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ABSTRACT 

Fisheries management entails decision making in the face of complex, uncertain systems, 

often resulting in decisions with imperfect outcomes that fail to achieve management 

objectives. For Fraser River sockeye salmon (Oncorhynchus nerka), fishery managers use 

models to better anticipate the magnitude of in-river loss of adults migrating upstream to 

spawn, thereby improving the chance of avoiding conservation concerns or losing 

fisheries revenue. Ecosystem-based models (Management Adjustment (MA) models), 

which predict in-river loss from forecasts of river environmental conditions, provide 

management advice on appropriate harvest adjustments (in terms of reduced catch) to 

increase the probability of achieving spawning escapement targets. The performance of a 

suite of MA model structures and predictor variables was assessed using a retrospective 

analysis and a range of asymmetric loss functions. Rank order of best models depended 

on the performance measures chosen, the relative importance of specific management 

objectives, and the degree of asymmetry in loss functions. 

Keywords: Fraser River, sockeye salmon, management adjustment, model selection, 
performance measures, management objectives, asymmetric loss functions, 
retrospective analysis  
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OVERVIEW 

Managing Fraser River sockeye salmon (Oncorhynchus nerka) to achieve 

spawning escapement targets involves the difficult task of appropriately limiting harvest 

to account for mortality during the upstream migration of adult salmon later in the 

season.  Therefore, the management of Fraser River sockeye salmon relies on the timely 

forecasting of both precise and unbiased estimates of in-river loss, which is calculated as 

the number of sockeye salmon that are estimated at the lower Fraser River at the Mission 

hydroacoustic facility minus the number that are estimated to arrive at the spawning 

grounds in the upper Fraser River to reproduce.  While a number of models have been 

used to adjust the harvest of sockeye salmon to account for in-river loss, this research 

expands upon that work by providing a formal model selection framework that entails 

identifying the models to evaluate, exploring the performance of alternative forecasting 

techniques, conducting a retrospective analysis, and ranking the models using a set of 

five performance measures.  This framework was also used to evaluate the performance 

of three alternative forecasting techniques that either combine multiple models to make a 

single forecast or use forecasted conditions to select a single model based on those 

forecasted conditions each year.  The second chapter extends this work by going beyond 

the standard assumption of symmetric cost functions in model selection by considering 

the effect of asymmetric loss on model rank.  One key finding is that not using the 

available environmental and biological information to model the in-river loss of Fraser 

river sockeye salmon results in greater discrepancies between spawning outcomes and 
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spawning targets than results when that information is used to make predictions about in-

river loss.  Also, for two of the four run-timing groups (Early Stuart and Late), a single 

model (the Early Stuart historic model and Run-timing model for the Late run-timing 

group) performs best for at least four of the five performance measures, indicating that 

managers can be fairly confident that selecting the best run-timing-group-specific model 

will likely result in the best available outcome for those two groups.  However, the 

conclusions for the two remaining run-timing groups (Early Summer and Summer) is less 

clear, indicating that careful decision making and clarification of management objectives 

can aid the model selection process and improve the likelihood of more closely achieving 

Fraser River fisheries objectives.  In addition, I found that using asymmetric loss 

functions to rank models caused model rank to change from the baseline assumption of 

symmetry, depending on the degree of asymmetry in those functions.  Therefore, 

management of Fraser River sockeye salmon can also be improved through consideration 

of appropriate asymmetric loss functions that represent sockeye salmon management 

objectives and by selecting models accordingly. 
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En-route 
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CHAPTER 1: RETROSPECTIVE EVALUATION 

Introduction 

Fisheries managers face the difficult task of trying to meet multiple, at times 

competing, objectives by regulating complex human behaviors within complicated 

natural systems that have intricate feedback dynamics.  Managers are tasked with 

managing fisheries to meet society’s wishes, such as increasing opportunities for income, 

employment, cultural identification, productive ecosystems, recreation, and sustenance.  

Achievement of some of these desired outcomes must often come at the expense of 

achieving others. 

Numerous international agreements and Canadian policies list some form of 

sustainability as a primary objective of fisheries management (e.g., Wild Salmon Policy, 

Fisheries Act).  Naturally, because of the trade-off between meeting spawning targets and 

fulfilling harvest allocation requests, the greater the emphasis on spawning objectives, the 

less likely it is that numerous harvest requests from various fishing sectors can be met.  

After determining the desired level of those trade-offs and establishing objectives of a 

fishery as a whole, managers of Pacific salmon (Oncorhynchus spp.) choose spawning 

targets that balance spawning and allocation in an effort to meet those objectives.  

However, given the uncertainty in natural systems, and the corresponding uncertainty 

about the effectiveness of management efforts in these complex systems, there can be 

considerable discrepancy between spawning targets and actual spawner abundance at the 

end of each year.  Therefore, efforts to improve the ability to forecast these complex 



 

system dynamics should aid in meeting spawning targets and thereby in meeting fisheries 

objectives. 

The British Columbia Fraser River sockeye salmon (Oncorhynchus nerka) fishery 

(Fig. 1-1) is the largest salmon fishery in Canada, averaging annual catches of 5.5 million 

fish over the previous 50 years (Pacific Salmon Commission; PSC, 2009).  These salmon 

are of great importance both as a fishable product, providing the backbone of the 

Canadian commercial salmon fishery (Roos 1991), and as a social and cultural resource 

to both First Nations and residents of British Columbia. Given the importance of sockeye 

salmon to British Columbia as an environmentally and economically sustainable 

resource, sustainable management is of great importance. 

To ensure the sustained presence of Fraser sockeye salmon, Fisheries and Oceans 

Canada (DFO) and the bi-lateral Fraser River Panel (the governing body formed by 

Canada and the United States of America to jointly manage Fraser River salmon) manage 

with the goal of achieving spawning escapement targets and catch allocation goals as laid 

out in the 1985 Pacific Salmon Treaty (Shepard and Argue 2005).  Large in-river losses 

of adults i.e., sockeye salmon that are lost during upriver migration toward spawning 

grounds, are a major factor that negatively affects this fishery both in terms of meeting 

conservation (i.e., spawning escapement targets) and allocation (i.e., First Nations, 

commercial, and recreational catch) objectives (Cooke et al. 2004, Patterson et al. 

2007b).  For example, estimates of in-river loss have exceeded a half-million fish in 8 of 

the past 16 years.  Such events are commonly associated with extreme environmental 

conditions during migration (Patterson et al. 2007b).  Underestimates of the in-river loss 

can lead to conservation concerns with too few fish reaching spawning grounds due to 
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excess catches, whereas overestimates of in-river loss can result in foregone catch (Table 

1-1). Therefore, effective management of the Fraser River sockeye salmon fishery 

depends, in part, on precise and unbiased predictions of in-river loss. 

To predict these in-river losses, biologists currently use management adjustment 

(MA) models to predict differences between lower-river (near Mission, BC) and up-river 

(spawning ground) sockeye salmon escapement estimates (difference between estimates, 

DBEs), after adjusting for expected in-river catch, for each stock (Table 1-1, Fig. 1-1).  

Those DBEs are estimated as a function of Fraser River environmental conditions such as 

water temperature and flow rate (Macdonald et al. 2009, in review).  For management 

purposes, returning stocks are divided into four major management groups based on their 

historical return times to the river: (1) Early Stuart, (2) Early Summer, (3) Summer and 

(4) Late-run (Fig. 1-1) (Gable and Cox-Rogers 1993).  These stock-specific in-river loss 

predictions are then used to provide management advice on appropriate MAs to apply to 

the harvest (i.e., reductions in allowable catch) in order to increase the probability of 

achieving spawning escapement targets (Hague and Patterson 2007, Macdonald et al. 

2009, in review).  The larger the MA, the greater the reduction in catch and hence the 

greater the number of fish that are allowed to pass upstream of Mission.  Forecasting 

appropriate MAs is difficult because in-river loss is not only affected by en-route 

mortality resulting from detrimental environmental conditions, but also by potential 

measurement error for adult salmon abundance in both lower river and spawning ground 

escapement estimates, uncertain catch estimates, and unreported harvest. 

Several MA models have been applied historically by DFO and PSC biologists 

(Macdonald et al. 2009, in review).  The simplest approach assumes the MA should be 
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similar to the average of the historical annual differences between estimates (DBEs) of 

the lower- (Mission) and up-river (spawning ground) abundances.  To better reflect 

sockeye salmon migration conditions, biologists have also used ecosystem-based models 

based upon the well-recognized correlation between high river temperatures and 

increased en-route mortality of salmon (Naughton et al. 2005, Richter and Kolmes 2005, 

Keefer et al. 2008), and such effects have also been observed in the Fraser River 

(Macdonald 2000, Macdonald et al. 2000, Cooke et al. 2004, Rand et al. 2006, Crossin et 

al. 2008, Farrell et al. 2008).  In addition, research suggests that temperature effects are 

stock-specific (Lee et al. 2003, Farrell et al. 2008), supporting use of MA models specific 

to each run-timing group to capture stock-specific variability (Macdonald et al. 2009, in 

review).   

