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Abstract 

I examined spatial patterns of covariation in productivity indices estimated for 24 Pacific 

herring (Clupea pallasii) stocks and 5 stock aggregates in the northeast Pacific Ocean. 

Spatial covariation was weak among stock productivity indices. Correlations existed 

among stocks at close distances (less than 400 km), but the direction of the correlations 

were both negative (as low as -0.82) and positive (as high as 0.94), resulting in weak 

overall correlation (𝑟 = 0.16) among nearby stocks, suggesting small-scale oceanic 

processes are likely driving stock productivity. A small increase in correlation among 

stocks in distant regions (between 2,000-3,000 km) was seen, which was more evident 

among the stock aggregates than in the individual stocks analyzed. Developing a better 

understanding of the underlying productivity among herring stocks in the northeast 

Pacific offers an approach that can help differentiate competing hypotheses about the 

drivers of productivity shifts by helping identify the most likely spatial scale of potential 

drivers of productivity.  

Keywords:  Pacific herring; spatial covariation; correlation; productivity; process error; 

Bayesian surplus production model 
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Introduction 

Ocean processes drive population dynamics for many marine fish stocks (Hjort 

1914; Myers et al. 1997; Hare and Mantua 2009; Vert-pre et al. 2013). However, 

incorporating ocean processes into stock assessment remains a challenge because fish 

productivity is influenced at multiple spatial scales affecting recruitment, population 

structure, and individual growth rates (Williams and Quinn 2000a; Minto et al. 2014; 

Munch et al. 2018). Understanding the scale of connectivity among fish populations 

allows managers to gain insights into how environmental processes interact with marine 

fish populations (Mueter et al. 2002, 2007; Pyper et al. 2005; Bartolino et al. 2014; Minto 

et al. 2014; Malick et al. 2015b; Keeling et al. 2017; Dorner et al. 2018).  

Understanding links between ocean processes and stock dynamics remains a 

challenge for Pacific herring (Clupea pallasii) in the northeast Pacific Ocean. Strong 

year-classes along the British Columbia (B.C.) coast are correlated with sea level in 

bays and inlets, suggesting that local retainment in supportive environments promote 

year-class strength (Ramey and Wickett 1973). In Sitka Sound, Alaska (AK), warmer 

sea-surface temperatures during the winter prior to spawning is correlated positively with 

recruitment (Zebdi and Collie 1995); however, in San Francisco Bay (CA), the opposite 

pattern results, where warmer sea-surface temperatures in the months prior to spawning 

lead to lower spawning stock biomass (Sydeman et al. 2018). Herring productivity in 

Prince William Sound, AK, is correlated negatively with the volume of freshwater 

discharge and density-dependence suggesting at least two mechanisms for changes in 

herring productivity on small spatial scales (Ward et al. 2017). These studies indicate 

that small-scale ocean conditions are likely influencing stock productivity.  

Large-scale ocean conditions also could be affecting herring dynamics. In the 

Bering Sea, Prince William Sound, and along the West Coast of Vancouver Island, B.C., 

modelled herring growth rates shifted at the time of the 1977 and 1998 Pacific Decadal 

Oscillation regime shifts (Rose et al. 2007). In Puget Sound, Washington (WA), a minor 

effect of the Pacific Decadal Oscillation was detected on spawning biomass (Siple and 

Francis 2016) and cumulative coastal upwelling positively influenced recruitment (Reum 

et al. 2011). Herring recruitment is correlated with air and sea-surface temperatures and 

the Southern Oscillation Index (Williams and Quinn 2000a); however, the direction of the 



2 

correlations are different for herring recruitment in British Columbia and Alaska. In British 

Columbia, herring recruitment is correlated negatively with temperature but correlated 

positively with the Southern Oscillation Index (Williams and Quinn 2000a). In the Gulf of 

Alaska, herring recruitment is correlated positively with air and sea-surface temperature 

but correlated negatively with the Southern Oscillation Index (Williams and Quinn 

2000a). Similar trends in year-class strength and recruitment in Prince William Sound 

and Sitka Sound suggest that population dynamics are influenced by Gulf of Alaska-wide 

ocean processes (Collie 1990; Zebdi 1991; Pearson et al. 2012), but the specific 

process has not been identified. Increased primary productivity was associated with a 

higher carrying capacity for herring stocks in the eastern Bering Sea, Prince William 

Sound, Sitka Sound, and along the British Columbia coast (Perry and Schweigert 2008), 

indicating large-scale bottom-up forcings could be affecting population dynamics (e.g., 

via synchronous timing of larval production and plankton blooms) (Cushing 1975).  

Developing a better understanding of the spatial correlation in productivity among 

herring stocks in the northeast Pacific offers an approach that can help differentiate 

among competing hypotheses about the drivers of productivity shifts by helping identify 

the most likely spatial scale of potential productivity drivers. For example, research on 

spatial covariation patterns among Pacific salmon (Oncorhynchus spp.) stocks revealed 

that regional-scale covariation among stock productivities on the order of a few hundred 

kilometers, suggesting that ocean processes that operate over similar spatial scales 

(e.g., temperature) are likely drivers of stock productivity (Mueter et al. 2002; Malick et 

al. 2015b). Similar research on spatial covariation of Atlantic cod (Gadus morhua) in the 

north Atlantic suggested local environmental effects could be a strong driver of 

productivity at the early life history stage because covariation among stocks decreased 

as a function of distance (Minto et al. 2014). 

Previous research has indicated that spatial covariation among herring 

recruitment time series tended to be very strong between neighboring herring stocks and 

became weaker as the distance between stocks increased (Zheng 1996). In addition, 

interrelationships among herring populations based on recruitment and weight-at-age 

time series revealed potential stock clusters (Williams and Quinn 2000b, 2000a) with 

strong covariation among recruitment deviations for herring stocks that spawn within 

certain geographic regions (Mueter et al. 2007). Therefore, correlation among stock 
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productivities could decrease to zero with increasing distance among herring stocks 

along the Pacific coast.  

In this study, I examine how productivity among Pacific herring stocks varies 

across spatial scales. I use a Bayesian state-space Schaefer model to estimate 

population-specific temporal changes in productivity of 24 Pacific herring stocks and 5 

stock aggregates from California to Alaska. I used the resulting process error deviations 

derived from the Schaefer model to examine the spatial scale and correlation patterns 

among herring stocks throughout the northeast Pacific Ocean. High correlation among 

distant stocks could indicate that large-scale ocean processes affect productivity across 

stocks; whereas, high correlation among nearby stocks could indicate that small-scale 

environmental processes affect productivity among stocks (Malick and Cox 2016). My 

research builds off of previous work by increasing the number of stocks included in 

analysis and the use of process error model as an index of productivity. This method is 

beneficial because process error models are based on the assumption that observations 

are made without error and all error occurs as an index of productivity (Polacheck et al. 

