for all models agree to within an average of 0.042 standard deviations (1.05% 

relative to the total range for Model 9). The greatest disagreement between the models 
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occurs in the year 2000, where the average deviation from the estimate obtained 

through Model 9 is 0.292 standard deviations (7.30% relative to the total range for Model 

9).  

 

Figure 7.        Estimates for variation in abundance derived from Model 2 through 
Model 9 trained on the entire 19 year data set. 
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3.3 Comparison of GLM and SEM results 

The “predict” function of LAVAAN produces estimates for variation of the 

Abundance latent observable in units of standard deviations from the mean. Comparing 

this abundance estimate to estimates for variation in Nominal and Standardized CPUE 

(expressed in units of standard deviations from the mean Nominal CPUE) produces 

Figure 8.  

 

Figure 8.        Comparison of variations in Nominal CPUE and Standardized CPUE 
as derived through the GLM of section 2.2, and variations in the 
abundance latent observable derived through the SEM of section 
2.3. Note that all variations are measured in units of standard 
deviation from the mean for the relevant observable. 
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4 Discussion 

4.1 GLM and Standardized CPUE 

As discussed in section 2.2, the GLM for this study adopts common practices for 

correcting CPUE to account for systematic effects attributable to variations in the 

independent observables. Series values for nominal and standardized CPUE shown in 

Figure 2 are qualitatively similar.  In fact, nominal and standardized CPUE agree within 

statistical error for 14 of the 18 years included in the study. This differs from many 

studies, which often show statistically significant differences between nominal and 

standardized CPUE (Bigelow et al., 1999; Nakano et al., 2005; Punt et al., 2000).  

The unusual degree of similarity between nominal and standardized CPUE in this 

case could trace to the absence of information specific to vessel and captain in the 

source data set. After filtering by fleet and gear type, the only residual information 

available to further characterize catch/effort is spatial (i.e., latitude and longitude in 5 

degree increments) and temporal (i.e., month of the year). As is common practice in 

GLM-based studies, our model associates this spatial/temporal data with categorical 

variables corresponding to contiguous regions of the ocean and seasons of the year. 

Since these categorical variables are defined without sensitivity to dynamics of the 

fishery (i.e., similarly sized sectors of the Southern Indian Ocean with arbitrary 

boundaries and quarters of the year defined relative to the Julian calendar), there is no 

reason to expect that systemic corrections to the nominal CPUE arising through these 

variables would be significant.   
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The GLM estimates for standardized CPUE (Figure 2) show a range of values 

more than twice the magnitude of the CPUE for the initial reference year. Beyond this 

high variability, the most obvious pattern is that a significant increase in standardized 

CPUE occurs in the year 2000 followed by relative stability thereafter. The average 

standardized CPUE index between 1993 and 2000 (excluding 1997, for which there is 

no data) is 0.88. Meanwhile for the years from 2001 to 2011 the average standardized 

CPUE index nearly doubles to 1.61. Assuming a constant catchability coefficient as per 

equation (1), the implication is that stock abundance nearly doubled after 2000.  

However, alternate explanations for the increase in standardized CPUE after the 

year 2000 may be more plausible. Operations of the Spanish surface longline fleet in the 

Indian Ocean started in 1993. Before 2000, data was mostly obtained from surveys 

targeting swordfish in unknown fishing areas (Fernández-Costa et al., 2014). After this 

preliminary period, the Spanish fleet consolidated its operations and began specifically 

targeting swordfish in the Indian Ocean. The increase in CPUE post 2000 may, 

therefore, reflect maturation of techniques used within the fishery rather than any 

absolute increase in the abundance of the stock. Relatively low CPUEs between 1993 

and 2000 may also have been impacted by high incidence of piracy in the south western 

Indian Ocean during these years (Santos et al., 2012).  