Studies have also shown other effects as well.  For instance, increased Fraser 

River velocity, which is associated with increased discharge, causes greater energy usage 

in upstream-migrating adult salmon (Hinch and Rand 1998, Hinch et al. 2002, Standen et 

al. 2002, Rand et al. 2006), which is associated with high en-route mortality (Hinch et al. 

1996, Rand and Hinch 1998, Hinch and Bratty 2000, Macdonald et al. 2000, Rand et al. 

2006).  Recent extreme shifts to earlier arrival timing for Late-run sockeye salmon 

(Lapointe et al. 2003, Cooke et al. 2004, Crossin et al. 2007, Cooke et al. 2008), have 

resulted in dramatic increases in duration of freshwater residence as well as an increase in 

the temperature and discharge experienced.  Not surprisingly, such early-entry Late-run 

migrants experience higher rates of in-river mortality than their late-entry counterparts 

(Cooke et al. 2004, English et al. 2005, Young et al. 2006, Crossin et al. 2007).   
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Therefore, since 2001, MA models developed by the PSC and DFO (Hague and 

Patterson 2007, Macdonald et al. 2009, in review) have fit historical DBEs to average 

Hells Gate river temperature and Hope discharge values to forecast MAs for Early Stuart, 

Early Summer, and Summer sockeye salmon run-timing groups.  An additional model 

that is typically applied to MA forecasts for Late-run sockeye salmon utilizes the 

forecasted date at which 50% of a run-timing group reaches Hells Gate near Hope, five 

days after reaching the Mission hydroacoustics facility (English et al. 2005, Hanson et al. 

2008). 

Despite the wide variety of such management adjustment models that have either 

been proposed or applied in the past to help managers estimate appropriate management 

adjustments, there has been little comprehensive analysis that quantitatively compares the 

statistical performance of these methods at achieving management objectives.  My 

research objective was to develop such a standardized framework to easily evaluate 

performance of new models and/or incorporate additional years of data. This work will 

fill this gap and help streamline pre-season (and in-season) planning for these sockeye 

salmon fisheries with respect to selection of MA models.  My framework is based on 

retrospective analysis (which uses historical data) of a suite of alternative MA models 

and explores how management objectives, represented by five different performance 

measures, can influence rankings of those models.  Appropriate performance measures 

act as indicators of achievement for management objectives.  Therefore, using this 

framework to examine MA model performance as a function of multiple performance 

measures provides an indication of the performance of the suite of MA models for a 

range of management objectives.  By aiding the management adjustment process, this 
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model-assessment framework will also stimulate discussions among scientists and 

managers to help the latter articulate objectives of the Fraser River sockeye salmon 

fisheries.  Thus, managers will be more likely to achieve spawning escapement targets 

and thereby increase the probability of attaining sustainable catch allocations.  Managers 

will also be more likely to receive science advice tailored to their particular situations and 

scientists will be better able to focus research on areas where it can be of greatest use. 

Retrospective Analysis 

Retrospective analysis, the main method of analysis used here, is a cross 

validation technique (Shao 1993) that uses historical data up to a given year to fit various 

forecasting models, and then iteratively re-fits the model with each additional year of data 

and compares annual forecasts to annually observed actual values.  The performance of 

each model is then summarized over the entire time period of analysis.  In fisheries 

research, retrospective methods have previously been used to evaluate a variety of 

forecasting models, such as forecasts of salmon abundance (Wood et al. 1997, Peters et 

al. 2001, Holt and Peterman 2004, Haeseker et al. 2005, Cass et al. 2006, Haeseker et al. 

2008), and annual harvests of Atlantic menhaden (Brevoortia tyrannus) (Hanson et al. 

2006).   

In my study, a retrospective analysis was conducted to rank a suite of six potential 

MA models based on their functional forms and independent (predictor) variables (i.e., 

Fraser River temperature and flow conditions, river entrance date, and annual escapement 

discrepancies).  Mathematical models are explicit about their assumptions about the 

system and can document the rationale behind management decisions and thereby aid in 

tracking performance.  To compare how well each model would have performed if it had 
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been used in the past, I calculated a variety of performance measures (e.g., mean raw 

error, mean absolute error, root mean square error, mean small sample Akaike 

information criterion (AICc), and mean adjusted R2) that compared forecasted in-river 

loss with actual in-river loss. 

Alternative Forecasting Techniques 

To use all of the information contained in various candidate models, it may be 

valuable to combine models to make a single, potentially more precise and less biased 

prediction.  Thus, in addition to doing retrospective analyses of individual management 

adjustment models, I also explored the viability of applying three alternative techniques 

for combining those models used for Fraser River sockeye salmon MA forecasting: (1) 

combining them via a weighting scheme based on model fits, (2) combining them using 

performance-based optimization of model weights, and (3) combining models via 

switching rules that use one model rather than another based on the value of some 

independent variable.  While use of model-combination techniques is expanding, the 

technique is relatively new, with variable usage and terminology in different disciplines. 

For instance, use of model averaging based on an information criterion such as the 

small-sample Akaike Information Criterion (AICc) is expanding, and it has successfully 

improved model performance in many of its applications.  Based on its performance to 

date, Link and Barker (2006), suggest increased usage and evaluation of model averaging 

in ecological sciences.  Thus far, model averaging has been proposed as a means of 

setting rebuilding targets for New England groundfish stocks (Brodziak and Legault 

2005), estimating vessel impacts on Mississippi River fisheries (Gutreuter et al. 2006) 

and making hydrological predictions (Duan et al. 2007).  In addition, Adrian Raftery and 
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his colleagues have applied Bayesian model averaging successfully to many fields, such 

as climatology and meteorology (Raftery et al. 1997, Raftery and Zheng 2003, Raftery et 

al. 2005).  Despite this success and the expanding use model-averaging based on an 

information criterion, it has not been widely practiced and further evaluation has been 

recommended (Burnham and Anderson 2004).  Therefore, my use of AICc weight model 

averaging for Fraser River sockeye salmon forecasts provides a potential opportunity to 

further evaluate model averaging and improve forecasts. 

Unlike model averaging based on an information criterion, a second type of 

model averaging uses management-relevant performance measures such as mean 

absolute error, or other measures, to optimize the weight placed on the suite of model 

forecasts.  This technique has been given many names, such as a weighted ensemble 

approach, weighted-average method, performance-weighted average and others, and has 

been used sporadically in weather predictions and economic forecasts (Eckel and Mass 

2005, Woodcock and Engel 2005, Greybush et al. 2008).  In my application of this 

technique, I will refer to it as using “optimized weights” to combine models. 

The final model-combination technique I will analyze is the use of a switching 

rule to select which model to use in a given year.  This technique is similar in concept to 

switching rules used in engineering (Narendra and Balakrishnan 1994, Narendra et al. 

1995, Giovanini et al. 2006), which shift between multiple models to control 

manufacturing facilities.  Outside of the engineering field, the use of switching rules is 

limited, but Haeseker et al. (2007) essentially used this method to develop what they 

called a “hybrid model” to forecast pre-season salmon abundance that switches between 

one forecasting method and another, depending on certain conditions.  However, the term 
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“hybrid model” is ambiguous; it could also simply be a single model with components 

drawn from the suite of available models. A more specific term such as switching-rule 

modeling, or a switching model is more appropriate.  Given the paucity of previous 

ecological studies using a switching model, my exploratory analysis should help guide 

further pursuit of a technique to select between models to fit changing ecological 

conditions. 

In summary, this analysis will examine the efficacy of a suite of six management 

adjustment models and three model-combination techniques to provide a framework for 

both current and continuing evaluation of alternative MA models, to stimulate 

identification of explicit fisheries objectives and appropriate indicators, and to improve 

achievement of objectives for Fraser River sockeye salmon. 

Methods 

Data 

Fisheries and Oceans Canada (DFO) provided historical spawning escapement 

estimates for sockeye salmon (DFO stock assessment, T. Cone, Annacis Island, BC), and 

the Pacific Salmon Commission (PSC) provided sockeye salmon abundance estimates at 

Mission and estimates of sockeye salmon catch upriver of Mission.  Spawning ground 

abundance estimates were obtained through a variety of observation techniques, whereas 

Mission abundance and run-timing estimates were obtained using hydroacoustic sonar 

(Xie and Hsieh 1989, Xie 2000).  Fraser River temperatures were collected as part of the 

Fraser River Environmental Watch Program (Patterson et al. 2007a), and Fraser River 

flows were measured by Environment Canada’s Water Survey of Canada 
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(http://scitech.pyr.ec.gc.ca/waterweb/).  Temperature measurements were taken at 

Qualark, B.C. and flow measurements were from Hope, B.C. (Fig. 1-1). 