1993), which allows for variation in stock assessment methods and filters out effects of 

catch (Schaefer 1954). Using the Schaefer model with process error is valuable because 

of the limited amount of data needed to produce an estimate of productivity, therefore, 

stocks that do not have recruitment estimates can be included in this analysis.  
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Methods 

Pacific herring data 

I obtained time-series data of spawning stock biomass estimates and commercial 

catch for 24 Pacific herring stocks along the Northeast Pacific coast (Table 1; Figure 1). 

The data spanned years 1969-2018 with a minimum time series of 22 years (i.e., 1994-

2015 and 1988-2009) and a maximum time series of 50 years (i.e., 1969-2018). Across 

all stocks, the average time series length was 34 years.  

In 11 of the 24 stocks analyzed, management agencies used only spawning 

ground or aerial survey methods to estimate spawning stock biomass. For 13 of the 24 

stocks, data such as catch-at-age, weight-at-age, recruitment, natural mortality, historical 

information, and age composition were available to managers (Figure 1). For these 

stocks, management agencies integrate catch and survey data through the use of age-

structured assessments, catch-at-age assessments, or hindcasting to produce spawning 

stock biomass estimates which I used as data for analysis. It would preferable to use 

raw estimates of spawning biomass to avoid assumptions implicit in stocks assessment 

outputs (Maunder and Punt 2013; Brooks and Deroba 2015; Free et al. 2019); however, 

that data was not readily available.  

Spawning stock biomass estimates and catch for Washington stocks were 

infrequent because of small management units (i.e., individual spawning beaches); 

therefore, I aggregated stocks from 21 small spawning stocks into 3 larger spawning 

areas (Table 2). The Cherry Point, WA, stock is genetically distinct from other 

populations (Small et al. 2005; Stick et al. 2014) and was treated as an individual stock 

in this analysis. Semiahmoo Bay, WA, which is not considered genetically distinct from 

the Puget Sound population (Small et al. 2005), occupies the same management area 

(i.e., area 20A) as the Cherry Point stock. Accordingly, I combined the data from the 

Semiahmoo Bay stock with the data for the Cherry Point stock.  
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Figure 1. Locations of Pacific herring stocks used in analysis. Triangles 
indicate survey outputs and circles indicate model outputs. Black 
ovals identify stocks consolidated for stock aggregates.  

Commercial landings came from the sac-roe fishery (i.e., seine and gillnet), the 

food and bait fishery (i.e., seine, gillnet, and lampara), and the converted estimates from 

the spawn-on-kelp fishery (i.e., pound structures). Catch time series from British 

Columbia included estimates from the herring-reduction fishery prior to 1970, which 

include juvenile herring resulting in catch estimates that often were larger than the 

biomass estimates; therefore, the years prior to the reduction fishery (i.e., 1951-1969) for 

B.C. were not included in the analysis. Further, the B.C. data were truncated to begin in 

1988 to account for the change in spawning ground surveys from a surface survey to a 

dive survey that occurred in 1987 (Schweigert 1993; Benson 2012). 
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Additionally, I treated 22 of the individual stocks as 5 aggregates to account for 

varying spatial scales of management and stock dynamics. In particular, I aggregated 7 

stocks in the Bering Sea: Norton Sound, Cape Romanzof, Nelson Island, Nunivak 

Island, Cape Avinof, Goodnews Bay, and Security Cove. I aggregated the 5 stocks in 

Southeast Alaska, the 5 stocks in British Columbia, and the 3 Puget Sound stocks. The 

2 stocks in California, Tomales Bay and San Francisco Bay, were aggregated into one 

stock aggregate (Table 2; Figure 1).  

Productivity indices 

I used the Schaefer surplus production model with process error to estimate the 

intrinsic rate of growth, 𝑟, and the equilibrium unfished biomass, 𝐵0, (Schaefer 1954; 

Hilborn and Walters 1992; Polacheck et al. 1993) for each stock 𝑖. In the surplus 

production model, the equation for total biomass took the form,  

𝐵𝑖,𝑡 = (𝐵𝑖,𝑡−1 + 𝑟𝑖𝐵𝑖,𝑡−1 (1 −
𝐵𝑖,𝑡−1

𝐵𝑖,0
⁄ ) − 𝐶𝑖,𝑡−1) 𝑒𝑤𝑖,𝑡 (Equation 1) 

where 𝐵𝑖,𝑡 is the biomass of stock 𝑖 in year 𝑡, 𝐶𝑖,𝑡 is the catch of stock 𝑖 in year 𝑡, and 𝑤𝑖,𝑡 

is a log-normally distributed process error term for stock 𝑖 in year 𝑡 where 

𝑤𝑖,𝑡 ~ log𝑁(0, 𝜎𝑖,𝑝𝑟𝑜𝑐). The Schaefer model approximates the overall change in biomass 

due to somatic growth, recruitment, natural mortality, and catch (Hilborn and Walters 

1992; Millar and Meyer 2000; Punt 2003). The use of the Schaefer model with process 

error enabled me to process all stocks with the same criteria. The process error term 𝑤 

accounts for variation that is not explained by the Schaefer model (Hilborn and Walters 

1992) and can be used as an index of productivity that is useful for comparing stocks 

(Polacheck et al. 1993). 
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Table 1. Summary of biomass and catch data sets used in analysis, arranged North to South. 

STOCK 
CODE 

STOCK MANAGEMENT AREA REGION YEARS USED IN 
MODEL 

SOURCES 

NORT Norton Sound Arctic-Yukon-Kuskokwim Alaska 1990-2015 1 
ROMAN Cape Romanzof Arctic-Yukon-Kuskokwim Alaska 1994-2015 2 
NELS Nelson Island Arctic-Yukon-Kuskokwim Alaska 1985-2015 3 
NUNI Nunivak Island Arctic-Yukon-Kuskokwim Alaska 1985-2015 3 
AVI Cape Avinof Arctic-Yukon-Kuskokwim Alaska 1988-2015 3 
GOOD Goodnews Bay Arctic-Yukon-Kuskokwim Alaska 1982-2015 3 
SEC Security Cove Arctic-Yukon-Kuskokwim Alaska 1982-2015 3 
TOG Togiak Bay Togiak Bay Alaska 1980-2016 4, 5, 6, 7, 8 
PWS Prince William Sound Prince William Sound Alaska 1977-2015 9, 10, 11 
TEN Tenakee Inlet Southeast  Alaska 1979-2010 12 
HOON Hoonah Sound Southeast  Alaska 1990-2015 12 
SIT Sitka Sound Sitka Alaska 1979-2018 13, 14, 15, 
ERN Ernest Sound Southeast  Alaska 1976-2016 12 
CRG Craig/Klawock Southeast  Alaska 1988-2016 12 
PRD Prince Rupert District Prince Rupert District British Columbia 1988-2017 12 
HG Haida Gwaii Haida Gwaii British Columbia 1988-2017 16 
CC Central Coast Central Coast British Columbia 1988-2017 16 
WCVI West Coast Vancouver Island West Coast Vancouver Island British Columbia 1990-2017 16 
SOG Strait of Georgia Strait of Georgia British Columbia 1988-2017 16 
CHERRY Cherry Point/Semiahmoo Bay Area 20A Washington 1973-2016 17, 18 
NWA Northern Puget Sound Northern Puget Sound Washington 1975-2016 17, 18 
SWA South Central Puget Sound South-Central Puget Sound Washington 1976-2016 17, 18 
TOM Tomales Bay Tomales Bay California 1974-2006 19 
SFB San Francisco Bay San Francisco Bay California 1980-2016 20 

