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ABSTRACT 

Groundfish fisheries target big skate (Raja binoculata) off the British 

Columbia coast. Catch comes mainly from Queen Charlotte Sound (QCS) and 

North Hecate Strait (NHS). Until now, sufficient data to evaluate stock status was 

not available. I parameterized a Graham-Schaefer model using catch (1996-

2010), catch-per-unit-effort (1996-2010), and fishery-independent surveys (1984-

2009) to estimate current abundance. QCS and NHS appear stable at their 

median estimated carrying capacities of 698,000 and 501,000 tonnes. Maximum 

sustainable yield (MSY) equalled 21,800 and 16,200 tonnes for QCS and NHS. 

Depletion-corrected average catch (DCAC) potential yield, a conservative 

estimate of MSY, equalled 17,500 and 13,000 tonnes for QCS and NHS. DCAC 

sustainable yield, total removals that may likely maintain a stock at current 

abundance, equalled 370 and 330 tonnes for QCS and NHS. To maintain current 

abundance, managers should monitor catches and keep them similar to historic 

catches since they do not appear to affect population dynamics.  

 
Keywords: Stock assessment; elasmobranchs; population dynamics; Bayesian; 
life history 
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1: INTRODUCTION 

Fishery stock assessments serve as the backbone of effective fisheries 

management by allowing scientists to make population predictions under a 

variety of management scenarios. However, providing management advice for 

fish stocks is problematic even for data-rich fisheries (Walters and Maguire, 

1996). For example, stock assessment models may have difficulty fitting to 

contrasting abundance trends resulting in population estimates with high 

uncertainty. In cases where data are unavailable or uninformative, even the best 

stock assessment models will be unable to provide managers with information 

that is necessary for effective management. 

Fishery managers need to account for uncertainty that is present in data to 

make effective management decisions. Uncertainty in data for fish stocks arises 

from multiple sources such as incomplete fishery catch and effort data, from 

abundance indices that may not capture true population trends, or from 

observation error during data collection. Fisheries and Oceans Canada (DFO) 

adopted the precautionary approach which requires them to account for 

uncertainty when making management decisions to avoid harm to stocks or the 

ecosystem (DFO, 2006). DFO’s adherence to the precautionary approach is one 

aspect of its larger Sustainable Fisheries Framework, which requires assessment 

on a stock-by-stock basis to ensure the sustainable use and conservation of 

Canadian fisheries (DFO, 2009). As part of this Sustainable Fisheries 
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Framework, Canada has implemented a National Plan of Action for Sharks 

(NPOA-Sharks) as recommended by the United Nations Food and Agricultural 

Organization (FAO, 1999). Under the NPOA-Sharks, Canada plans to assess 

sharks (all sharks, skates, and chimaeras) and update the FAO every four years 

on stock status and resultant changes to management practices (DFO, 2007).  

The NPOA-Sharks aims to take a precautionary approach to management 

because sharks may be relatively more prone to over-fishing than bony fish due 

to their life history traits, such as late age of maturity and longevity (Hoenig and 

Gruber, 1990; Dulvy and Forrest, 2010). 

Although elasmobranchs (sharks, skates, and rays) are targeted in 

fisheries and caught as valued bycatch worldwide, fishery scientists consistently 

have difficulty assessing them due to the lack of species-specific identification, 

short time series of catch data, and uncertainties in life history data. 

Elasmobranch fisheries are generally data-limited due to a lack of resources to 

record species-specific catch data (catch equals landings plus discards). Only 

30% of retained shark landings reported to the FAO are recorded by species; the 

remainder are placed in generic categories (FAO, 2012).  Additionally, minimal 

recording of discarded elasmobranch species leads to missing information on 

total catch, further complicating stock assessments (Bonfil, 1994).  Another 

common problem faced by fishery scientists assessing elasmobranch stocks is 

the length of the catch time series relative to generation time. For example, 

although tuna longline fisheries in the North Atlantic have been ongoing since the 

1960’s, species-specific shark catch data are only available post-1994 (Clarke, 
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2008). For porbeagle and short-fin mako sharks (Lamna nasus and Isurus 

oxyrinchus, respectively) caught in these tuna longline fisheries, 20 years of data 

may not be sufficient for reliable stock assessments considering these species 

live to be 32 and 24 years old, respectively (Dulvy et al, 2008). Finally, data 

limitations also arise in elasmobranch life history traits (i.e., static measures of an 

organism’s life cycle) because of difficulties in estimating litter size, breeding 

interval, and age.  

Fishery scientists use a variety of methods to assess data-limited fisheries 

depending on the data available and the uncertainty present in those data. Life 

history traits, such as natural mortality and life span, can provide insight to the 

ability of a stock to withstand different levels of exploitation (Hoenig and Gruber, 

1990; Beddington and Kirkwood, 2005; Dulvy and Forrest, 2010). Fishery 

scientists can use Bayesian statistics to combine information known before data 

are collected (e.g., from previous research or expert opinion) with information 

contained in the observed data (McAllister and Kirkwood, 1998). Prior information 

is included in models via probability distributions around a range of parameter 

values. The shape of the probability distribution determines the belief associated 

with each parameter value. For example, a uniform distribution assumes all 

parameter values within a specified range are equally probable. Prior knowledge 

may help models fit to data, especially when dealing with data-limited stocks.  

Depletion-corrected average catch analysis (DCAC) is another method 

used by fishery scientists to assess data-limited stocks which incorporates 

uncertainty and requires relatively little data. DCAC accounts for a one-time 
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unsustainable reduction in stock size from its unfished biomass known as the 

“windfall” (MacCall, 2009). DCAC calculates an average catch that accounts for 

the “windfall” to estimate a sustainable yield. The sustainable yield is likely to be 

sustainable if stock abundance is at or near the levels of abundance experienced 

over the catch time series (i.e., not severely depleted) (MacCall, 2009). DCAC 

requires a time series of catch, an estimate of natural mortality (M), the ratio of M 

to the fishing mortality that produces the maximum sustainable yield (FMSY),  and 

an estimate of the depletion of the stock from the first to last year of the catch 

time series (MacCall, 2009). DCAC incorporates uncertainty by using probability 

distributions over a range of plausible parameter values in lieu of point estimates 

(Berkson et al., 2011), and thus is useful for setting catch targets.  

DFO collects data on big skate (Raja binoculata) captured through 

groundfish fisheries in British Columbia (BC) to use for assessment and 

management. Big skate have been targeted in both the trawl and longline sectors 

of the groundfish fisheries in North Hecate Strait (NHS) and Queen Charlotte 

Sound (QCS) since 1996 (Figure 1). Onboard observers monitor all tows on all 

vessels trawling for groundfish in BC and record species composition of landings 

and discards, trawl tow time, fishing depth, and area fished since 1996. Since 

2006, electronic monitoring systems record catch and discards in order to 

validate logbook data from the longline sector of the groundfish fishery. 

Additionally, weight and identification of all landed fish from all fishery sectors are 

validated through a dockside monitoring program. DFO also runs multiple fishery-
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independent research surveys that encounter big skate and may provide indices 

of abundance along with length-at-age data (McFarlane and King, 2006). 

 
Figure 1. A map of the DFO statistical areas for the groundfish fishery. Areas 5A 
and 5B correspond to Queen Charlotte Sound and areas 5C and 5D correspond 
to North Hecate Strait.  

 

The big skate fishery in QCS and NHS may be examples of data-limited 

fisheries despite the aforementioned available data. The fishery-dependent 

catch-per-unit-effort (CPUE) and research surveys indices have high variability 

and do not show strong contrast over the available time period, 1996-2010 

(Figures 2-4). This lack of contrast in CPUE and research surveys may cause 

difficulty in parameter estimation for stock assessments (Hilborn and Walters, 

1992). Difficulties in parameter estimation arise because models require variation 

in stock size and fishing effort to reliably estimate parameters (Hilborn and 

Walters, 1992).  Additionally, the 15-year-long time series is short relative to the 

generation time of big skate: the age of maturity for big skate is approximately 6 
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years for males, and 8 years for females, with the oldest big skate in BC 

recorded at 26 years old (McFarlane and King, 2006).  

 
Figure 2. Trawl CPUE (tonnes/hr) for the groundfish fishery in Queen Charlotte 

Sound (QCS) and North Hecate Strait (NHS). 
 

 

Figure 3. Survey indices of abundance for the 2003-2008 QCS Shrimp Survey 
(dashed line) and the QCS Synoptic Survey (black points) from 2003-
2005, 2007, and 2009. 

 



  

 7 

 
Figure 4. Survey index of abundance (tonnes/hr) for the Hecate Strait 

Multispecies Survey. 
 

Limited migratory exchange occurs between big skate stocks in QCS and 

NHS, and therefore separate assessments and management plans are required 

for each area (King and McFarlane, 2010).  I assessed each stock separately 

using two methods: a biomass dynamics model (BDM) and depletion-corrected 

average catch analysis (DCAC). The BDMs allowed me to use a range of life 

history parameter values in a Bayesian context to estimate current stock 

abundance and other important management parameters such as the maximum 

sustainable yield (MSY), the fishing mortality rate that produces MSY (Fmsy), and 

the biomass that supports MSY (Bmsy). DCAC provides estimates of the potential 

yield (Ypot), a conservative estimate of MSY, and the sustainable yield (Ysust), or 

total removals that will maintain the stocks near or at their current level of 

abundance (MacCall, 2009). Until now, there has not been sufficient data to 
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assess stock status in either location. The ultimate goal of my research is to 

provide managers with assessment results that account for uncertainty in order 

to inform future big skate management.  