Management Adjustment Models 

For estimating natural mortality of upstream migrating adults, I used the 

“difference between estimates” (DBEs), which is the difference between estimates of 

upriver spawning escapement abundance (SE) and lower river potential spawning 

escapement abundance estimates (PSE) (Table 1-1).  The latter, potential spawning 

escapement, accounts for the lower river escapement as well as upriver First Nations and 

recreational catches (Table 1-1).  This proxy was necessary because scientists currently 

lack a direct measure for the magnitude of mortality for upstream migrating adult Fraser 

River sockeye salmon (Patterson et al. 2007b).  More specifically, the DBE response 

variable is specified as the natural log of the quantity SE divided by PSE, ln(SE/PSE) 

(Hague and Patterson 2007).  The reasons for a log-transformation are: (1) to meet 

assumptions of homoscedasticity in residuals from the fitted models (Zar 1996), and (2) 

to constrain predictions of SE/PSE within a positive range (Macdonald et al. 2009, in 

review). 

This study evaluated models with four different predictor variables for forecasting 

adult abundance of Fraser River sockeye salmon: (1) Fraser River temperature (T) in 

degrees Celsius measured at Qualark, British Columbia, (2) Fraser River flow (Q) in 

cubic meters per second measured at Hope, British Columbia, (3) migration timing (D50) 

e.g., river entry date, and (4) the observed historical average DBEs (H) (Table 1-2; 

Macdonald et al. 2009, in review).  Six different MA models resulted (Eq. 1 – 6 in Table 

1-2).  Models 1-3 use either Fraser River temperature, Fraser River discharge, or both, 
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whereas model 4 fits to historical DBEs using historical Hells Gate 50% median dates 

(i.e., the date at which 50% of the run has migrated past Hells Gate) (Eq. 4).  Model 5 

forecasts future DBEs using the average DBEs from the past. These models were all 

compared to each other and to the results of using no management adjustment (model 6).  

Run-specific parameters were estimated for each of these six candidate management 

adjustment models by fitting historical DBEs (ln(SE/PSE)) data to historical, 

environmental, or run-timing conditions using the equations in Table 1-2. 

Retrospective Analysis 

Models were initially fit to data on annual environmental variables and historical 

DBEs (ln(SE/PSE)) from 1977 – 1994.  Retrospective predictions were then made for 

1995 – 2007.  For example, a and b parameters for a given model were initially estimated 

using data from 1977 -1994 and the resulting model was then used to forecast the DBE in 

1995.  In the next iteration, the observed 1995 data on annual environmental variables 

and DBEs were added to the time series, model parameters were re-fit, and the 1996 DBE 

was forecasted.  These iterations were repeated for all remaining years of available data 

and for all run-timing groups.  Models were fit using the linear modeling function in the 

statistical software package R (http://cran.r-project.org/).  Note that because of limited 

data for the Late run-timing group, the temperature-plus-discharge model needed to be 

initialized from 1977 - 1997 and evaluated from 1998 – 2007 in order to have more initial 

data points than regression parameters.  In addition, again because of data limitations for 

this timing group, the mean small-sample Akaike information criterion performance 

measure was averaged from 2000 - 2007 for the Late run-timing group temperature-plus-

discharge model and 1998 - 2007 for the remaining models for this timing group. 
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Model performance measures. -- Fisheries management objectives can vary across 

fisheries and even over time within a fishery, depending on relative weighting placed on 

spawning vs. harvest goals, short-term vs. long-term plans, and acceptable characteristics 

of forecasting error, among other factors.  Depending on the nature of such objectives, 

different measures will be better suited to evaluate model performance.  I used five 

different performance measures to assess the suite of MA models listed above:  (1) mean 

raw error (MRE), (2) mean absolute error (MAE), (3) root mean square error (RMSE), 

(4) mean small-sample size Akaike information criterion (AICc), and (5) mean adjusted 

R2 (R2).  These commonly used measures were selected to provide an assessment of 

model bias, precision, and overall fit (Willmott 1982, Abraham and Ledolter 1983, 

Chatfield 2001, Burnham and Anderson 2002, Willmott and Matsuura 2005). 

To facilitate interpretation of results, I converted model error, the difference 

between the predicted and observed values of ln(SE/PSE) based on equations 1-6, to “raw 

error” (RE) measured on a linear scale using: 

(7)
 

))/exp(ln())/exp(ln( ,,,, nobsinforein PSESEPSESERE −= , 

where REn,i is the raw error in year n of model i, ln(SE/PSE)fore,n,i is the forecasted DBE 

in year n, as forecasted by model i, and ln(SE/PSE)obs,n is the observed ln(SE/PSE) in year 

n (Table 1-1).  By converting to the linear scale, a positive error of a given magnitude has 

the same value relative to the observed in-river loss as a negative error of the same 

magnitude (Table 1-1).  Because in-river loss is measured by using the estimated ratio of 

spawners (SE) to number of fish entering the Fraser River (PSE), RE is a unitless, 
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proportional measure of the extent to which the forecasted ratio of actual spawner 

abundance divided by Mission abundance represents the actual ratio realized at the end of 

the season; the larger the ratio, the smaller the in-river loss, assuming negligible 

estimation error. 

Our measures of forecasting error require some explanation.  For example, a 

SE/PSE of 1 indicates all fish estimated as potential spawners at Mission were later 

observed upstream on spawning grounds, whereas a SE/PSE of 0.5 indicates 50% of 

those potential spawners were estimated on those grounds.  Therefore, a forecasted 

SE/PSE of 0.925 would predict that 92.5% of potential spawners at Mission would reach 

the spawning grounds (a predicted in-river loss of 7.5%).  If the observed SE/PSE was 

actually 0.875, an in-river loss of 12.5% of the fish, then the difference between 

forecasted and observed ratios of SE/PSE results in a positive raw error of 0.05 (equation 

7) (an underestimate of the in-river loss), which indicates that spawning objectives would 

not have been met (Table 1-1). 

Because raw error (RE) is estimated from forecasted minus actual (observed) 

values of the exponentiated terms in Eq. 7, positive REs represent forecasts of SE/PSE in 

the left-hand term of Eq. 7 that are closer to 1.0 than the true SE/PSE (right-hand term of 

Eq. 7) (Table 1-1).  This situation would result in underestimation of management 

adjustments (i.e., too few additional fish being allowed to escape upriver), which would 

in turn produce fewer than the target number of spawners and greater allocation of catch 

than available to meet the spawning target (Table 1-1).  In contrast, negative raw error 

values (RE) represent forecasts of SE/PSE that are further from 1.0 than the observed 

SE/PSE, resulting in management adjustments that would produce a number of spawners 
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above the target and therefore a smaller harvest than achieving the spawning objective 

would have given (Table 1-1). 

The MRE is the average bias for each model: 

(8)
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where MREi is the mean raw error for MA model i across all evaluated years (N), where i 

corresponds to models 1-6 in Table 1-2. 

An unbiased model, with an equal magnitude of positive and negative raw errors 

(RE), results in a MRE = 0, but provides no indication of precision of forecasts.  

Therefore, MAE (Eq. 9) and RMSE (Eq. 10) were also calculated to assess the average 

magnitude of MA model residuals.  The MAE is the average absolute magnitude of MA 

model error, regardless of sign: 
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The RMSE weights large errors more heavily, such that the model with the 

smallest RMSE results in the lowest variance in residuals: 
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Finally, I calculated two measures of goodness of fit to assess how well models fit 

observed data.  Adjusted R2 is the proportion of variability in ln(SE/PSE) explained by 

the MA model, while AICc uses model likelihood and number of model parameters to 

score degree of belief in the models relative to one another, irrespective of a “true 

model”, and incorporates the principle of parsimony (Burnham and Anderson 2002).  

Because models were refit for each year of the retrospective analysis, a mean adjusted R2 

and a mean AICc across years are used for retrospective evaluation: 

(11) 
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In addition to AICc, following standard AIC reporting procedure (Burnham and Anderson 

2002), I report maximum log likelihood, number of parameters (K), delta AICc (∆ AICc), 

and AICc weight for each model. 

In order to give these performance measures some context, the following is a 

discussion of the treatment of error as a measure of retrospective management 

performance.  The performance measures, MRE, MAE, and RMSE, communicate how 

much a spawning escapement target would have been missed if a given management-
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adjustment model had been applied in past years.  While treating error in this way places 

forecast error in the context of management, there are some important caveats to 

consider.  One is that forecasted spawning escapements are compared to historically 

observed escapements rather than to spawning escapement targets set by the management 

agency.  The reason is that the spawning escapement targets are updated during the 

fishing season.  In this analysis, I assumed that spawning escapement targets were 

perfectly met in the past so that I could treat the historically observed escapements as the 

historical spawning escapement targets.  Based on this assumption, I treat the difference 

between a historically observed escapement and a forecasted spawning escapement, i.e., 

the difference that would have resulted from retrospective application of a MA forecast, 

as the difference between the actual and target spawning escapement.  Such a treatment 

of forecast errors also assumes that outcome uncertainty, which is uncertainty in the 

degree to which management actions are achieved in practice, is independent of forecasts 

by management adjustment models. 