Sources:  

1Menard, J., Soong, J., Kent, S., Harlan, L., and Leon, J. 2017. 2015 Annual Management Report North Sound, Port Clarence, and Arctic, Kotzebue areas. Alaska Department of 
Fish and Game, Fishery Management Report No. 17-15, Anchorage. 
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2Estensen, J.L., Schmidt, S.N., Garcia, S., Gleason, C.M., Borba, B.M., Jallen, D.M., Padilla, A.J., and Hilton, K.M. 2017. Annual Management Report Yukon Area, 2015. Alaska 
Department of Fish and Game, Fishery Management Report No. 17-1, Anchorage. 
3Poetter, A.D., Tiernan, A., and Lipka, C. 2016. 2015 Kuskokwim area management report. Alaska Department of Fish and Game, Fishery Management Report No. 16-38, 
Anchorage. 
4Buck, G.B. 2015. Abundance, age, sex, and size statistics for Pacific herring in Togiak District of Bristol Bay, 2014. Alaska Department of Fish and Game, Fishery Data Series 
No. 15-35, Anchorage.  
5Glick, W.J., Browning, J.B., Regnart, J.R., Weiland, K.A., Anderson, C.J., Cross, B.A., Crawford, D., Gray, D., Miller, J., and Rowell, K.A. 1999. 1998 Annual Management Report. 
Alaska Department of Fish and Game, Regional Information Report 2A99-18, Anchorage. 
6Jones, M., Sands, T., Elison, T., Salomone, T., Brazil, C., Buck, G., West, F., Kreig, T., and Lemons, T. 2016. 2015 Bristol Bay Area Annual Management Report. Alaska 
Department of Fish and Game, Fishery Management Report No. 16-13, Anchorage. 
7Nelson, M.L., Bill, D.L., Russell, R.B., Skrade, J.R., Bucher, W.A., Eggers, D.M., Minard, R.E., and Yuen, H. 1983. 1982 Bristol Bay Annual Management Report. Alaska 
Department of Fish and Game, Division of Commercial Fisheries, Dillingham. 
8Salomone, P., Morstand, S., Sands, T., Jones, M., Baker, T., Buck, G., West, F., and Krieg, T. 2011. 2010 Bristol Bay Area Annual Management Report. Alaska Department of 
Fish and Game, Fishery Management Report No. 11-23, Anchorage. 
9Botz, K., Sheridan, T., Wiese, A., Scannell, H., Brenner, R., and Moffitt, S. 2013. 2011 Prince William Sound area finfish management report. Alaska Department of Fish and 
Game, Fishery Management Report No. 13-11, Anchorage. 
10Haught, S., Botz, J., Moffitt, S., and Lewis, B. 2017. 2015 Prince William Sound area finfish management report. Alaska Department of Fish and Game, Fishery Management 
Report No. 17-17, Anchorage. 
11Sheridan, T., Botz, J., Wiese, A., Moffitt, S., and Brenner, R. 2014. 2013 Prince William Sound area finfish management report. Alaska Department of Fish and Game, Fishery 
Management Report No. 14-43, Anchorage. 
12Coonradt, E., Harris, D., Thynes, T., and Walker, S. 2017. 2017 Southeast Alaska herring spawn-on-kelp pound fishery management plan. Alaska Department of Fish and 
Game, Division of Commercial Fisheries, Regional Information Report 1J17-01, Douglas. 
13Davidson, B., D. Gordon, D. Harris, T. Thynes, and S. Walker. 2013. 2011 and 2012 Southeast Alaska commercial herring fishery Annual Management Report. Alaska 
Department of Fish and Game, Fishery Management Report No. 13-48, Anchorage. 
14Alaska Department of Fish and Game. 2018. Southeast Alaska Herring. Available from http://www.adfg.alaska.gov/index.cfm?adfg=commercialbyareasoutheast.herring#harvest 
[accessed 4 March 2019].  
15Hebert. K. 2017. 2018 Report to the Alaska Board of Fisheries: Southeast Alaska-Yakutat herring fisheries. Alaska Department of Fish and Game, Fishery Management Report 
No. 17-58, Anchorage. 
16Matthew Grinnell, Fisheries and Oceans Canada, Nanaimo, British Columbia, personal communication.  
17Todd Sandell, Washington Department of Fish and Wildlife, Mill Creek, Washington, personal communication. 
18Stick, K.C., Lindquist, A., and Lowry, D. 2014. 2012 Washington State herring stock status report. Washington Department of Fish and Wildlife, Fish Program Technical Report 
No. FPA 14-09. 
19 Watanabe, R. 2006. Summary of the 2005-2006 Tomales Bay Herring Fishery Season. California Department of Fish and Game, Bodega Bay Field Office. 
20Thomas Greiner, California Department of Fish and Wildlife, Santa Rosa, California, personal communication.  
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Table 2. Stock aggregate groupings used in analysis. 

Stock Code Stock Smaller spawning aggregates included: 
Years used 
in model 

AYK 
Arctic-Yukon-
Kuskokwim 

Norton Sound, Cape Romanzof, Nelson Island, Nunivak 
Island, Cape Avinof, Goodnews Bay, Security Cove 

1982-2015 

SEAK 
Southeast 
Alaska 

Tenakee Inlet, Hoonah Sound, Sitka Sound, Ernest 
Sound, Craig/Klawock 

1969-2018 

BC 
British 
Columbia 

Prince Rupert District, Haida Gwaii, Central Coast, 
West Coast Vancouver Island, Strait of Georgia 

1988-2017 

PS Puget Sound 
Cherry Point, Northern Puget Sound, South Central 
Puget Sound 

1977-2016 

CA 
California 
Coast 

Tomales Bay, San Francisco Bay 
1980-2016 

NWA 
Northern Puget 
Sound 

Northwest San Juan Islands, Interior San Juan Islands, 
Fidalgo Island, Samish/Portage Bay, Semiahmoo Bay, 
Cherry Point 

 

SJDF1 
Strait of Juan 
de Fuca 

Discovery Bay, Sequim Bay, Dungeness Bay 
 

SWA 
South Central 
Puget Sound 

Port Susan, Skagit Bay, Holmes Harbor, South Hood 
Canal, Quilcene Bay, Port Gamble, Port Orchard/Port 
Madison, Elliot Bay, Quartermaster Harbor, Purdy, 
Wollochet Bay, Squaxin Pass 

 

1Strait of Juan de Fuca was not included in analysis. 