 
 



  

 9 

2: METHODS 

I used two methods to assess the big skate stocks in QCS and NHS:  a 

Graham-Schaefer biomass dynamics model (BDM) and depletion-corrected average 

catch (DCAC) analysis. The Graham-Schaefer BDM provides estimates of current 

population abundance, the intrinsic growth rate of the population (r), carrying 

capacity (K), and management parameters. DCAC analysis outputs a potential yield 

based on unfished biomass and natural mortality, and an estimate of sustainable 

yield based on the current abundance.  First, I will describe the Graham-Schaefer 

BDM followed by a description of the fishery-dependent and fishery-independent 

data used to fit the model.  Second, I will describe Bayesian statistics, which I used 

to incorporate prior information. I took a Bayesian approach to fit a von Bertalanffy 

growth function (VBGF) to length-at- age data obtained from DFO research surveys. 

I used the VBGF parameters and probability distributions of natural mortality, age at 

maturity, and fecundity to estimate a measure of population productivity, rmax, 

through the Euler-Lotka model. I used the distribution of rmax to inform r of the 

Graham-Schaefer model for each stock. Third, I calculated posterior probability 

distributions for r and K of the Graham-Schaefer model in order to calculate 

management parameters: the maximum sustainable yield (MSY), the biomass that 

supports MSY (BMSY), and the fishing mortality that results in MSY (FMSY). Fourth, I 

used DCAC to generate estimates of the potential and sustainable yields for each 

stock. 
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2.1 Biomass Dynamics Models  

Biomass dynamic models (BDMs) allow users to estimate abundance and 

population growth rates from a time series of total catch and indices of abundance. I 

used the Graham-Schaefer BDM to calculate the abundance of the two big skate 

stocks, 

Bt+1= Bt+ rBt  1-
Bt

K
 -Ct      (1)  

where Bt is the biomass of the stock at time t, r (year-1) is the intrinsic growth rate of 

the population in the absence of density-dependence, K is the carrying capacity 

(tonnes), and Ct is catch in tonnes at time t (Schaefer, 1954; Hilborn and Walters, 

1992). The Graham-Schaefer BDM allows for the direct estimation of management 

parameters such as maximum sustainable yield (MSY, equal to r*K/4), the biomass 

that sustains MSY (BMSY, equal to K/2), and the fishing mortality that results in MSY 

(FMSY, equal to r/2). 

I parameterized the Graham-Schaefer BDM using commercial trawl and longline 

catch data, commercial trawl landings catch-per-unit-effort data, and fishery-

independent indices of abundance from each stock location, all discussed in more 

detail below. I built all models in R 2.10.1 (R Development Core Team, 2009).  

2.2 Fishery-Dependent Catch and Effort Data 

Big skate catch data from QCS and NHS come from the trawl and longline 

sectors of the groundfish fishery (1996-2010). Trawl catch records prior to 1996 are 

not included in this assessment because the absence of onboard observers reduces 

the reliability of the data. Onboard observers recorded both landings and discards 
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from 1996-2006. Observers classified discards further into four groups: marketable 

and dead, marketable and alive, unmarketable, or unknown. Onboard observers, 

logbooks, and dockside monitoring programs collected trawl landings and discards 

data from 2007-2010.  Observers did not classify 2007-2010 discards into explicit 

categories as was done from 1996-2006. Longline catch data from 1996-2010 came 

from vessel logbooks and were classified as either landings or discards. Logbook 

data have been validated through an electronic monitoring system since 2006 (DFO, 

2007).  

In order to estimate the total catch-related mortality of big skate, I needed 

estimates of the biomass of skates that were caught, discarded at sea, and 

subsequently died. The data already contains the biomass caught and discarded at 

sea (discards), but the discard mortality, the percentage of catch thrown back that 

dies as a result of the capture and handling process (Alverson et al., 1994), is 

unknown. In order to estimate dead discards from the trawl and longline sectors in 

QCS and NHS, I assumed a 50% discard mortality rate based on reported discard 

mortality rates in the literature (50%, 45%, 40.9%, and 44% from Gertseva (2009), 

Enever et al. (2009), Laptikhovsky (2004) and Stobutzki (2002), respectively). I 

applied the 50% discard mortality rate to all discards from the longline sector, to all 

discards from the trawl sector from 2007-2010, and to trawl discards from 1996-2006 

classified as “marketable and alive”, “unmarketable”, or “unknown". I performed a 

sensitivity analysis using discard mortality rates of 0% and 100% to determine what 

effect, if any, my assumed discard mortality rate had on the model outcomes.  
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In order to fit the stock assessment model, I generated a time series of annual 

catch and fishery-dependent catch-per-unit-effort (CPUE) from 1996-2010. I 

calculated annual landings (tonnes) for each stock by summing the landings from 

each trawl tow and longline trip in a given year. Total catch is the sum of landings 

plus dead discards (Figure 5). I calculated dead discards in two ways depending on 

the data: (1) dead discards are the sum of total discards (e.g., trawl discards from 

2007-2010) times the 50% discard mortality rate, or (2) dead discards are the 

discards recorded as dead upon release plus the 50% discard mortality rate applied 

to the sum of “marketable and alive”, “unmarketable”, and “unknown” discards. 

Figure 6 shows the total discards for each sector of the groundfish fishery in QCS 

and NHS. I assumed zero catch for NHS from 1984-1995 because the fishery-

independent survey for NHS began in 1984. Therefore, model fitting begins in 1984 

for NHS and 1996 for QCS. To calculate annual fishery CPUE (tonnes/hr), I summed 

the total landings for each trawl tow in a trip, divided by the hours spent trawling on 

that trip, and took the average across trips for each year (Figure 2). I technically 

calculated landings-per-unit-effort with the underlying assumption that big skate 

were a targeted, rather than a bycatch, species.  
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Figure 5. Total catch (landings plus dead discards) from the trawl and longline 

sectors of the groundfish fishery in QCS and NHS. 
 

 

Figure 6. Total big skate discards (tonnes) in the trawl (a) and longline (b) 
sectors of the groundfish fishery for QCS (solid) and NHS (dashed). 
Note difference in axis scale for trawl and longline sector discards.  
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2.3 Survey Indices of Abundance 

I used three fishery-independent research trawl surveys as additional indices of 

abundance: QCS Shrimp Survey, QCS Synoptic Survey, and the Hecate Strait 

Multispecies Survey (Figures 3 and 4). The QCS Shrimp Survey occurred yearly from 

1998-2009, the QCS Synoptic Survey occurred yearly from 2003-2005 and then 

every two years until 2009, and the Hecate Strait Multispecies survey ran from 1984-

2003 although not every year (DFO, 1999; Chromanski et al., 2004). All three surveys 

recorded tow duration (minutes), trawl door spread (meters), vessel speed (meters 

per minute), big skate weight (kg), and big skate density (kg/m2). I only used positive 

tows (those that encountered big skate) to calculate CPUE (tonnes/hr) because all 

three surveys were heavily zero-inflated. I summed the total landings for each trawl 

tow in a trip, divided by the hours spent trawling on that trip, and took the average 

across trips for each year to calculate survey CPUE. 

2.4 Bayesian Approach to Parameter Estimation 

I took a Bayesian approach in order to include information from previous 

research and expert opinion. Bayes theorem, the basis for Bayesian statistics, 

describes the relationship between two conditional probabilities and calculates the 

probability of one event occurring given that another event has already occurred 

(Bayes, 1763). In Bayesian statistics, where Bayes’ theorem is used for statistical 

inference, a range of possible parameter values are treated as one event and the 

observed data are treated as the other (Cooper and Miller, 2007). Bayesian statistics 

consists of three components: the prior probability distribution of the parameter 

values in question before the data are observed, the likelihood of the observed data, 
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and the posterior probability distribution of the parameter values given the observed 

data (McAllister et al., 1994). Bayes theorem for use in statistical inference is written 

as, 

P Θi
 Data = 

L Θi 𝐷𝑎𝑡𝑎  p(Θi)

 L Θi 𝐷𝑎𝑡𝑎  p(Θ)dΘ
 (2) 

where the posterior probability distribution (P) of the parameters (Θi) given the 

observed data (Data) is equal to the likelihood  (L) of the parameters given the 

observed data (L Θi 𝐷𝑎𝑡𝑎 ) multiplied by the prior probability distribution of the 

parameters (p(Θi)) divided by the marginal probability distribution 

( L Θi 𝐷𝑎𝑡𝑎 p(Θ)dΘ )(McCallister et al., 1994; Cooper and Miller, 2007). Since the 

denominator in Equation 2 is generally used as a scaling constant, the posterior 

probability distribution of the parameter(s) is proportional to the likelihood of the 

parameters given the observed data multiplied by the prior probability of the 

parameters (Ellison, 1996). Bayesian methods combine knowledge known prior to 

data collection with observed data to calculate posterior probabilities associated with 

alternate hypotheses (McAllister and Kirkwood, 1998).  