Each measure of performance of a forecasting model reflects a different 

perspective on management objectives.  The information contained in any individual 

performance measure could be used to evaluate a model’s ability to achieve one or more 

possible management objectives.  Mean raw error communicates the average magnitude 

and direction by which spawning escapement targets would have been missed if a given 

model had been applied retrospectively.  In contrast, mean absolute error quantifies the 

average magnitude by which escapement targets would have been missed, regardless of 

direction.  RMSE, like MAE, is insensitive to whether error is positive or negative.  In 

addition, RMSE weights large errors more heavily than smaller errors, potentially 
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corresponding to increased stakeholder concerns associated with errors beyond some 

threshold level.  Previous studies evaluated the performance of sockeye, chum (O. keta), 

and pink (O. gorbuscha) salmon preseason abundance forecasting models using these 

performance measures (Wood et al. 1997, Haeseker et al. 2005, Cass et al. 2006, 

Haeseker et al. 2008). 

In addition to reporting the actual value of performance measures, a model rank 

was assigned to each MA model for each run-timing group and each performance 

measure, where 1 = “best” and 6 = “worst” model.  For MRE, MAE, and RMSE, the best 

model was the one that had a performance measure closest to zero, while for the R2 

performance measure, the largest value was best, and for the AICc performance measure, 

the best model produced the smallest AICc value.  In addition to determining individual 

ranks, to rank relative overall model performance, I averaged each MA model’s rank 

across the ranks for each of the five performance measures in each run-timing group 

(MRE, MAE, RMSE, AICc, and R2).  For a given suite of run-specific MA models, I 

assigned overall model rank to each model using: 

(13)
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where ranki is the mean rank for model i, and ranki,j is the rank for model i for 

performance measure j, and J = 5. 

Jack-knife.--A criticism of retrospective analysis is its use of historical information that 

may not represent future conditions because variability seen in the past may not reflect 
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the range that may occur in the future.  Such forecasts of future conditions are not 

possible, but I conducted a jack-knife analysis (Shao and Dongsheng 1995) to determine 

the sensitivity of model rankings and performance to removal of each year’s forecast 

from the time series and to assess robustness of the retrospective ranking procedure to 

interannual variability.  Single years of the 13-year retrospective evaluation period were 

sequentially removed and performance measures were re-estimated, eventually producing 

13 replicates of model ranking.  To assess the sensitivity of model rank to removal of an 

individual year’s data, I compared the top-ranked model for each performance measure 

from the retrospective analysis to the top-ranked model for each performance measure 

from each jack-knife replicate, tracking the number of jack-knife replicates that selected a 

different top-ranked model. 

Alternative Forecasting Techniques 

AIC weights.—One of the options for combining models is to use model averaging based 

on information theoretic criteria (Burnham and Anderson 2004, Brodziak and Legault 

2005, Gutreuter et al. 2006).  I weighted annual forecasts produced by each model by the 

retrospective annual AICc weights (Eq. 14) to produce a single combined forecast. 
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where Wn,i is the AICc weight (between 0 and 1) in year n for model i, , and 

ln(SE/PSE)n,i is the forecasted value in year n from model i such that the weighting can 

vary from year to year.  These retrospective annual AICc weights are based on the yearly 
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estimates of AICc values that were used above in Eq. 12 to produce the AICc performance 

measure. 

Optimized weights.—I also calculated three separate forecasts of in-river loss generated 

by an optimized-weight approach to minimize the three error-based performance 

measures (MRE, MAE, and RMSE); Eq. 15. 

(15)
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where OWn,i is the optimized weight for year n and model i, , and 

ln(SE/PSE)n,i is the forecasted value from year n and model i.  Unlike the retrospective 

evaluation described above, in which each model forecast was evaluated with five 

performance measures, each optimized model forecast here was produced and evaluated 

using only a single performance measure. Specifically, only MRE was used to evaluate 

the MRE-optimized model, only MAE to evaluate the MAE model, and only RMSE for 

the RMSE model.  As with the retrospective evaluation, I repeated this process iteratively 

for each year of the retrospective evaluation using the information available at that time.  

For example, the 2001 MRE-optimized forecast is based on the optimal set of weights on 

each model that, when combined with equation 15, minimize the mean raw error of the 

combined model forecasts from 1995-2000.  I found the optimal set of weights, OWn,i, by 

using Microsoft Excel's SOLVER.  If a management adjustment was not applied, it 

would always predict zero in-river loss and would not affect the optimized forecast 
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despite its weighting; therefore, not using a management adjustment was not included in 

the optimized model weighting. 

The AICc weight and optimized-weight models were evaluated using three of the 

five performance measures, MRE, MAE, and RMSE.  For each performance measure, the 

performances of these models were ranked against each other, as well as against the six 

models for each run-timing group from the retrospective analysis.  For example, the 

MRE-optimized version of the optimized weight model was ranked against the single- 

AICc weighted model and the six independent models using just the MRE performance 

measure.  This comparison was repeated for the MAE- and RMSE-performance measures 

using the MAE- and RMSE-optimized model forecasts.  Here, rankings range from 1 

(best) to 8 (worst) for each performance measure. 

Switching rule.—A third option for an alternative approach to model development is to 

switch from one model to another based upon predicted conditions in the forecasted year.  

In order to switch between the set of available models from year to year in a strategic 

way, I sought to develop switching rules to define conditions that correspond to selecting 

a particular model. 

For each set of observed environmental conditions, I plotted the model with the 

smallest RE to identify sets of those conditions that were dominated by a single model.  

The conditions used in this analysis are the same as those used in forecasting:  Fraser 

River temperature, Fraser River discharge, and stock specific run-timing.  Unlike the 

retrospective evaluation, which produced a version of each MA model for each year, I fit 

a single version of each model to the full time series (1977-2007) to produce the yearly 

forecast.  Therefore, results of this section reflect how models would have performed in 
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the past if all of the information that is currently available also existed in 1977.  This 

particular analysis produced a multi-dimensional space, defined by historically observed 

Fraser River sockeye salmon migration conditions, populated by points corresponding to 

the best-performing model in each year. 

Results 

Retrospective Model Performance 

Although there is some consistency in which models rank the highest (i.e., some 

perform well in all run-timing groups and for the majority of performance measures), 

ranks of most models varied as a function of run-timing group and the performance 

measure considered.  Interannual variability in retrospective forecasts of difference 

between estimates (DBEs) by top-ranked management adjustment (MA) models differs 

from the observed DBEs for each sockeye salmon run-timing group (Fig. 1-2).  For the 

Early Stuart and Summer run-timing groups, the historic (H) model was less biased 

relative to the observed DBE (as reflected by MRE) than the other models (Fig. 1-3), but 

did a poor job of tracking interannual variability in observed DBEs (Fig. 1-2).  In 

contrast, the environmental models (temperature (T) model, discharge (Q) model, and 

temperature-plus-discharge (T+Q) model) displayed a temporal variance structure similar 

to the observed data, but the mean raw error (MRE) results are positive (Fig. 1-3). This 

positive MRE means that the models are generally biased towards forecasting an MA 

that, if applied historically, would have resulted in positive raw error (i.e., underestimates 

of in-river loss, which result in escapements below spawning targets; refer back to Table 

1-1).  The only exceptions are the Early Stuart and Early Summer H models, and the Late 

run H and run-timing (R) models, all of which have small negative MREs and therefore 
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are slightly biased towards overestimates of in-river loss (leading to exceeding spawning 

targets). 

Based on the average rank of models calculated across ranks specific to each 

performance measure, no single model performed best across all run-timing groups (Fig. 

1-4).  However, one clear result is that failure to apply a management adjustment, the 

“No MA” (NMA) model, had the worst average rank in three of the four run-timing 

groups, and the second-worst rank in the other group.  The H model achieved the best 

ranking for the Early Stuart run, the H and the T+Q MA models tied for highest rank for 

the Early Summer run, the T and the T+Q models were tied for best for the Summer run, 

and the R model was best for the Late run (Fig. 1-4).  