The majority of Pacific herring stocks were fished prior to the beginning of their 

respective biomass estimates; therefore, I initialized the model at the first observed 

biomass estimate rather than 𝐵0. Based on the properties of the Schaefer model, if a 

stock was missing catch data, the model could not run to completion; therefore, I 

analyzed years that had catch data with the corresponding biomass observations (Table 

1). I initialized the process error time series at the second time step (i.e., 𝑡 = 2) (Millar 

and Meyer 2000). 

Prior Specification 

 For estimated model parameters for stock 𝑖, 𝑟𝑖, 𝐵𝑖,0, and �⃑⃑� 𝑖, the negative log-

likelihood function is  

ℓ(𝑌𝑖,1, 𝑌𝑖,2 … , 𝑌𝑖,𝑛|𝑟𝑖, 𝐵𝑖,0, 𝑤𝑖,2, 𝑤𝑖,3 … ,𝑤𝑖,𝑛−1) ∝  ∑
1

2𝜎2 (log𝑌𝑖,𝑡 − log𝐵𝑖,𝑡)
2

𝑖,𝑛

𝑡=1

         (Equation 2) 

 where 𝑌𝑖 is the observed biomass of stock 𝑖 at time 𝑡, 𝑖, 𝑛 is the length of the time 

series of stock 𝑖, and 𝐵𝑖,𝑡 is the modeled biomass estimate for stock 𝑖 at time 𝑡, where 𝐵𝑡 

is a function of Equation 1. I estimated model parameters using Markov chain Monte 
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Carlo (MCMC) Bayesian methods, which typically stabilizes model fitting via prior 

distributions of parameters (Pedersen and Berg 2017). Informative priors for the intrinsic 

rate of growth for stock 𝑖, 𝑟𝑖 , were log-normally distributed as 𝑟 ~ log𝑁 (𝜇𝑟, 𝜎𝑟) for all 

stocks and stock groups and assigned as 𝑟 ~ log𝑁 (0.5, 0.5). For each stock and stock 

group 𝑖, equilibrium unfished biomass, 𝐵0, was assigned as a weakly informative prior 

derived from existing information on estimated carrying capacity for stocks in the 

northeast Pacific (Perry and Schweigert 2008) and expected unfished biomass 

estimates for herring and other forage fish stocks (Pikitch et al. 2012) (Table 3). To test 

sensitivity to the prior, I used alternative starting values of the 𝐵0 mean and tightened 

standard deviations and to test sensitivity to the 𝑟 parameter values of 𝑟 ~ log𝑁 (0.7, 0.7) 

and 𝑟 ~ log𝑁 (0.3, 0.3) were tested. The process error standard deviation was initially set 

for each stock 𝑖 at 𝜎𝑖,𝑝𝑟𝑜𝑐 = 0.1 then adjusted as needed, from 𝜎𝑖,𝑝𝑟𝑜𝑐 = 0.05 to 𝜎𝑖,𝑝𝑟𝑜𝑐 =

0.4 to achieve better model convergence (Knape 2008; Anderson et al. 2017) (Table 3). 

I used the Metropolis-Hastings algorithm for MCMC simulations implemented in 

the MCMCpack package in R (Martin et al. 2011; R Core Team 2018) to sample 

posterior distributions. Prior distributions were multiplied by the likelihood function to 

obtain posterior probability distribution estimates for model parameters (Gelman et al. 

1995; Millar and Meyer 2000; Pedersen and Berg 2017). The full negative log posterior 

can be expressed as the following function 

− log 𝑃 (𝑌𝑖,1, 𝑌𝑖,2 … , 𝑌𝑖,𝑛|𝑟𝑖, 𝐵𝑖,0, �⃑⃑� 𝑖)  ∝  ∑
1

2𝜎2 (log𝑌𝑖,𝑡 − log𝐵𝑖,𝑡)
2

𝑖,𝑛

𝑡=1

 

+ 
1

2𝜎𝑟𝑖
2 (log 𝑟𝑖 − log 𝜇𝑟𝑖

) 

+
1

2𝜎𝐵𝑖,0

2 (log𝐵𝑖,0 − log 𝜇𝐵𝑖,0
)2 

+
1

2𝜎𝑖,𝑝𝑟𝑜𝑐
2 ∑𝑤𝑖,𝑡

2

𝑛

𝑡=2

                                (Equation 3) 

The initial MCMC runs used three chains of 50,000 iterations keeping every 10th 

sample with the first 1,000 discarded as burn-in. I used disparate starting values for each 

chain to achieve representative convergence. The first chain was initialized at the logged 

mean of the priors (i.e., the maximum-likelihood parameter estimates), the second chain 
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was the log-transformed mean of the priors multiplied by 1.5 for r and multiplied by 0.66 

for 𝐵0, and the third chain was the log-transformed mean of the priors multiplied by 0.66 

for r and multiplied by 1.5 for 𝐵0. I did this to account for the correlation between 𝑟 and 

𝐵0 (Hilborn and Walters 1992; Forrest et al. 2010). Based on the MCMC results, to 

improve effective sample size I extended the number of sampling iterations up to 

5,000,000. I tested convergence and effective sample size using posterior predictive 

checks from the coda package in R and the Gelman-Rubin statistic (�̂�) (Gelman et al. 

1995; Plummer et al. 2006; R Core 2018).  

Table 3. Priors used for MCMC simulations, process error standard 
deviation, and resulting 𝒓 and 𝑩𝟎 parameters. * Indicates that the 
MCMC simulations did not converge. 