4.2 SEM Discussion 

We identified Model 9 as a preferred candidate SEM through an EFA process 

involving model specification, identification, and evaluation. Statistical considerations 

favour Model 9 over models 1-8. Principally, Model 9 is the most parsimonious, yet it still 

explains the data approximately equally to or better than the other models. Despite the 

good fit of Model 9 to the data, it is prudent that we retain some scepticism. As 

discussed in section 2.3, when performing EFA there is always the risk of over-fitting a 

model to a specific data set.  
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Although Model 9 certainly needs to be confirmed, it is unlikely that any over 

training of the model had a significant impact on the abundance variation estimates, as 

models 2-9 all produce very similar estimates (section 3.2). A comparison of the path 

coefficients in all 9 models shows that the magnitudes of the path coefficients were quite 

consistent. The relationships from the exogenous variables to effort and abundance 

(listed as relationships 4-8 in 2.3.2) had weak coefficients. At the same time, the 

relationships between catch and effort and between abundance and catch, seasonality 

and locality, all had fairly strong coefficients.  

Model 9 should also be assessed relative to theoretical considerations. It 

includes 4 relationships:  

1.                      : Within this endogenous relationship, catch has a relatively 

strong influence on effort (path coefficient of 0.59) while effort has a weaker 

influence on catch (path coefficient of 0.15). A plausible explanation for the high 

influence of catch on effort can be deduced from the simulations performed by 

Gaertner and Leon (2004). They demonstrated that exchange of information 

within a fishing fleet can cause effort to rapidly converge on areas of high 

catch/abundance.  If the majority of fleet effort is influenced by such information 

exchanges, a pattern emerges that catch is a strong predictor of effort while the 

converse is less true. All of our SEM models are consistent with collaboration 

being an important factor determining the locality and temporality of effort within 

the Spanish fleet.   

2.                         : As expected, stock abundance within a particular 

grid cell and during particular month is a strong predictor (path coefficient of 0.80) 

of catch in the same grid cell and month.  

3.                          As expected, abundance within a particular grid cell 

and month influences (with a path coefficient of 0.43) catch within that grid cell 

for the calendar year.  

4.                             Correspondingly, abundance within a particular 

grid cell and month is a predictor (with a coefficient of 0.37) of catch for the entire 

study region during that month.   
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From the model evaluation process, we deduce that the selected exogenous 

variables have minimal influence on effort and abundance (see relationships 4-8 in 

section 2.3.2). This result is consistent with: 

1. Intra-fleet communication dominating over historical factors as a determinant of 

effort. 

2. The catch being under MSY through much of the study period. 

The relatively high variances for the latent and observable parameters are 

expected given that there are a number of key exogenous variables that are not 

accessible to us in this data set (e.g., factors specific to individual vessels and captains, 

factors related to evolving fishing gear and methodology, stock migratory patterns, 

environmental effects, oceanic conditions, prey patterns, etc.). In general, these high 

variances are suggestive that our SEM could be improved if more detailed data about 

the system were provided.  

Ultimately, Model 9 needs to be considered confirmed with independent 

validation using new data sets. For instance, data from another fleet in the Indian Ocean 

Swordfish fishery could be used to verify the model derived in this study. Partial 

confirmation of Model 9 was achieved by training it using only the first 15 years of the 

data set and then comparing the results against those obtained using the entire data set. 

Estimates for path coefficients and variances obtained with the partial and complete data 

sets agree to within ~10%. 

4.3 Comparison of SEM and GLM Results 

While there is good agreement in Figure 8 between Nominal and Standardized 

CPUE, the estimate for Abundance generated by the SEM, is markedly different. For 

instance, consider the period from 1997-2005. While the SEM abundance estimate 

peaks in 1999 (1.3 standard deviations from the mean), the standardized CPUE 

estimate drops to a minimum (-1.8 standard deviations from the mean). The SEM 
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abundance estimate then falls and levels out at approximately -0.5 standard deviations 

from the mean until 2005. Alternatively, during the same period, the standardized CPUE 

estimate rises sharply before levelling out at approximately 1 standard deviation from the 

mean. Outside 1997-2005, the two series appear to qualitatively agree. Although the 

values differ, both series peak in 1994-1995 and then both decrease from 2005 to 2006 

before rising to their highest values in 2011. Despite the differences, both curves 

suggest an increase in abundance over the study period. However, in reference to 

studies conducted by Shono (2008) and Abeare (2009), where different CPUE 

standardization methods are compared, it is clear that the two data series do 

significantly differ, especially during the period of 1997-2005. 