Separating average results from Fig. 1-4 by performance measure as well as 

model shows that model rank not only varied across run-timing group, but also across 

measures used to assess model performance (e.g., MRE, MAE, etc., Fig. 1-5).  In some 

cases, the best performing model was consistent across performance measures.  The R 

model in the Late run-timing group ranked best for all five performance measures (Fig. 1-

5D).  Similarly, the Early Stuart H model ranked first for four performance measures 

(MRE, MAE, RMSE, AICc) and third for R2 (Fig. 1-5A).  As was seen previously in 

Figure 1-4, the NMA model ranked poorly in all run-timing groups; it ranks last for 

almost all performance measures in the Early Stuart and Early Summer run-timing groups 

and generally performs poorly in the Summer and Late run analyses as well.  However, 

although the NMA model performed poorly, it did not rank lowest for any of the Summer 

run performance measures; the R and Q models for the Summer run each had the lowest 

rank for one or more of the five performance measures (Fig. 1-5C).  Disagreement among 

 22 



 

performance measures about ranks of models can also arise, as demonstrated by the MRE 

and MAE performances for the Summer run-timing group.  In this example, the H model 

performs best for MRE, and the T+Q model performs second best based on MRE, 

whereas for MAE and RMSE, the T+Q model performs better than the H model.  These 

results reflect the importance of carefully articulating management objectives to identify 

performance measures that best reflect them. 

A model’s rank for each individual performance measure provides a more 

detailed view of performance.  For the Early Stuart run-timing group, the H model ranked 

best in terms of having the smallest average bias (MRE), average absolute error (MAE), 

average RMSE, and average AICc score, while the T model ranked second for all five 

performance measures (Fig. 1-5A).  The T+Q model ranked first based on R2, despite its 

relatively poor performance for the other measures.  For the Early Summer run (Fig. 1-

5B), the H model best explained the observed variance (R2 and AICc), but the T+Q 

model ranked best for MAE and RMSE, and the Q model ranked first for the MRE 

measure despite an otherwise poor performance.  For the Summer run-timing group (Fig. 

1-5C), the T+Q model had the smallest MAE and the best RMSE rank.  However, likely 

because of the T+Q model’s additional parameters relative to the T model, the T model 

performed best for adjusted R2 and AICc. 

An examination of actual values of each performance measure (instead of ranks) 

provides additional insight into differences among models (Fig. 1-3).  In many instances, 

the differences between model ranks was due to only minor differences in the actual 

value of the performance measures (Fig. 1-3).  For example, in the Early Stuart and Early 

Summer run-timing groups, differences among the top several models in the MAE and 
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RMSE values were quite small (Fig. 1-3A, B).  This is particularly true of the Early 

Stuart MAE scores, where the best-ranked model had a MAE of 0.21 and the fifth-ranked 

model had a MAE of 0.25.  However, a caveat to this point for the Early Summer group 

is that the MRE of the T+Q model error was 0.04 and the Q model was 0.02, which is a 

small absolute difference, but a large percentage difference.  Thus, both rank and 

numerical error are informative in communicating model performance. 

The R2 and AICc results also contribute to understanding model performances.  

There was considerable variation in the adjusted R2 values among run-timing groups, 

with the R model explaining 72% of the observed information in the Late run-timing 

group (Fig. 1-3D), while the top-ranked model for the Early Summer run (the H model) 

only explained 22% (Fig. 1-3B).  The model with the largest R2 value often ranked 

poorly for the MRE, MAE, and RMSE performance measures.  For example, the Early 

Stuart run T+Q model ranked first based on adjusted R2 but ranked third for MRE or fifth 

for MAE and RMSE (Fig. 1-5A). 

Based upon AICc differences (∆AICc) (Fig. 1-6), the H model was best for the 

Early Stuart and Early Summer runs, while the T and R models were best for the 

Summer and Late run-timing groups, respectively.  The only other model with substantial 

empirical support, i.e. with a ∆AICc less than 2, was the Early Stuart T model.  However, 

while ∆AICc is informative, there were situations where models with a large ∆AICc 

performed quite well, based on other performance measures, such as the Early Summer 

and Summer run-timing groups’ T+Q models in particular (Table 1-3 for complete AICc 

results). 
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Finally, model performance varied considerably from year to year as can be seen 

from the frequency (number of years) that a model performed best in terms of yearly raw 

error (RE from Eq. 7) (Fig. 1-7).  Using the Early Stuart run-timing group as an example, 

although the H model ranked best (average rank = 1.4), it produced the smallest raw error 

in only two of the 13 years of the retrospective evaluation.  The T+Q model, which had 

average rank of 3.4, had the smallest raw error in four of 13 years, the most years of any 

model for Early Stuart.  While the largest difference between average model rank across 

the five performance measures and frequency of best performance occurred for the Early 

Stuart run, similar divergences occurred for the yearly model performance in other run-

timing groups.  Using the yearly model performance to examine whether there is any 

correspondence between environmental conditions and model performance may provide 

additional useful information.  I examined this in the switching rule analysis later. 

Jack-knife 

The jack-knife analysis of this retrospective evaluation indicated that results 

presented here are quite robust to year-to-year variation in model forecasts for three of 

the four run-timing groups (Table 1-4; Appendix 2).  In the Early Summer, Summer, and 

Late run-timing groups, only a few, if any, of the jack-knife replicates caused a different 

model to rank better than the top-ranking model that was derived from the full 

retrospective evaluation.  Ranks of models of the Early Stuart run-timing group were the 

most sensitive to the jack-knife analysis, with the MAE and RMSE performance 

measures indicating that an alternative model performed best in 46% and 54% of the 

replicates, respectively.  This result is likely due to the similarity in model performance 
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among the models in both the MAE and RMSE performance measures for this group 

(Fig. 1-3A). 

Alternative Forecasting Techniques 

Based on their aggregate performance using the MRE, MAE, and RMSE 

performance measures, i.e., excluding mean adjusted R2 and mean AICc, both the AIC-

weight and optimized-weight alternative forecasting techniques performed well for the 

Early Summer and the Late run-timing groups, where they outperformed 5 of the 6 

standard models (Fig. 1-8).  In contrast, for the Early Stuart run, the optimized model 

weights and model averaging techniques ranked 3rd and 4th, respectively, out of 8 models.  

For the Summer run-timing group, the alternative model techniques performed poorly, 

only outperforming the two worst models.  There was little difference between the 

rankings of the two alternative modeling techniques across run-timing groups, but the 

optimized model weight approach outperformed the AICc weight approach for all but the 

Late run-timing group. 

The only situation where a model-combination technique could be considered 

superior to the best standard forecasting technique occurred for the Late run-timing 

group.  The AICc weighting approach and the run-timing model both tied for best (Fig. 1-

8), but the run-timing model ranked 1st for MRE, 2nd for MAE, and 3rd for RMSE, while 

the model averaging approach ranked 3rd for MRE, 1st for MAE, and 2nd for RMSE 

(calculated from Appendix 1).  This is another example of trade-offs among performance 

measures.  In this situation, an ordering of the importance of these different performance 

measures, or a means of comparing the size of the numerical error from one performance 

measure to another, is necessary to identify a preferred model. 
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Switching rules.--Examination of multi-dimensional plots of model performance for the 

suite of six models as a function of environmental conditions did not yield any strong 

clustering patterns in terms of a model that performs best in terms of RE under a 

particular set of environmental conditions (Fig 1-9).  However, there are some points that 

could be explored further in the future (Appendix 3).  For example, in the Early Stuart 

run-timing group, the Q model tended to outperform other models in years with low 

temperature and high discharge, and the NMA model only performed best in years with 

low discharge (less than 5,000 cubic meters per second), (Fig. 1-9A).  For the Summer 

run-timing group, the T model only performed best in years with low discharge (less than 

3,000 cubic meters per second) (Fig. 1-9C). Outside of these examples, environmental 

conditions and run-timing do not appear to be clearly correlated with any model 

producing the best forecast under those environmental conditions. 

Discussion 

The retrospective analysis presented here provides a framework for comparing 

current and future management adjustment (MA) models.  It will also be easy to evaluate 

new models or re-evaluate existing models as additional years of data become available.  

This analysis also shows the importance of developing clear management objectives and 

their accompanying performance measures to select MA models; model rankings can 

vary considerably, depending upon the run-timing group and performance measure 

selected.  When combined with clear management objectives, my methods of model 

selection can help managers make management-adjustment decisions that will increase 

the chance of more closely achieving management objectives. 
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One key finding from my study is the strong evidence that MA forecasts from 

some combination of environmental or biological data are preferable to applying no MA 

to the harvest; using no management adjustment produced the poorest results in almost 

all cases.  The historic model performed best based upon the MRE performance measure 

in half of the run-timing groups, which indicates that this model produced the least bias, 

on average, except in the case of the Summer and Late run-timing groups.  This is likely 

due to the nature of the historic model; as long as the observed DBE follows some 

general trend over time and is not too variable from year-to-year, it follows logically that 

a model based on the past DBE trend would have relatively little bias.  However, except 

for the Early Stuart run-timing group, the environmentally based models (temperature, 

discharge, temperature-plus-discharge, and run-timing) often performed best for the 

MAE and RMSE performance measures, i.e., those that reflect magnitude of deviations, 

not just overall bias.  Combining ranks across individual performance measures into an 

aggregate rank resulted in one or two highly ranked models for each run-timing group.  

Generally those best-ranked models for the Early Stuart, Early Summer, and Summer 

run-timing groups were two of the following three:  temperature, temperature-plus-

discharge, or historic models, whereas the run-timing model was best ranked for the Late 

run-timing group. 