Stock 
Code 𝒓 Prior 𝒓 Mean 𝒓 SD 𝑩𝟎 Prior 𝑩𝟎 Mean 𝑩𝟎 SD 𝝈𝒑𝒓𝒐𝒄 

Nort 0.5 ± 0.5 0.193 0.121 80 ± 80 84.125 44.522 0.05 

Roman* 0.5 ± 0.5 0.069 0.082 9 ± 2 8.352 2.051 0.2 

Nels* 0.5 ± 0.5 0.279 0.215 80 ± 40 26.936 32.796 0.05 

Nuni* 0.5 ± 0.5 0.014 0.043 45 ± 10 41.899 10.911 0.4 

Avi* 0.5 ± 0.5 0.103 0.102 15 ± 5 13.809 4.753 0.05 

Good 0.5 ± 0.5 0.213 0.015 50 ± 5 48.158 5.171 0.05 

Sec 0.5 ± 0.5 0.254 0.055 7 ± 7 12.267 2.831 0.1 

Tog 0.5 ± 0.5 1.224 0.323 190 ± 190 140.284 13.099 0.05 

PWS 0.3 ± 0.3 0.852 0.188 29 ± 29 45.243 8.458 0.05 

Ten 0.5 ± 0.5 0.395 0.142 8 ± 8 7.885 3.002 0.2 

Hoon* 0.3 ± 0.3 0.001 0.014 10 ± 10 0.656 2.841 0.05 

Sit* 0.5 ± 0.5 0.335 0.094 80 ± 80 147.771 33.750 0.1 

Ern* 0.3 ± 0.3 0.327 0.265 5 ± 5 1.707 1.401 0.1 

Crg 0.5 ± 0.5 0.156 0.019 47 ± 47 81.500 29.067 0.05 

PRD* 0.5 ± 0.5 0.189 0.019 52 ± 52 97.851 25.898 0.05 

HG* 0.5 ± 0.5 0.012 0.026 60 ± 60 5.381 8.429 0.1 

CC* 0.5 ± 0.5 0.192 0.020 61 ± 61 151.136 35.345 0.05 

WCVI 0.5 ± 0.5 0.118 0.015 150 ± 150 221.691 96.105 0.05 

SOG* 0.5 ± 0.5 0.307 0.077 200 ± 200 283.903 146.296 0.05 

Cherry* 0.3 ± 0.3 0.001 0.005 15 ± 15  0.859 4.861 0.1 

NWA 0.5 ± 0.5 1.190 0.254 10 ± 10 8.994 0.464 0.1 

SWA 0.5 ± 0.5 0.672 0.176 6 ± 6 8.695 0.882 0.1 

Tom* 0.5 ± 0.5 0.170 0.081 30 ± 30 13.530 16.011 0.05 

SFB* 0.5 ± 0.5 0.279 0.097 193 ± 193 105.183 58.021 0.05 

AYK 0.5 ± 0.5 0.442 0.036 215 ± 215 87.296 7.022 0.05 

SEAK 0.5 ± 0.5 0.267 0.027 200 ± 200 237.706 49.582 0.05 

BC* 0.5 ± 0.5 0.246 0.027 200 ± 200 443.328 75.887 0.05 

PS* 0.3 ± 0.3 0.075 0.050 25 ± 25 34.095 14.585 0.1 

CA* 0.5 ± 0.5 0.204 0.081 250 ± 250 238.919 168.571 0.05 
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Spatial covariation 

I expect productivity among Pacific herring stocks to be correlated positively at 

short distances and decrease to zero as a function of distance apart from stocks. To 

determine the degree of correlation, I calculated the Pearson correlation coefficient for 

each unique pair of process error time-series derived from the Schaefer surplus 

production model. I made a total of 406 (i.e., (𝑁2 − 𝑁) 2⁄ ) (Peterman et al. 1998) 

comparisons. I removed the first value of the process deviations for all of the 24 stocks 

and 5 stock aggregates and fit a nonparametric covariance function (Bjornstad and Falck 

2001; Pyper et al. 2005; Malick et al. 2015a) to the pairwise correlation coefficients as a 

function of great-circle distance between the spawning grounds for each pair of stocks. I 

calculated confidence intervals for each covariance function by bootstrapping the 

estimate procedure 2000 times.  

I used two metrics to summarize the covariance functions: (1) the y-axis 

intercept, which provides an estimate of the correlation at zero distance (CZD), and (2) 

the 50% correlation scale, which provides a metric of the degree of correlation decline 

with increasing distance between herring stocks (Mueter et al. 2002; Malick et al. 

2015a). 
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Results 

Bayesian model convergence was achieved for 10 of 24 stocks and 2 of 5 stock 

groups based on criteria of �̂� < 1.1 with an effective sample size greater than 1,000 for 

both 𝑟 and 𝐵0. The effective sample size for the 𝑟 parameter was the disqualifying 

criterion for the majority of stocks that did not converge (55%). I excluded stocks that 

failed to converge on 𝑟 and 𝐵0 in analysis of those parameters because the simulations 

could not produce reliable estimates of the two parameters (Table 3). All stocks 

analyzed, except Ernest Sound (Ern), had convergence by both criteria for the process 

error, �⃑⃑� , estimates. Ernest Sound failed convergence on 26% (11 out of 41) of the 

process error estimates but was included in further analysis. Twenty-two stocks 

analyzed had acceptable qualitative model fits using the maximum posterior density 

estimate and 15 stocks had acceptable qualitative model fits using the median posterior 

density (MPD) estimate estimated via MCMC (Figure 2). One stock (i.e., NWA) had an 

unreliable maximum posterior density estimate and I did not include this individual stock 

in analysis of covariation, resulting in a total of 23 stocks and 5 stock groupings analyzed 

for covariation (Figure 2).  
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Figure 2. Time series of Schaefer surplus production model fits incorporating log-normally distributed process errors. 
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Stock productivity trends  

Time series of estimated process deviations, �⃑⃑� , (Figure 3) served as a 

productivity index and demonstrated high variability among stocks. Across the 28 

process deviation time series, I observed three qualitative trends. The first, exemplified 

by Cape Avinof (Figure 3, Avi), was characterized by a peak in productivity early in the 

series followed by a gradual decline with a small but abrupt increase in productivity 

toward the end of the series. The second trend was high variability in productivity with no 

obvious increase or decrease in productivity throughout the time series. This was most 

evident in the South Central Puget Sound stock (Figure 3, SWA) and the Prince Rupert 

District stock (Figure 3, PRD). The third trend was gradual changes in production, 

typically increasing or decreasing over many years, as exemplified by the Hoonah 

Sound stock (Figure 3, Hoon).  

Prince William Sound (PWS) exhibited increasing productivity in the years prior 

to the 1989 Exxon Valdez oil spill, peaking in 1992. Since the peak, productivity has 

been declining and has remained negative since 1995, consistent with other studies of 

PWS productivity (Figure 3) (Shelton et al. 2012; Ward et al. 2017). Four stocks in British 

Columbia, Prince Rupert District, Central Coast (CC), West Coast Vancouver Island 

(WCVI), and Strait of Georgia (SOG), had the lowest productivity between 2003 and 

2005 and have been steadily increasing since (Figure 3). Twelve stocks had increasing 

trends in the last five years and 11 stocks have decreasing trends in the same time 

period. 