The prior probability distribution of a parameter is the degree of belief associated 

with a range of possible parameter values estimated from previous research or 

determined using expert opinion (Punt and Hilborn, 1997). Priors may be non-

informative, containing little to no information about the parameter(s) in question, or 

they may be informative, and reflect established information about the species in 

question, a similar species, or a similar environment. Parameter uncertainty can be 

expressed by a probability distribution where the shape of the distribution reflects the 

degree of belief on a range of parameter values (Walters and Ludwig, 1994). A 
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uniform distribution is flat and assumes all parameter values within a range are 

equally probable. Some distributions, such as normal or certain beta distributions, 

are shaped such that some parameter values are more probable than others. The 

likelihood of the parameters given the observed data is the probability of obtaining 

the data given a set of parameter values assumed to be true (McAllister and 

Kirkwood, 1998). Equation 2 combines the information contained in the prior 

distribution with the information contained in the observed data to estimate a 

posterior probability distribution of the parameter in question. Informative priors can 

strongly influence the shape of the posterior distribution, especially when the 

observed data contains little information. However, if the information contained in the 

data dominates the prior, then the posterior distribution will reflect the shape of the 

likelihood (Ellison, 1996). 

2.5 Bayesian Approach to Estimate rmax from a Growth Curve 

 I used length-at-age data gathered from 125 female big skate caught on DFO 

research surveys to fit a von Bertalanffy growth function (VBGF)(McFarlane and 

King, 2006; King and McFarlane, 2010) . The three parameter VBGF is,  

La= L∞*  1-e- k a – t o     (3) 

 where L∞ (mm) is the maximum asymptotic length , La(mm) is length at age a,  k 

(year-1) is the Brody growth coefficient which measures how quickly an organism 

reaches the asymptotic length, and t0(years) is the theoretical negative age when 

length equals zero(von Bertalanffy, 1938; Beverton and Holt, 1959). I fit the VBGF 

using Bayesian methods to include prior information from previous biological studies 

on big skate. I rescaled a beta (α=1, β=1) distribution for the priors on k and t0 which 
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approximates a uniform distribution within a specified range. I based the range of the 

priors for k (0.01-0.30 year-1, Eq. 4) and t0 (-0.01 – -3 years, Eq. 5) on values 

published in the literature for big skate (Zeiner and Wolf, 1993; Benson et al., 2001; 

Gburski et al., 2007). I rescaled a beta (α=1.1,β=1.1)  distribution for the L∞ prior 

which gave slightly lower likelihood to the lower and upper bounds of the distribution 

to assist the model in fitting to the data (Figure 7). The prior for L∞ ranged between 

2000 and 3500 mm based on maximum lengths reached by skates with similar 

biology to the big skate (Eq. 6). Although the largest skate in the world, the common 

skate (Dipturus batis), reaches a total length of 2850 mm (Froese and Pauly, 2011), 

I extended the prior distribution past this length to allow the data to shape the 

posterior.  

p 
𝐿∞ −2000

3500−2000
  ~ beta (α=1.1, β=1.1)   (4) 

 

p  
k-0.01

0.30-0.01
  ~ beta (α=1, β=1) (5) 

 

  p(
t0+ 3

-0.01+3
) ~ beta (α=1, β=1)                                              (6) 

I assumed lognormally distributed error for the VBGF (Siegfried and Sanso, 2006). 

Therefore, the likelihood component of the Bayesian model, written in terms of the 

negative log-likelihood is, 

-log L  L∞, k, t0, σ
2  𝑦 = - log  

1

 y 2πσ2
 +

1

2σ2
( log(y)-log(y)  ) 

2
        (7) 

where L is the likelihood of the parameters L∞, k, t0, and σ2 given the observed 

length-at-age data, y,and 𝑦  is the predicted length-at-age calculated using the VBGF 
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(Eq.3). The total negative log-likelihood is the sum of the negative log-likelihood (Eq. 

7) times the prior probability distributions of the three VBGF parameters (Eqs. 4-6). 

 

Figure 7. Prior probability distribution for the maximum asymptotic length, L∞, 
bounded between 2000-3500 mm.  

 

I generated a posterior probability distribution for each parameter by combining 

the prior probability distributions of VBGF parameters and the likelihood of the 

parameters given the observed length-at-age data via Markov Chain Monte Carlo 

(MCMC) using the MCMCmetrop1R function in R (Martin and Quinn, 2005). MCMC 

uses a random walk algorithm, in this case the Metropolis-Hastings, to sample from 

the posterior probability distribution (McAllister and Kirkwood, 1998; Gelman et al., 

2004). I initialized the MCMC chain for each of the three VBGF parameters at the 

best-fit parameter values, those which maximize the likelihood, determined by 

optim() in R. I drew 20 million iterations from each parameter’s MCMC chain with a 

burn-in period of 2,000 iterations and thinning by 500 to produce 40,000 samples. I 
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tested each parameter’s MCMC chain for convergence using the Geweke diagnostic 

and verified that within chain autocorrelation was below 0.20 using the CODA 

package in R (Plummer et al., 2006).  

I used the L∞ and k posterior distributions to calculate a posterior distribution for 

natural mortality (M) using Pauly’s (1980) equation, 

log M = α – β * log (L∞) + γ  * log(k) + δ * log (T)       (8) 

where L∞ and k are parameters of the VBGF, T is the mean environmental 

temperature in the location of the stock and α ,β, γ, and δ are model coefficients with 

values of -0.0066, 0.279, 0.6543, and 0.4634, respectively. I used Pauly’s (1980) 

equation for natural mortality because the inclusion of temperature may provide 

more reliable estimates of M as temperature is the most important abiotic factor 

affecting an organism’s biological rates (Charnov and Gillooly, 2004; Quiroz et al., 

2010). For my model, I drew temperature values from a uniform distribution between 

9 and 11°C based on sea surface temperatures at McInnes Island, British Columbia 

(McQueen and Ware, 2006). In order to account for correlation between the model 

coefficients (α, β, γ, and δ) of Pauly’s (1980) equation, a linear model was fit to the 

original data from Pauly (1980) using Eq. 8. The model coefficients, α, β, γ, and δ, 

were then drawn from a multivariate normal distribution using the re-fit model’s 

covariance matrix (Pardo et. al., 2010). I applied the 40,000 posterior distribution 

estimates of L∞ and k available from each parameter’s MCMC chain, 40,000 random 

draws from the uniform temperature distribution, and 40,000 draws of re-fit model 

coefficients to Eq. 8 to produce a probability distribution of M.  
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I calculated a distribution for rmax using probability distributions of natural 

mortality, age at maturity, and fecundity. I rescaled a beta (α=7, β=5) distribution for 

the age at maturity such that it was bounded between 5 and 9 years with a peak of 8 

years (Figure 8a). The distribution for age at maturity captures the current 

knowledge that big skate females in BC mature at age 8 but mature individuals as 

young as 5 and immature females as old as 9 are known to occur (McFarlane and 

King, 2006). Female fecundity is half the litter size (l, number of pups) divided by 

breeding interval (i, years), assuming a 1:1 sex ratio. Due to the uncertainty 

surrounding the true values of l and i, I used a rescaled beta probability distribution 

for litter size (Figure 8b) and a uniform distribution for breeding interval (Figure 8c) in 

lieu of point estimates. The distribution of l is bounded between 2 and 14 but peaks 

at 8 because big skate simultaneously release two eggs cases with 1-7 embryos per 

case, but more commonly with 3-4 (Ebert, 2003).  The distribution of i assumes that 

big skate can deposit eggs as often as every 2 weeks or as infrequently as once a 

year (Ebert, 2003). The range of i used here is plausible as skates and rays are 

known to produce eggs throughout most of the year (Hoenig and Gruber, 1990).  

rmax is calculated using the Euler-Lotka equation (Myers and Mertz, 1998), 

b= eFextinct 𝑎−𝛼𝑠𝑒𝑙 +1 (1-e—(𝑀+Fextinct)) (9) 

where b is fecundity, Fextinct (year-1) is the fishing mortality required to drive a 

population to extinction, α is the age at maturity, αsel  is the age at selectivity to the 

fishery, and M is natural mortality (year-1).  Fextinct equals rmax when the age of 

selectivity equals 1 (Myers and Mertz, 1998; Dulvy et al., 2004; Garcia et al., 2008). 

An age of selectivity of 1 is realistic for big skate since they are born large enough to 



  

 21 

be caught through trawl fisheries. I generated a distribution of rmax, by iteratively 

solving Eq. 9 for Fextinct  using unique combinations of α, b, and M  in order to create 

a prior probability distribution for the intrinsic growth rate, r, of the Graham-Schaefer 

model. I tested the sensitivity of rmax to varying ages of selectivity to determine how 

rmax would change if my assumption regarding age of selectivity was 

underestimated. 

 

Figure 8. Density distributions for age at maturity (years, a), litter size (number of 
pups, b), and breeding interval (years, c) used in the calculation of rmax. 