Managers also need to consider how big a difference in performance is needed to 

decide that one model is better than another because the difference in performance of the 

top two models in a given year was often quite small (Appendix 1). This observation 

suggests that using average ranks and average values of performance measures (Fig. 1-3 

to 1-6) are likely to be more useful than basing model choice on  the number of years that 
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a model had the smallest raw error (Fig. 1-7).  Even if managers use the former 

performance measures, they still need to consider what constitutes a meaningful 

difference.  An MRE difference of 5% is perhaps too small to be concerned with, but 

what about 10%, 20% or 40%?  In addition, is a difference of 20% for MRE more 

important than a difference of 20% for the MAE performance measure?  In the Early 

Stuart and Early Summer run-timing groups, differences among top models for the MAE 

and RMSE performance measures were quite small.  For example, the 5th ranked model’s 

MAE for the Early Stuart run was only 19% greater than the best ranked model’s MAE 

and the 2nd ranked model’s MAE was only 4% greater than that of the best model. 

Because of the dependence of model rank on the performance measure used, I 

support the use of multiple performance measures in model selection or at least the 

practice of ensuring that the performance measures used appropriately represent 

management objectives.  Many studies use only one or two measures to rank model 

performance (e.g., Willmott 1982, Willmott and Matsuura 2005); a practice that only 

captures certain characteristics of the model performance.  Given the sensitivity of model 

rank to the choice of performance measure, managers should be aware that models 

selected on the basis of a single performance measure such as MRE or MAE may result 

in larger errors or failure to meet objectives that are reflected by other performance 

measures.  However, when a performance measure contains multiple types of 

information, such as the RMSE, which reflects both bias and precision, it becomes more 

difficult to interpret (Willmott and Matsuura 2005).  Therefore, using the root mean 

squared error alone could lead to ambiguous interpretations that are more easily avoided 

by a more diverse set of performance measures.  In addition, making decisions using only 
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the MRE measure of bias would assume that managers only aim to achieve small average 

bias over the long term, but this would ignore the impact of uncommon but very large 

positive or negative forecasting errors, which managers also likely seek to avoid.  Using 

both MRE and RMSE, however, could capture both aspects of these management 

objectives. 

Many studies in ecology select models from a large set based solely on R2 or AIC 

performance.  While these studies may select biologically relevant models that fit 

historical data well, they may not perform well in terms of management objectives, as 

suggested by the discrepancy between model performances for the R2 or AICc 

performance measures and the MRE, MAE, and RMSE measures.  In nearly all cases, the 

top-ranked mean AICc model and the top-ranked mean adjusted R2 model were not the 

top-ranked model for the MRE, MAE, or RMSE performance measures.  These results in 

some ways are analogous to those of Adkison (2009) who found in a simulation study 

that models selected based on a decision-analytic approach outperformed models selected 

based on a maximum-likelihood approach.  In addition, solely considering R2 or AIC 

performance can be particularly problematic if there are asymmetric costs associated with 

exceeding or falling below an objective (Walters and Martell 2004; Chapter 2 of this 

thesis). 

While retrospective analysis has been criticized for its use of historical 

information rather than future forecasts of performance, a jack-knife analysis showed that 

model performance based on my retrospective analysis was relatively insensitive to 

variability in year-to-year performance for three of four run-timing groups.  The average 
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performance was not heavily influenced by extreme years, as was shown by the few cases 

that produced a different top-ranked model. 

The model-combination techniques were of variable benefit to Fraser River MA 

forecasts.  Model averaging using AICc weighting did not out-perform the predictions of 

the “best” model.  Instead, model averaging tended to provide little improvement in most 

cases because the error from this technique was midway between that of the best and 

worst models.  However, for the Late run-timing group, the AICc weight model averaging 

ranked as well as the run-timing model.  In general terms, relative to the best individual 

model, model averaging only improves forecasts when the error for at least some of the 

combined models is in opposing directions.  That is, combining positive and negative 

forecasts will bring the average closer to zero.  Because most of the models in my 

analysis produce overestimates of in-river loss, model averaging did not outperform the 

best individual models, but instead produced errors that were still overestimates and were 

the average of the individual model errors.  There are some advantages to model 

averaging, though.  It minimizes the influence of any individual forecast, and may 

eliminate rare, large errors associated with selecting a single model by averaging that 

large error with other forecasts, which would reduce the RMSE (Raftery and Zheng 

2003).  An additional advantage of the model averaging approach relative to the 

optimized weighting approach was that the fluctuations in models weights over time were 

smaller, indicating that the AICc weightings are more robust to annual variability. 

The optimized-model-weight technique also ranked in the middle of the group of 

models in terms of average model rank.  This technique performed slightly better than 

AICc weight model averaging for three of the four run-timing groups.  However, an 
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important caveat to selecting model forecasts based on an optimized weight combination 

is that the weights for individual models varied greatly depending on the type of error 

being minimized (MRE, MAE, or RMSE).  Therefore, this technique would be most 

useful only if managers decided that a single performance measure captures the majority 

of the management objectives.  Otherwise, because the optimized model weighting 

technique only optimizes for one performance measure at a time, managers may find that 

selecting the optimized-model-weight technique meets some of their objectives while 

failing to meet others. 

Recommendations 

Given the range of results that I found for different situations, it is clear that 

managers of Fraser River sockeye salmon fisheries and Fraser River fisheries scientists 

will need to consider a variety of different factors when selecting the most appropriate 

MA model for forecasting escapement discrepancies and to improve management.  For 

example: 

1. What are the management objectives of the fisheries? 

2. What performance measure(s) best represent(s) these objectives? 

3. How do models rank for this performance measure (or set of performance 

measures)? 

4. How important are the magnitudes of differences between the top ranked models 

for those performance measures? 

5. What is the best trade-off between selecting a model that performs well for one 

performance measure (or set of performance measures) but not another? 

6. How sensitive is model performance to the years used in the analysis? 

7. Can additional modeling techniques or alternative models improve forecast 

performance? 
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Some of these questions have been addressed by this research (i.e., 3, 5, 6, 7), while some 

require further consideration (i.e., 1, 2, 4). 

To elaborate upon this list, the first step in decision making is to clearly state 

management objectives so that (1) management actions are chosen based on objectives, 

(2) management performance can be evaluated against objectives, and (3) appropriate 

indicators can be calculated to show how well each objective is being met.  Two 

objectives established by the Pacific Salmon Treaty and Canadian legislation with regard 

to Fraser River sockeye salmon are conservation through achieving spawning escapement 

targets, and achievement of catch allocation goals (Woodey 1987, Shepard and Argue 

2005).  Although these generally stated objectives are helpful, they are too general to 

evaluate quantitatively, i.e., they are not “operational” objectives. 

More specific objectives and their corresponding performance indicators are 

necessary in order to choose the most appropriate model for estimating MAs for any 

given run-timing group in a given year.  For instance, do managers prefer a model that 

has the lowest average bias in errors over the long term (in which equally large over- and 

underestimates will tend to cancel each other out to give a bias of near zero), or do they 

prefer a model that has a larger average long-term bias but smaller average annual 

deviations, regardless of sign?  The first version of the objective stated above would be 

addressed by using MRE to compare models, whereas the second would be based on 

MAE.  In addition, do managers prefer consistent moderate-sized forecast errors from 

year to year, or do they prefer mostly small forecast errors accompanied by the 

occasional large forecast error?  We know that fisheries managers already consider 
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various types of measures of management performance, but they need to be more clearly 

articulated to choose appropriate MA models. 

To select performance measures and determine how large the differences in 

values of performance measures need to be to prefer one model over another, managers 

could either rank or weight performance measures.  For the Summer run-timing group as 

an example, if a manager favored small bias (MRE) but was less concerned about 

absolute error (MAE) and accepted some years with large error (RMSE), the manager 

would select the historic model because of its small bias despite its large absolute error.  

Conversely, a manager who selected the Summer run temperature-plus-discharge model 

is implicitly showing a relative indifference to model bias (MRE) in favor of minimizing 

the absolute deviation (MAE) and limiting the size of the largest errors (RMSE). 

When managers address the appropriate questions stated above, or otherwise 

clarify their management objectives in terms of performance measures, scientists can 

provide better information on which to base decisions on management of salmon 

populations.  However, managers may find that even with refined management 

objectives, it is still difficult to identify a single “best” MA model for each run-timing 

group.  Managers may find that the model rankings presented here do not conform to 

their specific management objectives and corresponding performance measure(s).  For 

example, managers may want to select the appropriate model based upon one or more of 

the following, (1) a different performance measure or set of performance measures than 

examined here, (2) a weighted average of performance measures, (3) performance 

measures that weight the failure to meet spawning targets more heavily than exceeding 
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spawning targets by the same amount, or vice versa, e.g., using an asymmetric loss 

function (Chapter 2 of this thesis), or (4) some alternative loss function. 