Reliable estimates for 10 individual stocks and 2 stock groups from MCMC 

simulation convergence were analyzed for posterior 𝑟 and 𝐵0 estimates (Table 3; Figure 

4). Point estimates of 𝑟 and 𝐵0 were highly variable across stocks. The majority of stocks 

(88%) have 𝑟 estimates less than 0.5 indicating low growth rates for most of the 

populations in the northeast Pacific (Table 3; Figure 4). Only Northern Puget Sound 

(NWA) (1.19 ± 0.25), South Central Puget Sound (0.67 ± 0.18), Togiak Bay (Tog; 1.22 ± 

0.32), and Prince William Sound (0.85 ± 0.19) had estimates greater than 0.5. For stocks 

with 𝐵0 estimates over 50,000 tons, all had 𝑟 estimates less than 0.35 with the exception 

of Togiak Bay (140,284 ± 13,099 tons) and Arctic-Yukon-Kuskokwim stock group (AYK) 

(87,296 ± 7,022 tons) (Table 3; Figure 4). 



16 

 

Figure 3. Time series of process errors, �⃑⃑⃑� , from a Schaefer model for 27 Pacific herring stocks. Red lines indicate stock 
aggregates. 
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Figure 4. Posterior 𝒓 and 𝑩𝟎 estimates for 24 Pacific herring stocks and 5 
stock aggregates. Squares indicate converged median posterior 
density estimates with error bars. Circles indicate non-converged 
median poster density estimates. Color designates location of 
stocks. 
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Figure 5. Pacific herring time series from the Schaefer surplus production 
model process errors. Open circles (red) represent negative values 
and filled circles (blue) indicate positive values. Horizontal line 
indicates break for stock aggregates.  

Common stock productivity trends 

Large-scale spatial synchrony was not evident based on the correlations among 

�⃑⃑�  time series (Figure 5), but stocks in proximity have similar trends over particular 

periods in their time series. In particular, trends between nearby stocks were prevalent 

during positive production periods (Figure 5). There was a period of positive production 

during the early part of the time series for all B.C stocks; however, the synchrony did not 

exist throughout the entire time series for all stocks (Figure 5). Prince Rupert District, 

Central Coast, West Coast Vancouver Island and Strait of Georgia had some degree of 

synchrony during the later part of the time series. These trends were opposite of three 

stocks in Southeast Alaska. Sitka Sound (Sit), Ernest Sound (Ern), and Craig/Klawock 

(Crg) had synchrony throughout the time series, which did not extend to the other 

Southeast Alaska stocks in Tenakee Inlet (Ten) and Hoonah Sound. Prince William 

Sound and Goodnews Bay (Good) had similar trends throughout the time series. The 
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Arctic-Yukon-Kuskokwim and Southeast Alaska (SEAK) stock groups had opposite 

patterns of production (Figure 5).  

Spatial covariation 

Productivity indices for herring stocks in the northeast Pacific were, on average, 

not correlated (mean correlation across all comparisons �̅� = 0.030; Figure 6). However, 

the larger stock aggregates showed evidence of correlation. Arctic-Yukon-Kuskokwim 

was strongly negatively correlated (𝑟 = -0.716) with the Southeast Alaska stock group 

and had a strong positive correlation (𝑟 = 0.554) with the British Columbia (BC) stock 

group (Figure 7). Southeast Alaska and British Columbia had a strong negative 

correlation (𝑟 = -0.642) (Figure 7). Puget Sound (PS) and California (CA) stock grouping 

had only weak correlations with all stock groups (Figure 7).  

In Southeast Alaska, Hoonah Sound and Tenakee Inlet, which are 20 km apart, 

were highly correlated (𝑟 = 0.62), but both stocks were negatively correlated with Sitka 

Sound (61 km and 76 km, respectively; 𝑟 = -0.82 and -0.21, respectively). However, 

Sitka Sound was highly positively correlated with Ernest Sound, 237 km away, and 

Craig/Klawock, 232 km away (𝑟 = 0.54 and 0.94, respectively; Figure 6). 

The British Columbia stock aggregate showed a significant positive correlation 

between four of the five individual stocks when compared to the aggregate and to each 

individual population. The only British Columbia stock that did not show a significant or 

positive correlation with the stock aggregate was Haida Gwaii (HG) (𝑟 = -0.22), which, 

instead, showed a weak positive correlation with the Southeast Alaska stock group (𝑟 = 

0.24). 
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Figure 6. Pairwise correlation coefficients between Pacific herring process 
error deviation time series. Negative correlations between stocks 
are shown in shades of red and positive correlations are shown in 
shades of blue. Stocks are arranged north (top, left) to south 
(bottom, right). 
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Figure 7. Pairwise correlation coefficients between Pacific herring stock 
aggregates process error deviation time series. Negative 
correlations between stocks are shown in shades of red and 
positive correlations are shown in shades of blue. Stocks are 
arranged north (top, left) to south (bottom, right). 

There was weak positive correlation for productivity indices of herring stocks in 

the northeast Pacific (Figure 8). The fitted covariance function indicated weak 

covariation across all distances among stocks, hovering around zero as distance 

between stock increased. Correlation at zero distance (i.e., the 𝑦 intercept of the 

covariance function) was weakly positive (CZD = 0.19, 97.5% CI = -0.01-0.40).  

There was a small increase in correlation between 2,000-3,000 km distance 

between spawning grounds (Figure 8). These positive correlations existed between the 

Arctic-Yukon-Kuskokwim stock grouping and the British Columbia stock grouping (i.e., 
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2,377 km apart; Figure 7). These two stock groupings had a strong positive correlation (𝑟 

= 0.55). When examined at the individual stock level, correlations existed between the 

two regions, though were not as strong at the individual stock level.  

 

Figure 8. Pairwise correlation as a function of distance between locations of 
data pairs among Pacific herring process errors time-series. Solid 
curve represents the estimated smooth nonparametric covariance 
function, with 95% confidence band shown with the grey polygon. 
Red triangles indicate stock aggregates. 
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Discussion 

Marine fish population dynamics are influenced at multiple spatial scales by 

oceanic conditions, yet linking ocean processes to fish productivity, especially for forage 

fish species such as Pacific herring, can be challenging without understanding the scale 

of connectivity among stocks (Mueter et al. 2002, 2007). A useful precursor to analyzing 

environmental effects on stock dynamics is to determine spatial and temporal variation in 

processes among stocks in nearby areas using correlation and covariation analysis 

(Peterman et al. 1998). Understanding the spatial scale of covariation among fish stocks 

can assist in providing more robust assessment models linking oceanic variation to stock 

productivity (Mueter et al. 2002).  

I examined the spatial extent of covariation in productivity among Pacific herring 

stocks in the northeast Pacific Ocean to help identify the spatial scale at which oceanic 

processes are influencing herring population dynamics. The index of productivity 

provided by the process error term used in the Schaefer model accounts for density-

independent effects on abundance, provides an estimate of variation not accounted for 

in the best-fit abundance models for each stock, and filters out effects of fishing on 

populations (Schaefer 1954; Hilborn and Walters 1992; Polacheck et al. 1993). 