Given the very different premises for the GLM and SEM, it is not surprising that 

they should arrive at divergent estimates for variations in stock abundance. The 

predictions of each modeling paradigm are consistent with its own set of assumptions. 

Whereas the GLM based approach for estimating abundance presumes that abundance 

relates to Standardized CPUE via a constant of proportionality, the SEM implies that 

local abundance is a strong predictor of local catch, which, in turn, is a strong predictor 

of local effort. 

It is natural to question whether any independent evidence (e.g. a research 

survey) is available on swordfish abundance in the Indian Ocean during the study period 

that would validate either of the models under investigation here. Unfortunately, all 

current abundance estimates for this stock appear to use a standardized CPUE as part 

of their population dynamics models. However, one factor to consider is that the Nominal 

CPUEs for different fleets during the study period differ significantly one to another 

(IOTC Swordfish report, 2014). Noting that reasonably close alignment is expected 

between Standardized and Nominal CPUE when using GLM-based methods with this 

data set (for the reasons discussed in section 4.1), these differing fleet CPUEs raise 

doubt about whether the assumption of proportionality between Standardized CPUE and 

stock abundance can hold true in this case. Of course, if more detailed data were 

available (e.g., on variances of fishing gear, vessel types, etc.), the differences between 

the Nominal CPUEs recorded by the different fleets might still be explained through 

GLM-based methods. 
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4.4 Policy Implications 

Acknowledging that the work in this paper requires independent validation, it is 

important to recognize the potential policy implications that these results may have. 

Stock assessments are essential pieces of information that not only help fisheries 

managers protect the ocean’s resources, but also help managers to make tough choices 

when balancing the social, economic, and environmental interests of the stakeholders 

involved. When considering stock assessments in conjunction with other information, 

fisheries managers have many policy options available to them. These can include 

anything from government regulations (like quotas, licenses, and season openings) to 

educational materials. Resultant fisheries policy decisions can impact our society and 

environment in many ways, both directly (fishing jobs, processing jobs, subsistence, 

species health, etc) and indirectly (tourism, ecosystem health, general economy, drilling 

and mining activities, shipping routes, etc).  

An index of abundance is a critical component of a stock assessment and 

inaccuracies in the index can lead to inaccuracies in the assessment (Walters & 

Maguire, 1996). This occurrence can sometimes result in grave consequences. For 

example, after investigating the northern cod collapse Walters and Maguire (1996) 

concluded that: 1) There were inaccuracies in the indices of abundance because 

commercial CPUE was used as an index of abundance, leading to stock size over-

estimation. 2) Stock assessment errors likely contributed to overfishing by creating 

optimistic long-term forecasts, which lead to total allowable catches being set higher 

than they should have been. The collapse of the Atlantic northern cod stock and 

simultaneous closing of the fishery has resulted in long lasting impacts to both the 

environment and livelihoods of people that depended on the fishery (Walters & Maguire, 

1996).  

Our study suggests that the index of abundance estimated using the SEM differs 

significantly from the index obtained using the GLM. This could potentially have far 

reaching consequences if it is discovered that SEMs do indeed give a more accurate 

index of abundance. However, it should be cautioned that this study was performed only 
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using data for the Spanish longline Swordfish fleet. There needs to be significant 

additional research in order to determine: 1) whether the results from this study can be 

confirmed 2) whether this work can have a larger applicability 3) whether the SEM is a 

preferred tool over a GLM for estimating an index of abundance. It should also be noted 

that there are many alternative CPUE standardization methods, most with more fine-

tuning than a GLM, and these methods should be considered when assessing the use of 

a SEM for abundance estimation. 
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5 Conclusion 

In the face of problematic assumptions made by standard GLM-based 

abundance estimation, we have explored the use of SEMs as an alternative. In 

particular, we have focused on the problem of deducing indices of abundance for the 

swordfish stocks in the Indian Ocean based on data for the Spanish fleets’ swordfish 

longline fishery.  We have found evidence for significant differences between the GLM-

based and SEM-based measures of abundance. Further, we have found evidence for an 

endogenous relationship between catch and effort. More specifically, we find that for all 

SEMs we studied, the influence of catch on effort was relatively strong (~0.6) while the 

influence of effort on catch was significantly weaker (~0.15).  These observations are 

consistent with collaboration between fishers through information exchange. Future 

research on swordfish abundance with both GLM and SEM approaches would be 

required to either validate or invalidate these tentative observations. 
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Appendix A.  
 