Because it may be difficult to elucidate exact management objectives, particularly 

in terms of positive versus negative forecasting errors, another valuable extension of this 

evaluation of alternative forecasting models is a sensitivity analysis of the effect of 

utilizing asymmetric loss functions to compute the raw error associated with those 

forecasts (Chapter 2 of this thesis).  For example, various interest groups may weight 

exceeding spawning objectives and falling below them differently.  The retrospective 

evaluation approach used here can help determine whether changing the weight applied 

to directional biases influences the outcome in terms of model selection.  

Further exploration of model-combination techniques could prove useful as well.  

For example, in some cases, removing weaker models from the pool, leaving only higher 

ranking models available for forecasting, may result in more favorable model-

combination forecasts.  However, because most of the models tend to underestimate in-

river loss, this is unlikely to improve model-combination forecasts.  Another possibility is 

to explore utilizing additional model-combination techniques such as those from the 

meteorological literature.  For example, Eckel and Mass (2005) used a 2-week moving 

window and selected models that performed best based on observed climatic conditions 

over that 2-week period, which could be analogous to using something like a 10-year 

moving window to select models that performed best based on the Fraser River 

conditions in those 10-years.  This technique may be valuable if in-river losses fluctuate 

with decadal or other periodic changes in weather patterns, Fraser River conditions, or 

migratory behavior of sockeye salmon. 
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Potential improvement could also come from examining models beyond the suite 

of models considered in this analysis.  There is potentially a wide range of additional 

management adjustment models, with different model structures and/or predictor 

variables, which could explain some of the historical variation in past escapement 

discrepancies.  Some examples of additional predictor variables may include: (1) days 

during migration that the water is above some run-specific temperature and discharge 

thresholds, (2) mean daily Mission abundance (because it is possible that greater 

abundance may cause crowding, slower migration, and increased energy usage, thereby 

increasing migration difficulty), (3) observed DBEs from earlier-timed groups to 

subsequently forecast later run-timing groups (e.g., Early Summer, Summer and Late), 

(4) migration speed which can be associated with higher en-route mortality (Naughton et 

al. 2005) and might be predictable using gross somatic energy (Hanson et al. 2008), and 

(5) temperature compared to the optimum determined by aerobic scope, which is a 

measure of the metabolic ability of salmon to handle difficult conditions during upstream 

migration (Farrell et al. 2008).  One benefit of the retrospective evaluation approach is 

that as scientists or managers identify new modeling approaches, additional models can 

easily be evaluated using the same retrospective analysis framework presented here, 

fitting regressions to predictor variables, making retrospective forecasts, and using 

performance measures to evaluate those forecasts against management objectives. 

Due to the sensitivity of the rank order of models to choice of performance 

measures, managers will have to carefully consider the set of performance measures than 

best reflect their goals for the fishery.  Ultimately, in conjunction with clearly specified 

management objectives and the corresponding development of their performance 
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indicators, the results of this study can help provide a standardized process for selecting 

management adjustment models, which should increase the probability of achieving 

spawning escapement targets while balancing the trade-offs between allocation and 

conservation. 
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Table 1-1.  Example of management adjustment data and calculations of errors in 

forecasts of models.  The first row contains a hypothetical case example of actual 

abundances (in thousands of fish) and calculated variables used to evaluate the model 

forecasts.  Potential spawning escapement (PSE) is calculated each year by subtracting 

the forecasted in-river catch (C) from the abundance estimate obtained at the Mission 

sampling location (M).  Later in the season when the actual observed spawning 

escapement (SE) is estimated, that value is used to calculate the in-river loss by 

subtracting the SE from the PSE.  The difference between estimates (DBE) is the natural 

log of the SE divided by the PSE.  The last two rows contain two hypothetical examples 

of model forecasts and their outcomes.  Each year models forecast a DBE that produces 

the forecasted SE/PSE and a forecasted SE based on a predicted PSE.  Once the actual 

spawning escapement has been observed, the model forecasts are evaluated by 

subtracting the observed SE/PSE from the forecasted SE/PSE to produce the raw error 

(RE) and by determining the outcome of the model forecast compared to the actual in-

river loss; the latter actual loss is the ideal management adjustment.  Finally, these 

calculations assume both (1) that the management adjustment applied to the fisheries is 

the same as the forecasted management adjustment, and (2) that the error in terms of 

achieving the spawning escapement target is equivalent to the difference between the 

spawner abundance from the management adjustment forecast and the actual spawner 

abundance the forecasted spawner abundance is compared to the spawning escapement 

target.
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Table 1-1        
 Potential 

spawning 
escapement 

(PSE) 

Mission total 
abundance 

estimate 
(M) 

Forecasted 
in-river catch

(C) 

Actual 
spawning 

escapement 
(SE) 

In-river  
loss 

(PSE-SE) 

Difference 
Between 

Estimates (DBE) 
Ln(SE/PSE) 

Observed  
SE/PSE 

Actual  400 500 100 350 50 -0.134 0.875 

 
Forecasted DBE 

Ln(SE/PSE) 
Forecasted 

SE/PSE 
Raw Error 

(RE) 
Forecasted SE 
(if PSE = 400) 

Estimate of 
in-river loss 
by MA model 

 
Management 
Adjustment 

estimated by  
MA model 

Actual spawners 
compared to 

spawning 
escapement target 

Forecast 
(Model 1) -0.078 0.925 0.05 370 

30, 
Underestimate 

(U) 
Too small Below target 

 Forecast 
(Model 2) -0.192 0.825 -0.05 330 

70, 
Overestimate 

(O) 
Too big Above target 
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Table 1-2.  Management Adjustment models. T is the 31-day average river temperature 

measured at Qualark (oC) in the lower Fraser River symmetrically centered on the Hells 

Gate 50% date (i.e., the date at which 50% of the run has migrated past Hells Gate).  Q is 

the 31-day average discharge measured at Hope (m3/s) symmetrically centered on Hells 

Gate 50% date.  D50 is the date when 50% of a run has passed Hells Gate.  H is the 

historical average DBE (the historical difference between estimates of upriver spawning 

escapement abundance and lower-river potential spawning escapement abundance 

estimates), n is calendar year, and the a and b parameters are the best-fit regression 

parameters that result from fitting each of the models in each year of the retrospective 

analysis.  The symbol for each model is used as an abbreviation for the full model name 

within the text.



 

 

Table 1-2    

Equation Symbol Model Variables 
(Model Name) 

Equation 

1 T Temperature 

(Temperature) 
2

21ln TbTba
PSE
SE

++=⎟
⎠
⎞

⎜
⎝
⎛  

2 Q Discharge 

(Discharge) 
2

21ln QbQba
PSE
SE

++=⎟
⎠
⎞

⎜
⎝
⎛  

3 T+Q Temperature-plus-
discharge 

(Temperature-plus-
discharge) 

2
43

2
21ln QbQbTbTba

PSE
SE

++++=⎟
⎠
⎞

⎜
⎝
⎛

4 R Run-timing date 

(Run-timing) 501ln Dba
PSE
SE

+=⎟
⎠
⎞

⎜
⎝
⎛  

5 H Average historical 
DBE 

(Historic) 

Hba
PSE
SE

1ln +=⎟
⎠
⎞

⎜
⎝
⎛  

 
N

PSESEobserved
H

N

n
n∑

== 1977
)/ln(

 

6 None NMA 
(No Management 
Adjustment) 

0ln =⎟
⎠
⎞

⎜
⎝
⎛

PSE
SE
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Table 1-3.  AICc values and their components for each model in each run-timing group. 

MLL = mean maximum log likelihood, K = number of parameters AICc = mean small-

sample Akaike information criterion, ∆ AICc = mean delta AICc, and Weight = mean 

AICc weight. 

Run Group Model MLL K AICc ∆ AICc Weight 

Early Stuart Temperature -13.96 4 39.01 0.49 33.40%

 Discharge -15.87 4 42.84 4.31 4.94% 

 Temperature-
plus-discharge 

-10.51 6 40.85 2.33 13.32%

 Run-timing -17.50 3 42.71 4.19 5.26% 

 Historic -15.41 3 38.52 0.00 42.64%

 No MA -22.72 1 47.69 9.16 0.44% 

Early Summer Temperature -9.12 4 28.57 6.10 4.00% 

 Discharge -8.59 4 27.50 5.03 6.86% 

 Temperature-
plus-discharge 

-6.53 6 30.64 8.16 1.43% 

 Run-timing -10.90 3 29.12 6.65 3.05% 

 Historic -7.58 3 22.47 0.00 84.64%

 No MA -18.35 1 38.89 16.42 0.02% 

Summer Temperature 0.21 4 9.80 0.00 71.57%

 Discharge -4.40 4 19.02 9.22 0.71% 

 Temperature-
plus-discharge 

0.68 6 15.92 6.12 3.36% 

 Run-timing -5.35 3 17.95 8.15 1.21% 

 Historic -3.25 3 13.75 3.96 9.90% 

 No MA -5.49 1 13.17 3.37 13.24%

Late Temperature -11.27 4 42.05 25.10 0.00% 
 Discharge -5.86 4 27.65 10.69 0.47% 
 Temperature-

plus-discharge -2.13 6 47.19 30.24 0.00% 
 Run-timing -2.69 3 16.96 0.10 98.53% 
 Historic -7.71 3 26.55 9.59 0.81% 
 No MA -14.20 1 29.47 12.51 0.19% 
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Table 1-4.  Percentage of years in the jack-knife analysis in which a model other than the 

top-ranked model from the retrospective analysis model ranked first, by performance 

measure and run-timing group of Fraser sockeye salmon.  The performance measures are 

mean raw error (MRE), mean absolute error (MAE) and root mean square error (RMSE). 