 

2.6 Abundance and Management Parameter Estimation using 
BDMs 

I developed prior probability distributions for the three Graham-Schaefer BDM 

parameters: intrinsic growth rate (r), carrying capacity (K), and depletion which 

estimates biomass at the start of the fishery as a proportion of K (Punt, 1990). Both 

big skate stocks may have been at some fraction of K in 1996 because the 

groundfish fishery began around 1954, and although not targeted, big skate landings 

and discards may have occurred. The prior for r, aimed to match the distribution of 
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rmax, was best represented by a rescaled beta (α=3, β=15) distribution bounded 

between 0.25-0.90 year-1(Eq. 10). The prior for K was a rescaled beta (α=1.15, 

β=1.15) distributed between 1,000 and 10 million tonnes (Eq. 11). The wide, slightly 

informative distribution for K attempted to give the model flexibility to find the most 

probable value given the data. Depletion was uniformly distributed between 0 and 1 

(Eq. 12).  

 p( 
𝑟−0.25

0.90−0.25
 ) ~ beta(α =3, β=15)                               (10) 

p( 
𝐾−1000

1e7−1000
 ) ~ beta(α =1.15, β=1.15 )                 (11) 

p(depletion) ~ beta( α= 1, β=1)   (12) 

Each stock’s BDM fit the indices of population abundance by applying an 

observation error estimator that assumed all error was present in the relationship 

between stock abundance and the index of abundance (Polachek et al., 1993; 

Hayes et al., 2009). The equation used to calculate the predicted index of 

abundance is, 

Ij,t= qjBt

  
(13) 

where Ij,t is the value of the abundance for index j at time t, and q is the catchability 

coefficient which scales the population size to the index j. The observation error 

likelihood estimates the difference between the observed index of abundance and 

the predicted index calculated through the model (Brodziak and Ishimura, 2011). A 

value for σ was calculated for each index of abundance, j, using the equation, 

σj = 
 (  log Ij,t -log(Ij,t) ) 𝑡

1

𝑛
                             (14) 
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where Ij,t  is the predicted index, calculated from the predicted q and predicted 

biomass using Eq. 13, and n is the number of data points in the index time series. I 

used the negative log-likelihood to determine the relative fit of the BDMs to the 

catch, CPUE, and survey data. I calculated the negative log-likelihood for each index 

of abundance assuming log-normal error. 

-log L  qj, r, K, depl, σj   Ij,t  = - log  
1

𝐼𝑗 ,𝑡 2πσj
2
 +

1

2σj
2 ( log(Ij,t)-log(Ij,t)  )

2
             (15) 

The total negative log-likelihood was the sum of the negative log-likelihood of each 

available index (Eq. 15) multiplied by the prior probability distributions of the three 

Graham-Schaefer BDM parameters (Eqs. 10-12).  

 I used MCMC to sample from the posterior probability distributions of the three 

BDM parameters. I drew 20 million iterations from each parameter’s MCMC chain, 

with a burn-in of 2,000 and thinning by 1,000 for a total chain length of 19,998. I 

checked MCMC diagnostics to verify chain convergence on the posterior distribution 

of the parameters. I calculated probability distributions of management parameters 

of interest (MSY, BMSY, and FMSY) using the posterior probability distributions of r and 

K. I used each iteration of the MCMC chain to calculate the predicted big skate 

population in each stock for the length of the time series along with 50, 80 and 90% 

quantiles. Additionally, I used the median of the posterior distribution for the three 

parameters to calculate predicted indices of abundance for each stock. 

2.7 Depletion-Corrected Average Catch (DCAC) 

The final component of the stock assessment was the use of depletion corrected 

average catch analysis (DCAC) to calculate the potential yield (Ypot) and sustainable 
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yield (Ysust) of big skate in QCS and NHS (MacCall, 2009). Ypot is a conservative 

estimate of MSY based on unfished biomass and natural mortality, and the Ysust is 

the total removals that will maintain a stock at its current abundance given its 

depletion over the catch time series. The calculations of Ypot and Ysust require a time 

series of catch, an estimate of natural mortality (M), the ratio of FMSY to M (c), and 

delta (Δ), the reduction in vulnerable biomass over the catch time series as a fraction 

of the unfished biomass, B0. Larger positive values of Δ signify greater reductions to 

stock size; negative values indicate a population that has increased over time 

(Berkson et al., 2011). The first step to calculating Ysust requires the calculation of 

Ypot. The equation used to calculate potential yield is, 

Ypot= 0.4* c * M * Bo                                                  (16) 

The term, c*M replaces the assumption that FMSY = M since studies have found that 

this assumption may actually overestimate the fishing mortality a stock can 

withstand (MacCall, 2009). I used the posterior distribution of FMSY calculated from 

the BDM in lieu of c*M. Additionally, I used the posterior probability distribution of K 

from the BDM component as Bo. Therefore, the equation I used to calculate Ypot is, 

Ypot= 0.4* FMSY * K                                                 (17) 

I used the posterior probability distributions of FMSY and K to calculate Ypot in order to 

capture the uncertainty surrounding the true values of K and FMSY. Ypot is a 

conservative estimate of MSY because according to Equation 17, BMSY is equal to 

40% of K as opposed to 50% of K assumed in the logistic Graham-Schaefer model. 

Ultimately, I used DCAC to determine the sustainable yield (Ysust) that can be 

removed from the stock while maintaining its current abundance. The sustainable 
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yield takes into account a “windfall” ratio which represents the reduction of biomass 

from B0  to BMSY. The equation for the sustainable yield is,  

Ysust =
 C

n+
W

Ypot

                                          (18) 

where C are the catches in the time series, n is the number of years in the catch 

time series, and the ratio of W/Ypot (= Δ/0.4*FMSY) expresses the windfall relative to a 

single year of potential yield. If no change in abundance occurred (i.e., Δ=0), the 

equation for Ysust equals the average catch. If stock abundance increased, Δ and the 

ratio W /Ypot are negative and Ysust  is larger than average historical catches (McCall, 

2009). Δ is calculated using the equation, 

Δ= BFYR – BLYR / Bo  (19) 

where BFYR is the biomass in the first year of the time series, BLYR is the biomass in 

the last year of the time series, and B0 is the unfished biomass (MacCall, 2009). I 

used the predicted first and last year biomass from each stock’s BDM to calculate 

the difference in biomass for each stock over the time series. I also used the 

posterior probability distribution of K from the BDMs as the unfished biomass to 

calculate a posterior distribution of Δ. According to the BDM predictions of first and 

last year biomass and K, the 95% quantile of Δ for QCS was -0.65 - -0.01 from 

1996-2010 and -0.89-0.0003 for NHS from 1984-2010. I drew random values of Δ 

directly from the posterior estimates for each stock. The 95% quantiles of Δ for both 

stocks are negative values thereby predicting that both stocks have increased over 

their respective catch time series. However, the full ranges of Δ for both stocks 

include zero (i.e., same biomass at first and last year) and positive estimates (i.e., 

decreasing biomass over the time series). The estimates of Ysust predicted by my 
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assumed range of Δs consider the uncertainty contained in BDM outputs. I 

interpreted the estimated Ysust values given the stock abundance estimated by each 

stock’s BDM.  
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3: RESULTS 

3.1 Bayesian Approach to Estimate rmax from a Growth Curve 

The posterior probability distributions of the von Bertalanffy growth 

function (VBGF) parameters suggest that the data contained little information to 

improve estimates of the asymptotic length, L∞ , but greatly improved estimates of 

the growth rate, k, and age when length equals zero, t0. The observed female 

length-at-age data contained some information regarding the most likely value of 

L∞ as shown by the slight difference between the shape of the prior and posterior 

probability distributions (Figure 9). A complete overlap between the prior and 

posterior probability distributions would indicate that the data did not provide any 

additional information to shape the posterior distribution. The skewed posterior 

distributions of k and t0 are evidence that the data informed the shape of those 

posterior distributions since the prior distributions used for both parameters were 

flat (Figures 10 and 11). However, the inverse correlation that exists between L∞ 

and k may be a factor in the highly skewed shape of the k posterior. The 

estimates of the mode of the L∞, k, and t0 posterior distributions equalled 2177 

mm, 0.007 year-1, and -0.021 years, respectively.  The median estimates of the 

posterior distributions (L∞ = 2647 mm, k =0.044 year-1 and t0=-0.094 years) 

consistently underestimate predicted lengths-at-age (Figure 12). Percentiles, 

means, and standard deviations of the three VBGF parameter posterior values 

are shown in Table 1.   
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The posterior distributions of L∞ and k produced a wide distribution of natural 

mortality, M, whereas the distribution of population productivity, rmax, based on life 

history parameters was highly informative. M ranged from 0.00035-0.347 year-1 with 

a mode equal to 0.007 year-1(Figure 13). The skewed shape of the M distribution 

may be due to the skewed shape of the k posterior used in its calculation. rmax 

exhibited a tight distribution around the mode of 0.356 year-1 and ranged from 0.223- 

0.772  year-1 (Figure 14).The shape of the distribution for rmax closely matches the 

distributions of age at maturity and litter size used in its calculation. Table 2 shows 

the 2.5, 25, 50, 75 and 97.5% quantiles, mean, and standard deviation of M and rmax. 

The sensitivity analysis on the age of selectivity assumption shows that increasing 

the age of selectivity while holding all other parameters constant increases the mean 

and standard deviation of rmax (Figure 15). 

 
Figure 9. Prior (dashed line) and posterior (solid line) probability distributions for 

L∞ of the VBGF. 
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Figure 10. Prior (dashed line) and posterior (solid line) probability distributions of 
k, the growth rate of the VBGF. 

 
 

 

Figure 11. Prior (dashed line) and posterior (solid line) probability distributions 
for t0 of the VBGF. 
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Figure 12. Observed (empty circles) versus predicted (solid line) length-at-age 
data for female big skate calculated using the median estimates from 
L∞, k, and t0 posterior distributions. 

 

 

Figure 13. Density plot of annual natural mortality, M, calculated using Pauly’s 
(1980) equation (Eq. 8). 
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Figure 14. Density plot of rmax calculated by iteratively solving Eq. 11 using 
natural mortality, age at maturity, fecundity, and age of selectivity. 