Model Diagnostics 

Model diagnostics were performed for each GLM to ensure that model 

assumptions were not violated. Below are three diagnostic plots for the preferred GLM.  

Cook’s Distance Plot 

 

Figure A1.        Cook’s Distance Plot. 
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This diagnostic plot gives an indication of the influence of estimates on the 

outcome of the model. All values in the plot are less than 0.1, so no one estimate is 

having a much larger influence on the outcome than any other.  

 

Figure A2.        Q-Q Plot.  
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The Q-Q plot is used to test if the data is normally distributed. This plot does 

suggest that the model may not be perfectly normal, but the deviation is not significant 

enough to result in a violation of the assumptions. 

Residuals vs. Fitted Plot 

 

Figure A3.        Residuals vs. Fitted. 
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The residuals vs. fitted plot is used to detect non-linearity, unequal error 

variances, and outliers. The residuals should; bounce randomly around the 0 line, form a 

horizontal band around the 0 line, and no one residual should "stand out" from the basic 

random pattern. This plot suggests that there may be a few outliers, but that the 

assumption of linearity has not been broken. 
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Appendix B.  
 
Fit for Models 2-9 

 

 

Figure B1.      Initial SEM path coefficients and variances estimated with 15 years 
of data. 

 

Fit Measures 

Chi Square 427   p-value = 0.00 

RMSEA 0.170 p-value = 0.00 

SRMR 0.082  

AIC 2572  
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Figure B2.      Model 2 path coefficients and variances estimated with 15 years of 
data. 

 

Fit Measures 

Chi Square 190   p-value = 0.00 

RMSEA 0.147 p-value = 0.00 

SRMR 0.075  

AIC 3683  
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Figure B3.      Model 3 path coefficients and variances estimated with 15 years of 
data. 

 

Fit Measures 

Chi Square 174   p-value = 0.00 

RMSEA 0.169 p-value = 0.00 

SRMR 0.085  

AIC 4415  
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Figure B4.      Model 4 path coefficients and variances estimated with 15 years of 
data. 

 

Fit Measures 

Chi Square 134  p-value = 0.00 

RMSEA 0.147 p-value = 0.00 

SRMR 0.070  

AIC 3595  
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Figure B5.      Model 5 path coefficients and variances estimated with 15 years of 
data. 

 

Fit Measures 

Chi Square 40.76  p-value = 0.00 

RMSEA 0.080 p-value = 0.02 

SRMR 0.045  

AIC 3021  
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Figure B6.      Model 6 path coefficients and variances estimated with 15 years of 
data. 

 

Fit Measures 

Chi Square 54   p-value = 0.00 

RMSEA 0.122 p-value = 0.00 

SRMR 0.056  

AIC 4034  
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Figure B7.      Model 7 path coefficients and variances estimated with 15 years of 
data. 

 

Fit Measures 

Chi Square 120   p-value = 0.00 

RMSEA 0.186 p-value = 0.00 

SRMR 0.081  

AIC 4324  
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Figure B8.      Model 8 path coefficients and variances estimated with 15 years of 
data. 

 

Fit Measures 

Chi Square 3.25   p-value = 0.52 

RMSEA 0.048 p-value = 0.96 

SRMR 0.011  

AIC 3251  
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Figure B9.      Model 9 path coefficients and variances estimated with 15 years of 
data. 

 

Fit Measures 

Chi Square 0.008  p-value = 0.93 

RMSEA 0.000 p-value = 0.98 

SRMR 0.001  

AIC 3942  
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Figure B10.    Model 9 path coefficients and variances estimated with 19 years of 
data. 

 

Fit Measures 

Chi Square 0.507   p-value = 0.48 

RMSEA 0.000 p-value = 0.84 

SRMR 0.004  

AIC 4929  
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