Assumptions implicit in the assessment models, such as time-varying natural mortality 

and weight-at-age (DFO 2019), and quality of data used by management agencies might 

affect the results of the analysis; however, it is useful to look at stock productivity for 

Pacific herring using process errors because stocks are monitored and assessed in 

different ways and estimates of recruitment are not available for roughly half of the 

stocks analyzed.  

My results suggest that oceanic processes influencing year-to-year variability in 

productivity of Pacific herring operate at small spatial scales. Spatial covariation at zero 

distance was only slightly greater than zero, indicating that productivity is more likely 

independent among stocks. This was evident both positive and negative correlations 

among stocks within the same regions. However, the low correlation at zero distance 

could represent variability caused by sampling error or spatial dependence at scales 

different than the available data (Cressie 1993; Malick et al. 2015a).Habitat features, 

contributing to oceanographic mixing, could explain the variation in regional correlation 
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patterns, providing a useful next step in investigation. In the 5 Southeast Alaska 

populations spawning occurs within differing habitats, impacted by oceanographic 

mixing. The Hoonah Sound and Tenakee Inlet stocks spawn primarily in fjords (Thornton 

et al. 2010; Hebert 2017) where there is high water column stratification (Farmer and 

Freeland 1983; Cottier et al. 2010); whereas, the other three stocks in Southeast Alaska 

spawn in larger bays or sounds (Thornton et al. 2010; Hebert 2017) which have more 

overturning circulation (Sundberg 1981; Weingartner et al. 2009) and are more 

connected to the open ocean.  

Spatial correlations at greater distance (e.g., 2,000-3,000 km) increased slightly. 

Puget Sound stock aggregate and the California stock aggregate were not strongly 

correlated with any stock groups, which could be due to their spatial isolation. The 

Arctic-Yukon-Kuskokwim stock aggregate was strongly negatively correlated with the 

Southeast Alaska stock aggregate suggesting differing responses to oceanic processes 

are driving stock productivity. The British Columbia stock aggregate was also negatively 

correlated with the Southeast Alaska stock aggregate, but moderately positively 

correlated with the Arctic-Yukon-Kuskokwim stock. Numerous mechanisms account for 

the correlations among the Arctic-Yukon-Kuskokwim stock, the B.C. coast, and 

Southeast Alaska stock aggregates. Localized adaptation to sea surface temperatures, 

ocean currents, strength of localized upwelling (Thomson 1981; Danielson et al. 2014) 

are possible hypotheses, but the correlation among stock aggregates is likely a 

combination of interacting mechanisms, such as sea-surface temperature and current 

strength. 

The British Columbia stock aggregate showed a significant positive correlation 

between four of the five individual stocks. This suggests connection among stocks, 

which could indicate an oceanic process linking these 4 populations or population links 

as identified through genetic analysis (Haegele and Schweigert 1985; Beacham et al. 

2008). The only British Columbian stock that did not show a significant or positive 

correlation with the stock aggregate was Haida Gwaii, which showed a weak positive 

correlation with the Southeast Alaska aggregate stock group. Decreasing productivity 

trends exist for 4 of 5 Southeast Alaska stocks, which could point to similar 

oceanographic processes or habitat features driving similar production between the two 

regions, but would require further investigation.  
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When examined at the individual stock level, correlations were not as strong as 

the aggregates for most individual stocks, suggesting small-scale mechanisms driving 

dynamics at the local level. The discrepancy between stock aggregates and individual 

stocks could be explained through portfolio effects (Figge 2004), where a diversity of 

stocks is more stable across the aggregate of stocks (Schindler et al. 2010). In fact, 

biomass observations were considerably less stable as individual stocks for BC than as 

the stock aggregate (Table A1). Evidence of portfolio effects existed for all stock 

aggregates (Table A1) and has been previously identified for Pacific herring Puget 

Sound (Siple and Francis 2016). Maintaining diversity and variability in spawning stock is 

critical for maintaining stability among populations (Siple and Francis 2016). The small 

difference in variability between the Southeast Alaska stock aggregate and individual 

stocks (Table A1) could be due to the number of stocks included in the analysis. There 

are more individual stocks in Southeast Alaska than analyzed here (Hebert 2017), but 

data was unavailable from all stocks to perform the analysis. 

The local and regional correlation among stocks could be considered in 

management decisions and the delineation of management areas particularly if 

managers believe that sub-stocks exist (Siple and Francis 2016; Punt et al. 2018). 

Developing spatially structured population dynamics models at the scale at which stock 

correlations are present could help the local-scale management of harvest efforts (Figge 

2004; Schindler et al. 2010; Benson et al. 2015) and buffer populations from collapse or 

loss of stock structure, especially if portfolio effects might exist (Beverton 1990; 

Essington et al. 2015; Siple and Francis 2016).  

A challenge to understanding the correlation patterns among nearby stocks is 

that commercial fisheries could mask or exacerbate the effects of ocean conditions 

(Essington et al. 2015). Forage fish such as herring are particularly vulnerable to fishing-

induced collapses because of their school behavior and spatial distributions (Beverton 

1990). Collapses of Pacific herring were evident during the reduction fishery (i.e., 1880-

1969) where many stocks were at their lowest recorded biomass (Thornton et al. 2010), 

though stocks have recovered since that time. Commercial fisheries have existed on all 

of the stocks analyzed and many stocks are currently experiencing fishing pressure. 

Using the productivity or process error term, �⃑⃑� , in population dynamics models could 

help avoid overfishing and population collapses in years with low or decreasing 
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productivity by identifying when fishing pressure should be reduced (Essington et al. 

2015).  

Limitations 

Achieving reliable estimates of parameters 𝑟 and 𝐵0 from MCMC simulations or 

maximum posterior density estimates can be challenging based on the available data for 

a stock. MCMC simulations can be unreliable due to non-representative sampling from 

the posterior distribution, e.g., lack of chain convergence indicates the MCMC simulation 

did not fully explore the posterior distribution (Gelman et al. 1995). Poor or lacking 

MCMC convergence could arise if the Schaefer model is an inappropriate structure for 

biomass dynamics of herring. For instance, the Schaefer model assumes that herring 

stocks follow a symmetric population growth function of biomass (Hilborn and Walters 

1992). This simple form is intended to capture the main effect of fishing on spawning 

biomass and production. Changes in biomass independent of the underlying Schaefer 

growth model would then be attributable to external forcing of population growth 

(Schaefer 1954). If fishing is, indeed, the dominant effect driving interannual variability or 

trends in herring biomass, then the process error estimates would be small and probably 

weakly estimated, resulting in poor MCMC convergence. For many stocks, reduced 

fishing pressure was followed by increasing biomass in subsequent years, as predicted 

by the Schaefer model (see WCVI and CC in Figure 2); however, in some stocks, such 

as Cherry Point and Haida Gwaii (see Cherry and HG in Figure 2), stock biomass did not 

recover, or recovered far more slowly than predicted, which could indicate that forces 

external to the Schaefer model structure are affecting recovery for those stocks. In these 

cases, poor MCMC convergence is likely to occur on Schaefer model parameters 𝑟 and 

𝐵0 because of weak association of the model predictions to the actual biomass data.  