 
 

 

 
Figure 15. Probability distribution of rmax under different ages of selectivity (years) 

to the fishery. 
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Table 1.Statistics from the posterior distributions of the three VBGF parameters 
sampled through MCMC . 

Parameter 2.50% 25% Median 75% 97.50% Mean SD

L∞(mm) 2041 2331 2660 3023 3433 2687 413

k 0.00 0.01 0.04 0.09 0.26 0.06 0.07

t0 (years) -2.48 -0.49 -0.04 0.00 0.00 -0.40 0.68

 
 

Table 2.Statistics from the probability distributions of natural mortality, M, and 
rmax. 

Parameter 2.50% 25% Median 75% 97.50% Mean SD

M (year-1) 0.001 0.016 0.038 0.068 0.149 0.047 0.040

rmax(year-1) 0.288 0.347 0.391 0.457 0.618 0.409 0.085
 

3.2 Management Parameter and Abundance Estimation Using 
BDMs 

 The highly informative prior probability distribution for the intrinsic growth 

rate, r, influenced the posterior probability distributions for all three parameters of 

the Graham-Schaefer biomass dynamics model. For both stocks, the prior and 

posterior probability distributions completely overlapped signifying a lack of 

information in the observed data (i.e., total catch, trawl landings CPUE, and 

research survey data) regarding the true value of r (Figure 16). The lack of 

contrast in the data set for each stock produced similar modes for the posterior 

probability values of r equal to 0.366 year-1 and at 0.359 year-1 for QCS and NHS, 

respectively. The modes of the posterior of r from each stock are almost equal to 

the peak rmax (0.356 year-1) used to define the prior probability distribution of r, 

further evidence that the observed data did not update the posterior distribution. 

The posterior distributions of the carrying capacity, K, for both stocks were highly 

skewed towards higher abundances, likely a result of the inverse relationship 
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between r and K (Figure 17). The modes of the posterior probability estimates of 

K occurred at approximately 202,000 tonnes for QCS and 159,000 tonnes for 

NHS. The mode of the depletion posterior distribution for QCS and NHS signified 

that at the start of the targeted fishery in 1996 the stocks were at 72% and 78% 

of K, respectively (Figure 18). The depletion results suggest that non-targeted big 

skate mortality induced through other fisheries prior to 1996 is a possibility. The 

median estimates of r, K, and depletion occurred at 0.385 year-1, 698,000 tonnes, 

and 68% for QCS and 0.391 year-1, 501,000 tonnes, and 62% for NHS. 

Quantiles, means, and standard deviations for the three BDM parameters for 

each stock are shown in Table 3 and 4 for QCS and NHS, respectively.  

 Posterior distributions of MSY and BMSY  exhibited high uncertainty 

whereas FMSY was highly informative. The mode of the posterior for MSY for QCS 

was higher than that for NHS, 21,800 tonnes versus 16,200 tonnes, respectively 

(Figure 19). BMSY is directly related to K; therefore, the posterior distributions and 

modes of BMSY in each stock exactly match that of K, except the values are 

halved (Figure 20).  The long tails present in the MSY and BMSY posterior 

distributions are due to the highly skewed posterior for K because it factors into 

both management parameter calculations (MSY=r*k/4 and BMSY=K/2) . Posterior 

distributions for FMSY in each stock are directly related to the posterior 

distributions for r and as a result also exhibit tight distributions about their modes 

(Figure 21). Quantiles, means, and standard deviations for the three 

management parameters are shown in Table 5 and 6 for QCS and NHS, 

respectively.  
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 Both QCS and NHS stocks had median predicted population abundances 

at their carrying capacities. It is unlikely that the stocks are currently overfished 

(as of 2010) as the median estimated population size is well above the estimated 

BMSY. The median predicted population biomass for QCS started at 474,000 

tonnes in 1996 and slowly increased to its final predicted biomass of 698,000 

tonnes. For NHS the predicted population biomass was 313,000 tonnes in 1984 

and stabilized at its final predicted biomass of 501,000 tonnes (Figure 22). The 

predicted indices for QCS increased and then levelled off through the available 

data points. The fit predicted by the BDM concerning the QCS stock results from 

the lack of a trend in the later part of the CPUE time series and the contrasting 

trends seen in the two fishery-independent indices of abundance (Figure 23). 

Similarly, the CPUE time series and the Hecate Strait Multispecies survey for the 

NHS stock was highly variable and showed little trend; hence, the model fit a 

horizontal line through the later part of the time series (Figure 24).   
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Figure 16. Prior (solid line) and posterior (dashed line) probability distributions for 
the intrinsic growth rate for QCS (left) and NHS (right). 
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Figure 17. Prior (solid line) and posterior (dashed line) probability distributions 

of the carrying capacity, K, for QCS (left) and NHS (right). X-axes 
were truncated to show shape of posterior at lower abundances as 
the posterior distribution did not change at abundances larger than 
6,000,000 tonnes. 

 

 

Figure 18. Prior (solid line) and posterior (dashed line) probability distributions for 
the depletion parameter of the Graham-Schaefer biomass dynamics 
model for QCS (left) and NHS (right). 
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Figure 19. MSY posterior probability distribution for QCS (solid line) and NHS 

(dashed line) stocks measured in 1,000s of tonnes. 

 

Figure 20. Posterior distribution of the biomass that sustains MSY, BMSY 
(tonnes), for QCS (solid line) and NHS (dashed line). 
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Figure 21. Posterior distribution of the instantaneous fishing mortality that results 

in MSY, FMSY, for QCS (solid line) and NHS (dashed line) stocks. 
 

 

Figure 22. The log predicted big skate population abundance in QCS (left) from 
1996-2010 and NHS (right) from 1984-2010. The light grey is the 90% 
quantile, medium grey is the 80% quantile, dark grey is the 50% 
quantile and the solid black line is the median predicted population 
biomass. 
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Figure 23. Observed and predicted indices of abundance for the QCS stock of 

big skate calculated using the median of the posterior distribution of 
the three Graham-Schaefer parameters. Fishery CPUE is shown on 
the left figure, QCS Synoptic Survey in the middle, and QCS Shrimp 
Survey on the right. 

 

 
Figure 24. Observed and predicted indices of abundance for the NHS stock of 
big skate calculated using the median of the posterior distribution of the three 
Graham-Schaefer parameters. Fishery CPUE is shown on the left and the 
Hecate Strait Multispecies Survey on the right. 
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Table 3. Statistics from the posterior distribution of the three parameters of the 
Graham-Schaefer biomass dynamics model for Queen Charlotte Sound. 

Parameter 2.50% 25% Median 75% 97.50% Mean SD

r (year-1) 0.285 0.342 0.385 0.441 0.579 0.397 0.076

K (tonnes) 10,963 129,080 698,266 2,718,540 8,222,520 1,836,096 2,379,094

depletion 0.332 0.542 0.680 0.824 0.980 0.678 0.181

 

Table 4. Statistics from the posterior distribution of the three parameters of the 
Graham-Schaefer biomass dynamics model for North Hecate Strait. 

Parameter 2.50% 25% Median 75% 97.50% Mean SD

r (year-1) 0.283 0.343 0.391 0.450 0.578 0.402 0.077

K (tonnes) 6,594 76,652 501,174 2,385,481 8,587,588 1,650,477 2,340,178

depletion 0.091 0.399 0.624 0.808 0.980 0.597 0.256

 

Table 5. Statistics for the management parameters calculated using the posterior 
distributions of the three parameters of the Graham-Schaefer biomass 
dynamics model for Queen Charlotte Sound. 

Management Target 2.50% 25% Median 75% 97.50% Mean SD

MSY (tonnes) 1,082 12,426 67,706 264,363 822,354 181,187 239,500

 Bmsy (tonnes) 5,481 64,540 349,133 1,359,270 4,111,260 918,048 1,189,547

Fmsy 0.142 0.171 0.192 0.220 0.290 0.198 0.037
 

Table 6. Statistics for the management parameters calculated using the posterior    
distributions of the three parameters of the Graham-Schaefer biomass 
dynamics model for North Hecate Strait. 

Management Target 2.50% 25% Median 75% 97.50% Mean SD

MSY (tonnes) 695 7,349 49,141 231,397 871,076 166,095 242,348

 Bmsy (tonnes) 3,297 38,326 250,587 1,192,740 4,293,794 825,238 1,170,089

Fmsy 0.141 0.171 0.196 0.225 0.289 0.201 0.039
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3.3 Depletion-Corrected Average Catch Analysis  

DCAC estimates of potential yield (Ypot) for each stock were lower than the 

MSY values estimated using the BDMs due to DCAC’s assumption of BMSY 

occurring at 40% of B0 rather than 50% of B0. Resulting estimates of sustainable 

yield (Ysust) were significantly lower than both the Ypot and MSY because both 

stocks are estimated to be well above BMSY. If the stocks were at BMSY then they 

would be able to sustain removals equal to Ypot; the mode of the Ypot posteriors 

were estimated at 17,500 tonnes and 13, 000 tonnes for QCS and NHS, 

respectively (Figure 25).  According to the mode the of Ysust posteriors, QCS and 

NHS stocks can sustain removals of 370 and 330 tonnes, respectively, without 

changing the current estimated stock size (Figure 26). The current TAC on NHS, 

equal to 567 tonnes, is lower than the maximum Ysust predicted by DCAC 

(approximately 850 tonnes). Given the assumed range of Δ values, the range of 

predicted Ysust for QCS was 300-2,400 tonnes and 225-850 tonnes for NHS. The 

lower Ysust values for NHS compared to QCS may be a result of my zero catch 

assumption from 1984-1995 for NHS. Also, lower Ysust values for NHS may be 

due to the higher, positive Δ values predicted by the BDM for NHS (0.66 versus 

0.11 for QCS). The relatively low Ysust values occur because the current predicted 

abundance in each stock is near or at carrying capacity and thus experiencing 

strong effects of density-dependence. Tables 7 and 8 show the 2.5, 25, 50, 75, 

and 97.5% quantiles, mean, and standard deviation for Ypot  and Ysust, 

respectively..  
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Figure 25. Potential yield (Ypot) (solid line) calculated through DCAC compared to 

MSY (dashed line) estimated from the Graham-Schaefer BDM for 
QCS (left) and NHS (right). 