Additionally, convergence could be affected by the input data used. Spawning 

biomass estimates used were a combination of stock assessment model outputs and 

surveyed biomass estimates. These biomass accounting methods have differing 

degrees of observation error associated with them, which could in influencing MCMC 

simulation convergence and the variability in process errors. Of the 11 stocks that used 

survey methods to estimate spawning stock biomass, 6 did not converge on estimates of 

𝑟 and 𝐵0, and 6 had high or moderate interannual variability in process errors. Whereas, 
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for the 13 stocks where the biomass accounting method included modelling efforts, only 

two stocks (PRD and Ern) had high interannual variability. The differences in process 

error variability could be attributed to the biomass accounting model is filter out process 

error, resulting in a smoothing effect from year to year.  

Alternative population dynamics, as well as model structures may improve 

parameter estimation across herring stocks in the northeast Pacific. For example, a 

delay-difference population dynamics model could bridge the gap between age-

structured models and simple surplus-production models by retaining stock-specific 

parameters for recruitment, growth, and natural mortality (Hilborn and Walters 1992; 

Meyer and Millar 1999; Millar and Meyer 2000), as well as accounting for latitudinal 

differences in age-at-maturity. A hierarchical statistical modelling approach for the 𝑟 and 

𝐵0 parameters (or stock-recruit parameters of a delay-difference model) would enable 

information sharing across stocks such that stocks with more precise parameter 

estimates provide information about parameters for stocks with poor data (Gelman 2006; 

Jiao et al. 2011; Punt et al. 2011). Hierarchical models can also be developed for 

process error parameters (Johnson and Cox 2019), which could provide a way to also 

incorporate shared oceanographic predictors.  

Several factors can create spurious correlations among process errors of stocks 

and stock aggregates, masking the real correlation patterns. For example, the largest 

contributing stock typically drives the time-series trend of an aggregate stock, as seen in 

the Southeast Alaska and California Coast stock aggregates. In these cases, the main 

correlations among the stock aggregates would mimic the largest stocks, not the actual 

correlations among the smaller individual stocks. Simulation studies examining the 

power of process error correlation analyses under different assumptions of stock 

groupings and aggregations would provide a way to determine how aggregating biomass 

data across stocks affects estimation correlation patterns and inferences about spatial 

scales of correlation (Pyper et al. 2002).  

Conclusions 

My results show weak spatial correlation existed among Pacific herring stock 

productivity indices, suggesting small-scale oceanic processes are driving stock 

dynamics. Geographic features that are similar among spawning sites may help explain 
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local correlation variation. Oceanic processes can only explain covariation in herring 

productivity to the extent that the scale of oceanographic variables is similar to that of 

herring productivity (Mueter et al. 2002). 

My results offer a first step in identifying spatial scales of productivity for Pacific 

herring stocks that can inform future work on understanding mechanisms driving herring 

productivity in the northeast Pacific Ocean. For some stocks, such as West Coast 

Vancouver Island, fishing pressure has a direct influence on stock productivity, whereas 

for others, such as Cherry Point, fishing pressure can not accurately describe the 

patterns in productivity, which suggests an oceanic process or geographic feature is 

driving production. Future studies of Pacific herring population dynamics should focus on 

small-scale processes, such as local habitat and oceanographic features.  
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Appendix 

Methods 

Portfolio effects can be calculated simply by comparing the coefficient of variation 

(CV) for aggregate populations and each subpopulation (Schindler et al. 2010), though a 

more robust method to analyze portfolio effects is account for the variation in size of the 

subpopulations (Siple and Francis 2016). Interannual variability for spawning stock 

biomass was calculated as the coefficient of variation for each individual stock and each 

of the 5 stock aggregates.  

Results 

Spawning stock biomass within stock aggregates was considerably less variable 

(average coefficient of variation, CV = 49%) than the individual stocks (average CV = 

62%; Table A1). The largest interannual variability was seen in the Puget Sound stock 

aggregate (aggregate CV = 22%, individual average CV = 48%; Table A1). For the 

British Columbia stock aggregate, the stock aggregate was 17% less variable than the 

individual stocks (aggregate CV = 31%, individual average CV = 48%; Table A1). In the 

Arctic-Yukon-Kuskokwim stock aggregate, the CV was 58%, 15% less variable than the 

individual stocks (average CV = 72%; Table A1).  

In Southeast Alaska and California, not all individual stocks that are monitored by 

agencies were included in the analysis for portfolio effects, reducing the variability 

difference between individual stocks and the stock aggregate. For the California coast 

stock aggregate, the difference between the stock aggregate (CV = 70%) was smaller 

than other groups (average individual CV = 82%; Table A1). In Southeast Alaska, the 

aggregate was only 1% less variable (CV = 63%) than the average of the individual 

stocks (CV = 64%; Table A1).  
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Table A1. Coefficient of variation in observed biomass estimates for all stocks 
and stock aggregates. 

Stock Code Mean Biomass (kt) SD (kt) CV Average CV 

Nort 37.543 8.778 23% 

72% 

Roman 3.971 0.805 20% 

Nels 7.306 9.483 130% 

Nuni 4.285 4.651 109% 

Avi 3.083 2.044 66% 

Good 7.647 8.087 106% 

Sec 6.654 3.498 53% 

AYK 58.688 33.802  58% 

Tog 116.570 22.366 19%  
PWS 51.360 52.515 102%  
Ten 5.172 3.470 67% 

64% 

Hoon 5.579 4.884 88% 

Sit 52.635 22.852 43% 

Ern 2.353 1.764 75% 

Crg 12.585 6.018 48% 

SEAK 59.347 37.561  63% 

PRD 21.722 5.327 25% 

48% 

HG 10.341 7.725 75% 

CC 22.494 10.943 49% 

WCVI 19.082 12.691 67% 

SOG 74.855 18.185 24% 

BC 150.715 46.911  31% 

Cherry 5.158 3.305 64% 

48% NWA 5.600 2.712 48% 

SWA 6.776 2.115 31% 

PS 13.606 2.936  22% 

Tom 4.397 3.907 89% 
82% 

SFB 34.878 26.058 75% 

CA 37.542 26.332  70% 
 

 