 

 
Figure 26. Sustainable yield (Ysust) distribution calculated using DCAC for the 

QCS (left) and NHS (right) stocks. 
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Table 7.Statistics for the potential and sustainable yield distributions for the QCS 
stock of big skate calculated using DCAC methods. 

Management Target 2.50% 25% Median 75% 97.50% Mean SD

Ypot 866 9,940 54,165 211,490 657,883 144,950 191,600

Ysust 327 382 442 533 865 480 154

 

Table 8.Statistics for the potential and sustainable yield distributions for the NHS 
stock of big skate calculated using DCAC methods. 

Management Target 2.50% 25% Median 75% 97.50% Mean SD

Ypot 843 10,366 54,031 215,090 685,603 147,598 196,598

Ysust 300 325 359 411 568 379 73
 

3.4 Sensitivity Analyses on Discard Mortality Rate 

The 0 and 100% discard mortality rates mainly affected the output 

produced by DCAC. The DCAC sustainable yield increased for both stocks with 

an increasing discard mortality rate (Tables 9 and 10). Sustainable yield 

increased with increasing discard mortality rate because the total catch increases 

when the model assumes more skate are dead post-capture. A higher historical 

total catch increases the numerator in the sustainable yield equation thus 

producing a larger sustainable yield. The QCS stock showed increasing K, MSY, 

and BMSY with increasing discard mortality rates but trends for NHS were less 

clear. Discard mortality rates did not affect the overall shape of the parameter 

posterior distributions likely because discards were low relative to overall catch 

(Appendix I and II).  
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Table 9. Modes of posterior probability distributions for QCS under the three 
discard mortality rate scenarios. 

 

0% 50% 100%

r (year-1) 0.374 0.366 0.367

K (tonnes) 190,006 202,184 214,879

depletion 0.716 0.720 0.597

MSY (tonnes) 19,579 21,831 22,338

Bmsy (tonnes) 95,003 101,092 107,439

Fmsy 0.187 0.183 0.184

Ypot 15,663 17,464 17,871

Ysust 346 365 388
 

 

Table 10.Modes of posterior probability distributions for NHS under the three 
discard mortality rate scenarios. 

0% 50% 100%

r (year-1) 0.367 0.359 0.361

K (tonnes) 136,358 158,603 172,482

depletion 0.743 0.789 0.749

MSY (tonnes) 14,732 16,196 15,655

Bmsy (tonnes) 68,179 79,302 86,241

Fmsy 0.184 0.179 0.180

Ypot 11,786 12,957 12,524

Ysust 290 325 365
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4: DISCUSSION 

The biomass dynamics models (BDMs) for Queen Charlotte Sound (QCS) 

and North Hecate Strait (NHS) predict both stocks to be stable at their respective 

carrying capacities given the available data. However, the population abundance 

estimates and their relationship to carrying capacity are uncertain since CPUE 

and survey indices lacked the variation needed to reliably fit a BDM. The BDMs 

predict maximum sustainable yields (MSY) of 21,800 and 16,200 tonnes. 

Depletion-corrected average catch (DCAC) analysis predicts that if the 

population is to remain at its current abundance, 370 and 330 tonnes may be 

removed sustainably (Ysust) from QCS and NHS, respectively. If the stocks were 

at the biomass that supports MSY (BMSY) they could support removals equal to 

MSY, or, if managers wish to be more conservative, equal to the potential yield 

calculated by DCAC (16,500 and 13,000 tonnes for QCS and NHS). However, 

because the models predict both stocks to be at carrying capacity they are not as 

productive as they would be if at BMSY. The following sections discuss how the 

uncertainty in available life history and fishery data affect model outcomes. I 

follow with applications of my stock assessment results to potential management 

objectives and summarize with conclusions.  
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4.1 Bayesian Approach to Estimate rmax from a Growth Curve 

 The female length-at-age data used to fit the von Bertalanffy growth 

function (VBGF) created difficulties for parameter estimation. The available 

length-at-age data did not reach an asymptote within the observed range of 

lengths.  Consequently, the data contained little information on the true value of 

L∞ as evidenced by the similar shapes of the prior and posterior probability 

distributions. The mean and median posterior estimates of L∞ were higher than 

the estimated L∞ for female big skate in the Gulf of Alaska (GOA) (Gburski et al., 

2007). The difference in L∞ is not surprising given that no big skates larger than 

1780 mm were observed in the GOA study whereas skates as large as 2040 mm 

have been observed in BC. The median of the posterior distribution of k, the 

growth rate of the VBGF, was approximately half the k estimated for GOA big 

skate, 0.0796 year-1(Gburski et al., 2007). Estimates of k for big skate calculated 

using life history invariant equations equalled 0.10-0.14 year-1 (Benson et al., 

2001). The re-capture and ageing of larger (and older) female big skate would 

greatly improve the data set used to fit the VBGF and subsequent parameter 

estimations. 

Natural mortality (M) is vital for inputs to stock assessments but it is also 

one of the most difficult parameters to calculate directly, hence it is usually 

calculated indirectly from a growth curve using life history invariant theory (Hewitt 

and Hoenig, 2005). The width of L∞ and k posterior distributions resulted in a 

wide range of possible M values. However, the resulting distribution of M 

accounts for uncertainty in both the life history parameters and model coefficients 
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used in its calculation. My research produced model estimates of M similar to 

those of the roughskin skate (Dipturus trachyderma) which grows to similar sizes 

as the big skate and has an estimated mean M between 0.089-0.184 year-1 

(Quiroz et al., 2010). Researchers estimate maximum age of big skate to be 

approximately 26 years which results in a natural mortality of 1/26, or 0.038 year-

1, based on life history theory (King and McFarlane, 2010). Big skate natural 

mortality estimated from a predictive equation based on data from numerous fish 

stocks is larger than the median and mean estimated in my assessment (0.162 

year-1 versus 0.037 and 0.047 year-1; Hoenig, 1983; Hewitt and Hoenig, 2005). 

However, the oldest observed skate likely underestimates the true maximum age 

and the larger estimate based on the predictive equation is still within the range 

of possible M values calculated in my model. I recommend an alternate method 

of calculating natural morality (e.g., Hoenig and Hewitt, 2005) given the 

uncertainty present in the estimates of L∞ and k, until more data becomes 

available. 

The probability distribution of rmax incorporated all possible sources of 

uncertainty in the form of probability distributions for the life history parameters 

used in its calculation: asymptotic maximum length (L∞), growth rate (k), age at 

maturity (α), breeding interval (i), and litter size (l). A previous estimate of 

potential rate of population increase (r’=0.26 year-1, Benson et al., 2001), 

calculated using female maximum length (Lmax= 1680 mm), is smaller than the 

mean rmax estimated in this research. However, the rmax calculated in my research 

considered other life history parameters, such as litter size and breeding interval, 
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which may attribute to the larger mean rmax (Benson et al., 2001; Frisk et al., 

2001). Through the sensitivity analysis of age at selectivity on rmax, I found that as 

the age of selectivity to the fishery approaches the age of maturation, the Euler-

Lotka model predicts a larger mean and range for rmax (Myers and Mertz, 1998). 

Therefore, if the actual age of selectivity of big skate is larger than one, the 

resulting distribution of rmax may not be as informative as the distribution 

produced in the current assessment. In order to facilitate the calculation of 

selectivity curves for big skate, onboard observers should collect length data on 

trawl tows that target big skate whenever possible.  

4.2 Uncertainty in Management Parameter and Abundance 
Estimation using BDMs and DCAC 

Posterior distributions for r, K, and depletion for QCS and NHS were 

highly dependent on the informative prior probability distribution used for r.  Due 

to the lack of variation in the CPUE and survey data, the prior probability 

distribution of r outweighs the likelihood of the data resulting in a posterior 

distribution for r that identically matches its prior distribution. The informative prior 

for r influences the posterior distribution for K since these two parameters are 

inversely correlated (Hilborn and Walters, 1992). In order to get reliable 

estimates of K, fishery data needs to have contrast. Ideally, data should be 

collected from when the population is near K (i.e., pre-exploitation), when it has 

been fished to low abundances, and then when it is allowed to recover. 

Furthermore, the informative prior for r also indirectly affects the posterior 

distribution of depletion since it is calculated jointly with r and K.  
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The extent of uncertainty in estimates of MSY, BMSY and FMSY are directly 

related to the uncertainty in the estimates of r and K. The high uncertainty in the 

estimates of MSY is due in part to the high uncertainty in K while estimates of 

BMSY are entirely dependent on the uncertainty of the K posterior. The tight 

distribution of the FMSY posteriors are a function of the informative priors and tight 

posterior distributions for r. For elasmobranchs, MSY generally ranges between 

4.5 and 7.5% of the unexploited biomass (Anderson, 1990). The MSY was 

estimated between 6.5 and 7.6% of the unexploited biomass in a multispecies 

ray fishery in the South Atlantic (Agnew et al., 2000). I found the mode of the 

MSY posterior to be approximately 10% of the mode of the K posterior in both 

QCS and NHS (21,800/202,000 tonnes for QCS and 16,200/159,000 tonnes for 

NHS). It is likely that creating an informative prior for K, possibly by using density 

estimates for big skate and area swept data from research surveys, would 

narrow the range of possible MSY and BMSY values. 

The median predicted population size and predicted indices of abundance 

of big skate in each stock were stable during the later part of the time series. The 

wide range of predicted population sizes results from the skewed K posterior 

distribution. As previously mentioned, creating an informative prior for K could 

generate a narrower range of predicted population abundances. The model 

output suggests that the catch taken from 1996-2010 did not have a significant 

effect on the population dynamics of big skate in either stock. The best fit to the 

multiple indices of abundance used in my assessment was a relatively horizontal 

line through the later data points in the time series and was likely due to the 
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variability and lack of contrast in the data. It is unknown if the lack of trends 

observed in the data are representative of the true population abundance.  

The DCAC potential yield is a conservative estimate of MSY while the 

DCAC sustainable yield calculates the yield that can be removed from the stock 

while maintaining the stock at its current abundance (MacCall, 2009). The 

potential yield was slightly lower than the MSY estimated from the BDMs 

because the potential yield equation assumes BMSY occurs at 40% of B0 whereas 

the Graham-Schaefer assumes BMSY occurs at 50% of B0. I recommend using the 

potential yield in lieu of MSY as BMSY for elasmobranchs is believed to occur 

between 35-48% of unfished biomass (Anderson, 1990).  The DCAC sustainable 

yield is significantly lower than the potential yield and MSY because both stocks 

are estimated to be at carrying capacity. A stock at carrying capacity is not as 

productive as a stock below carrying capacity due to the strong effects of density-

dependence resulting in low birth rates relative to death rates. The BDMs 

predicted an increase in both stock’s biomass since the beginning of their 

respective time series; hence, most of the depletion (Δ) values assumed were 

negative and the resulting modal sustainable yields predicted (370 and 330 

tonnes for QCS and NHS) are larger than the average of historic catches (323 

and 301 tonnes for QCS and NHS).  

4.3 Management Applications 

A harvest strategy for the big skate fishery in British Columbia requires 

clear management objectives from DFO. There is currently a total allowable 

catch (TAC) of 567 tonnes in NHS, but there is no TAC for big skate in QCS 
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(DFO, 2011). The TAC encompasses both landings and estimated discards in 

the trawl sector of the fishery (DFO, 2011). In accordance with DFO’s goal to 

adhere to the precautionary approach, all management advice needs to account 

for uncertainty while taking action to avoid harm to stocks and the ecosystem 

(DFO, 2006). DFO incorporates the precautionary approach into their stock 

assessments by defining three zones that describe stock status: healthy, 

cautious, and critical (DFO, 2006). The lower limit reference point (LRP) divides 

the critical zone from the cautious zone (DFO, 2006). Below the LRP, the stock is 

in the critical zone, the removal rate (usually expressed in terms of fishing 

mortality) approaches zero, and efforts to promote stock re-building are initiated. 

The upper stock reference (USR) divides the cautious zone from the healthy 

zone (DFO, 2006). Below the USR, the stock is in the cautious zone and the 

removal rate from the stock is reduced accordingly in order to avoid reaching the 

LRP. Above the USR, the stock is in the healthy zone. Therefore, a target 

reference point (TRP), a desirable target for management, should be above the 

USR to maintain the stock in the healthy zone. Ultimately, the harvest rate 

chosen depends on the zone in which the stock lies. For example, if the stock is 

in the cautious zone harvest rates are set so that the stock rebuilds into the 

healthy zone (DFO, 2006). DFO’s Sustainable Fishery Framework states that 

DFO’s goal is to keep stocks in the healthy zone and out of the critical zone 

(DFO, 2011). I will outline two potential DFO management goals, their 

accompanying management advice based on the results of this assessment, and 

discuss data collection routines to improve future management advice.  
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 The first potential DFO management goal may be to maintain big skate 

abundance at current levels. I estimated that both stocks are near or at carrying 

capacity, thus experiencing relatively low productivity due to density dependence. 

Hence, the only way to maintain current stock size and the resultant low 

productivity is through relatively low removals. Big skate catch increased by 

245% since 2008 in QCS and by 72% since 2007 in NHS, yet both stocks 

continue to be near their respective carrying capacities. According to my 

assessment, both big skate stocks have remained relatively stable even with the 

current catches and the relatively high catch taken in both stocks in 2003. My 

study shows that the catches experienced during the time series available had 

little effect on big skate population dynamics. If big skate catches from QCS and 

NHS remain within the range of past catches then DFO will be able to maintain 

the current big skate abundance without having to establish a TAC. DFO should 

continue to monitor catches, continue to track population trends through fishery-

independent surveys, and reassess population status in a few years or earlier if 

there is a dramatically large increase in catches.  

DFO fishery managers may be interested in more conservative skate 

management considering the declines of skate species in global fisheries 

(Brander, 1981; Casey and Myers, 1998; Walker and Hislop, 1998; Dulvy et al., 

2000) coupled with the possibility of increased skate catch in BC to supply global 

demand. To do this, managers can set a TAC in QCS equal to the largest 

predicted DCAC sustainable yield (2,400 tonnes) and in NHS equal to the 

highest catch from the time series (approximately 1,000 tonnes).  I do not 
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recommend managers use the DCAC sustainable yield predicted for NHS 

because my assumption of zero catch from 1984-1995 had a significant effect on 

the calculated average catch. Average catch from 1984-2010 is 301 tonnes 

(=8,140 tonnes/27 years) but average catch from 1996-2010 is 542 tonnes 

(=8,140 tonnes/15 years). Had I only used catch data from 1996-2010 or 

assumed non-zero catch from 1984-1995, the resulting sustainable yield 

estimates would be larger than those presented in this assessment. Zero big 

skate catch from 1984-1995 is unlikely because, although not targeted prior to 

1996, they were likely caught and discarded in trawl fisheries (Benson et al., 

2001). Once the TAC for big skate is met in either stock, fishing for big skate 

would cease in that location. Since big skate are caught alongside other 

commercially important species, such as Pacific cod, setting a TAC for big skate 

would potentially impact fisheries for other species.  

Like most tactics used to regulate fisheries, TACs have advantages and 

disadvantages. An output control, such as a TAC, has the benefit of regulating 

how much catch is taken as opposed to using an input control, such as fixed 

season length, which cannot control for effort. Additionally, input controls (e.g., a 

limit on the number of trips taken) are harder to decrease in a fishery and can 

lead to increases in effort through other mechanisms such as increases in fishing 

power through technical means (Beddington et al., 2007). Two of the main 

disadvantages of TACs are that they require a large amount of data and are 

expensive to implement because of monitoring and enforcement (Hilborn and 

Walters, 1992). However, monitoring and enforcement costs are already borne 
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by DFO and the fishery so the marginal cost will be small compared to the 

benefits of monitoring catch and a lower risk of moving into an undesirable stock 

status zone. Another important disadvantage in using TACs is that they assume 

stock size is well known. If stock size is over-estimated, the TAC put in place 

may actually be too high, driving the stock abundance down. The effect of over-

estimating a TAC will have prolonged effects on future stock sizes and catches 

(Hilborn and Walters, 1992). Conversely, if the stock size is under-estimated, the 

TAC will also be underestimated and managers will unknowingly forego potential 

profit. Choosing a TAC for the big skate stocks may be difficult given the 

information available. 

DFO’s second potential management goal could be to maximize the 

productivity and profitability of the big skate fishery. Given that my study 

estimates both stocks to be at carrying capacity, each stock would first need to 

be fished down to its BMSY, which under logistic growth assumptions is 

approximately half a stock’s carrying capacity. Since big skate catches are driven 

by market demand, establishing a higher TAC may not be enough to decrease 

the stocks to BMSY. The established TAC in NHS does not seem to limit the 

fishery as evidenced by the low catches relative to the 567 tonnes TAC 

(excluding 2003). Additionally, catches in QCS have not exceeded 1,000 tonnes 

even though there is no TAC present on big skate catch in that stock. Based on 

the big skate catch trajectory it seems that there are other factors influencing 

why, when, and how much fishers target and land big skate. Managers can 

employ incentives, such as priority access to increased quota for other target 
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species, to motivate fishers to target and catch big skate. Once stocks are 

reduced to BMSY they are more productive than a stock at carrying capacity and 

can support removals equal to MSY. Managers can introduce a Limited Access 

Program (LAP) to limit vessel numbers in order to avoid overcapitalization, thus 

ensuring increased profits for those active in the fishery (Quigley, 2006). 

Managers can use adaptive management and decision analysis to determine the 

incentive program that is most likely to reduce big skate abundance and increase 

profitability.  

Adaptive management is an iterative process by which a management 

regulation is enforced, the outcome is monitored, and the current management 

regulation is updated using the knowledge gained (Lee, 1999). Adaptive 

management treats policy decisions as large-scale experiments. These 

experiments provide a way to learn about dynamic, complicated systems and can 

potentially improve management (Walters, 2007). Decision analysis, 

recommended for use in shark stock assessments (McAllister et al., 2001), could 

be used by DFO managers to select an incentive program to motivate fishers to 

reduce big skate abundance. A decision analysis would require the alternative 

uncertain states of nature, the probability of each uncertain state occurring, and 

decision tables to determine the probability of each outcome (McAllister et al., 

1994). For BC’s big skate fishery, the potential management decisions are 

different incentive programs to get fishers to target big skate.  The uncertain 

states of nature are the r and K parameters from the biomass dynamics model, 

which dictate predicted population size, the predicted response of the fishers to 



  

 56 

the incentive program, and the catch resulting from the incentive program 

chosen. The probabilities associated with each value of r and K can be taken 

directly from the posterior probability distributions generated from the biomass 

dynamics model used in this assessment. The predicted response of fishers to 

an incentive program and the resulting catch can be determined by fisher 

preference surveys and interviews as some incentives may be more attractive 

than others. Incentives deemed more attractive by fishers may be more effective 

at reducing the population to the desired abundance. Multiple outcomes are 

possible from the decision analysis such as the time it would take to fish the 

stock down to BMSY, the revenue generated from the catch level resulting from a 

particular incentive program, and/or the cost of the incentive program. Managers 

can apply the results from the decision analysis in an adaptive management 

approach to one stock (the experimental unit) while keeping the other stock as a 

control. The principal benefit of an adaptive management approach is the ability 

to empirically reduce the uncertainty inherent in fisheries management by 

undertaking experiments and updating existing knowledge (Botsford et al., 1997). 

Adaptive management can be costly in terms of time and money when a suitable 

solution is not found (Lee, 1999). However, adaptive management provides a 

long-term plan and the opportunity to learn about system responses to 

management as opposed to establishing a quota and monitoring outcomes. 

Data collection and monitoring is an on-going and pivotal part of the 

management process regardless of management objectives. Data collection and 

monitoring can determine the efficacy of current management regulations. Data 
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collection in the form of a depletion experiment can determine if research surveys 

(and fishery CPUE) are capturing true population trends (Hilborn and Walters, 

1992). Additionally, depletion experiments in localized areas can give scientists 

and managers an estimate of abundance (Hilborn and Walters, 1992). To do this, 

I would recommend an experimental fishing-down of a portion of one stock while 

using the other as a control. If a portion of the experimental stock is depleted, 

one would expect to see a subsequent decrease in the CPUE and fishery-

independent survey indices conducted in that stock. Survey procedures should 

measure relative abundance and use consistent gear and effort over time 

(Hilborn and Walters, 1992). After five years, the survey can be used along with 

fishery catches to determine initial and current stock sizes (Hilborn and Walters, 

1992). Knowledge of current stock size can ensure that management regulations 

do not jeopardize stock status (i.e., move it into the cautious or critical zones). As 

onboard observers are already present on 100% of trawls in BC, length data on 

commercially caught big skate can provide information on size-selectivity to the 

fishery. Knowledge of size-selectivity is important because if fishers are targeting 

older, mature skates they may be reducing the reproductive potential of the 

population. Size-selectivity data could then be used to set minimum size limits on 

skate catch, if necessary, to reduce the chance of recruitment overfishing.  
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5: CONCLUSIONS 

The model output presented here suggests that the two big skate stocks 

are unlikely to be overfished, as their estimated biomass is above the mode of 

their estimated BMSY. If DFO’s management goal is to maintain the current level 

of abundance in each stock, managers should monitor catches to ensure they 

are within the range of catches taken from 1996-2010. A TAC is not necessary 

since the historic catches do not seem to affect population dynamics according to 

my model. If fishery managers wish to be conservative, a TAC could be set to 

2,400 tonnes for QCS based on the maximum predicted DCAC sustainable yield 

and 1,000 tonnes for NHS based on the highest catch from the time series 

available. If DFO’s management goal is to increase the productivity and 

profitability of the big skate fishery, I would recommend a fishing down of the 

stocks to their BMSY. An adaptive management approach can be taken on one of 

the two stocks to determine what incentive program motivates fishers to reduce 

stock abundance to BMSY while also increasing profitability of the fishery. DFO 

should continue to collect data through depletion experiments and monitor stock 

status through trends in fishery-independent surveys. The research presented 

here provides fishery managers with results that incorporate uncertainty and can 

inform future management regulations for big skate in British Columbia.  
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APPENDICES 

Appendix 1: 0% Discard Mortality Rate Outputs 

 

Figure A1.1.Prior (solid line) and posterior (dashed line) probability distributions 
for the intrinsic growth rate,r, from the QCS (left) and NHS (right) 
under a 0% discard mortality rate. 
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Figure A1.2.Prior (solid line) and posterior (dashed line) probability distributions 

of the carrying capacity, K, for the QCS (left) and NHS (right) under 
a 0% discard mortality rate. 

 
 
Figure A1.3.Prior (solid line) and posterior (dashed line) probability distributions 

for the depletion parameter of the QCS (left) and NHS (right) under 
a 0% discard mortality rate. 
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Figure A1.4. MSY posterior probability distribution for QCS (solid line) and NHS 
(dashed line) stocks measured in 1,000s of tonnes. 

 
Figure A1.5. BMSY posterior probability distribution for QCS (solid line) and NHS 

(dashed line) stocks measured in 1,000s of tonnes. 
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Figure A1.6. Posterior distribution of the instantaneous fishing mortality that 

results in MSY, FMSY, for QCS (solid line) and NHS (dashed line). 

 
Figure A1.7. The log predicted big skate population abundance in QCS (left) 

from 1996-2010 and NHS (right) from 1984-2010. The light grey is 
the 90% quantile, medium grey is the 80% quantile, dark grey is the 
50% quantile and the solid black line is the median predicted 
population biomass. 
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Figure A1.8. Observed and predicted indices of abundance for the QCS stock of 
big skate calculated using the median of the posterior distribution of 
the three Graham-Schaefer parameters. Fishery CPUE is shown on 
the left figure, QCS Synoptic Survey in the middle, and QCS 
Shrimp Survey on the right. 

 

 
Figure A1.9. Observed and predicted indices of abundance for the NHS stock of  

big skate calculated using the median of the posterior distribution of 
the three Graham-Schaefer parameters. Fishery CPUE is shown on 
the left and the Hecate Strait Multispecies Survey on the right. 
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Figure A1.10. Potential yield (solid line) calculated through DCAC compared to 
MSY (dashed line) estimated from the Graham-Schaefer BDM for 
QCS (left) and NHS (right). 

 

 

Figure A1.11. Sustainable yield distribution calculated using DCAC for the QCS   
(left) and NHS (right) stocks under a 0% discard mortality. 
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Appendix 2: 100% Discard Mortality Rate Scenario 

 

Figure A2.1. Prior (solid line) and posterior (dashed line) probability distributions 
for the intrinsic growth rate,r, from the QCS (left) and NHS (right) 
under a 100% discard mortality rate. 

 



  

 73 

 
Figure A2.2. Prior (solid line) and posterior (dashed line) probability distributions 

of the carrying capacity, K, for the QCS (left) and NHS (right) under 
a 100% discard mortality rate. 

 
 

 
Figure A2.3. Prior (solid line) and posterior (dashed line) probability distributions 

for the depletion parameter of the QCS (left) and NHS (right) under 
a 100% discard mortality rate. 
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Figure A2.4. MSY posterior probability distribution for QCS (solid line) and NHS 
(dashed line) stocks measured in 1,000s of tonnes. 

 

Figure A2.5. BMSY posterior probability distribution for QCS (solid line) and NHS 
(dashed line) stocks measured in 1,000s of tonnes. 
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Figure A2.6. Posterior distribution of the instantaneous fishing mortality that 
results in MSY, FMSY, for QCS (solid line) and NHS (dashed line) 
under a 100% discard mortality rate.  

 

Figure A2.7. The log predicted big skate population abundance in QCS (left) 
from 1996-2010 and NHS (right) from 1984-2010 under a 100% 
discard mortality rate. The light grey is the 90% quantile, medium grey 
is the 80% quantile, dark grey is the 50% quantile and the solid black 
line is the median predicted population biomass. 
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Figure A2.8. Observed and predicted indices of abundance for the QCS stock of 

big skate calculated using the median of the posterior distribution of 
the three Graham-Schaefer parameters. Fishery CPUE is shown on 
the left figure, QCS Synoptic Survey in the middle, and QCS Shrimp 
Survey on the right. 

 

 

Figure A2.9. Observed and predicted indices of abundance for the NHS stock of         
big skate calculated using the median of the posterior distribution of 
the three Graham-Schaefer parameters under a 100% discard 
mortality rate. Fishery CPUE is shown on the left and the Hecate Strait 
Multispecies Survey on the right. 
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Figure A2.10. Potential yield (solid line) calculated through DCAC compared to 

MSY (dashed line) estimated from the Graham-Schaefer BDM for 
QCS (left) and NHS (right). 

 

 
 
Figure A2.11. Distribution of the sustainable yield calculated using DCAC for the 

QCS (left) and NHS (right) stocks assuming a 100% discard 
mortality rate. 

 
 