Performance 
Measure Early Stuart Early Summer Summer Late 

MRE 15% 23% 17% 9% 

MAE 46% 8% 0% 0% 

RMSE 54% 23% 8% 9% 
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Figure 1-1.  Fraser River map showing data-collection points and spawning locations.  

Dates in the legend are the historic median Hells Gate 50% run-timing dates for each run-

timing group. 
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Figure 1-2.  Difference between estimates (DBEs) of escapement of Fraser River 

sockeye salmon, by run-timing group, where DBE = SE (spawning escapement 

estimate)/PSE (Mission potential spawning escapement estimate).  Observed escapement 

discrepancies (Observed) are shown along with forecasts of the three top-ranked models 

for each run-timing group based on the average model rank (Fig. 1-4).  SE= spawning 

escapement estimate, PSE= Mission potential spawning escapement estimate, T = 

temperature model, Q = discharge model, T+Q = temperature plus discharge model, R = 

run-timing model, and H = historic model.  A DBE of one indicates no in-river loss of 

upstream-migrating adult sockeye salmon, while a DBE of zero indicates 100% in-river 

loss.
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Figure 1-3.  Average value of each performance measure for each model over the 13-

year evaluation period.  Note that the scale of the vertical axis varies with run-timing 

group.  Model labels are:  T = temperature model, Q = discharge model, T+Q = 

temperature-plus-discharge model, R = run-timing model, H = historic model, NMA = no 

management adjustment model.  Performance measures are:  MRE = mean raw error, 

MAE = mean absolute error, RMSE = root mean square error, R2 = adjusted R2.
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Figure 1-4.  Average rank of each management adjustment model, where averages were 

taken across the rankings based on each of the five performance measure ranks and where 

the individual performance measure rank was based on a 13-year average.  The model 

with the best average across performance measures achieved the average closest to one, 

and the worst an average closest to six. Model and run-timing group labels are the same 

as in Figure 1-3. 
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Figure 1-5.  Management adjustment models ranked by performance measure. This 

figure breaks down the run-timing group results from Figure 1-4 by performance 

measure. The rank of each MA model is determined relative to the performance of the 

other models for a given performance measure, with one being the best rank and six 

being the worst.  Performance measures are:  MRE = mean raw error, MAE = mean 

absolute error, RMSE = root mean square error, R2 = adjusted R2, and AICc = small-

sample Akaike information criterion.  Model labels are:  T = Temperature model, Q = 

Discharge model, T+Q = Temperature-plus-discharge model, R = Run-timing model, H = 

Historic model, NMA = No management adjustment model.
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Figure 1-6.  ∆AICc, or average AICc of each model minus the AICc of the model with the 

best AICc for each run-timing group.  The vertical line at ∆AICc = 2 corresponds to the 

typical separation between models with substantial levels of empirical support and those 

with considerably less (Burnham and Anderson 2002).  Model labels as in Figure 1-3; 

letter in blank areas of histogram indicate which model has the lowest AICc. 
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Figure 1-7.  Frequency of best performance, shown as the number of years for which 

each management adjustment model was best, i.e., produced the smallest raw error (RE, 

equation 7) relative to the RE of other models.  For comparison, the number above each 

bar is the average model rank from Figure 1-4.
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Figure 1-8.  Average rank from 1 to 8 (1 is best) across three performance measures 

(MRE, MAE, and RMSE), excluding AICc and R2, for the two alternative forecasting 

techniques (AICc weights and optimized model weights) and the six stand-alone models. 
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Figure 1-9.  Each point represents the best model in terms of raw error (RE) in a given 

year plotted according to the Fraser River temperature and discharge and the run-timing 

group entry date in that year.  Each of the four panels is for a run-timing group A = Early 

Stuart, B = Early Summer, C = Summer, D = Late.  Temperature is in degrees Celsius, 

Discharge is in thousands of cubic meters per second, and Entry Timing is day of the year 

at which 50% of the run-timing group reached Hope.  Model labels are:  H (red) = 

Historic model, NMA (blue) = No MA model, Q (brown) = Discharge model, R (purple) 

= Run-timing model, T (yellow) = Temperature model, and  T+Q (black) = Temperature-

plus-discharge model. 
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CHAPTER 2: ANALYSIS OF ASYMMETRIC LOSS 
FUNCTIONS  

Introduction 

Managers of Pacific Salmon (Onchorhynchus spp.) fisheries often face a trade-off 

between achieving target spawning escapements and allowing a substantial harvest.  

After they determine fisheries management objectives, managers select targets for 

spawning escapement and total allowable mortality that create acceptable trade-offs.  

Such targets are typically set based on analyses with models, but numerous uncertainties 

pervade these models and limit managers’ abilities to make accurate predictions and 

achieve management targets regularly.  Selection of models that are robust to a wide 

range of uncertainties can therefore assist managers.  However, traditional methods for 

model selection (Christoffersen and Diebold 1996, Burnham and Anderson 2002) do not 

take into account the asymmetric cost function that managers might perceive from 

outcomes arising from model forecasts.  For instance, a given salmon manager might be 

twice as concerned about having 500,000 fewer spawners than desired than 500,000 too 

many (the later implying lower catches), but other managers might have the reverse 

preference.  Thus, a given model used to help set regulations that tends to lead to too few 

spawners might be ranked differently by these two groups of managers.  I address this 

gap by exploring the effect of asymmetric loss functions on the rank order of 

management adjustment (MA) models.  Managers use these MA models in the 



 

management of Fraser River sockeye salmon (O. nerka) in British Columbia to adjust 

fishing regulations according to forecasts of in-river losses of upstream migrating adults. 

The Fraser River Sockeye Salmon System 

Sockeye salmon in British Columbia’s Fraser River system are managed to best 

achieve spawning escapement targets, as outlined in bilateral agreements such as the 

Pacific Salmon Treaty (1985) and Canadian policies such as the Oceans Act (1996) that 

list sustainability as a primary objective of fisheries management.  Fraser River sockeye 

salmon management is the ultimate responsibility of Fisheries and Oceans Canada 

(DFO), but this responsibility is delegated to the bilateral (Canada and U.S.) Fraser River 

Panel during in-season management periods, with the primary goal of achieving 

spawning escapement targets and secondary objectives of meeting harvest goals as laid 

out in the Pacific Salmon Treaty (Shepard and Argue 2005).  This established hierarchy 

of goals inherently places higher priority on meeting spawning objectives than on harvest 

objectives. 

A major complication to achieving this balance between spawning and harvest 

objectives is that adult sockeye salmon can periodically experience unexpectedly high 

levels of mortality during their freshwater upstream migration to the spawning grounds, 

i.e. en-route mortality (Macdonald 2000, Cooke et al. 2004, Cooke et al. 2006, Crossin et 

al. 2008).  For example, indices of in-river loss, which are calculated from sockeye 

salmon abundances that are estimated at Mission but that are not found subsequently 

upriver in spawner abundance estimates (Fig. 2-1 for locations), have exceeded half a 

million fish in 8 of the past 16 years (Patterson et al. 2007b).  These extreme events have 

commonly been associated with extreme migration conditions such as high water 
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temperatures and flows (Macdonald et al. 2000, Rand et al. 2006).  Therefore, in addition 

to setting spawning escapement targets that implicitly assign fish to either harvest or 

spawning grounds according to fisheries objectives, effective management of the Fraser 

River sockeye salmon fishery in any given year depends, in part, on precise and unbiased 

forecasts of in-river loss.  Forecasts of in-river loss are made using management 

adjustment (MA) models and are used to reduce total allowable catch to account for 

expected in-river loss, thereby increasing the likelihood of meeting management 

objectives such as spawning targets (Chapter 1, Macdonald et al. 2009, in review). 

However, partially due to errors in forecasts of appropriate MAs, actual realized 

spawning escapements generally differ from targets at the end of the season.  Most 

analyses of forecasting efficacy of various management models only evaluate forecasts 

based upon statistical characteristics of their error (bias, precision, frequency of extreme 

values, etc.), but the true “cost” of those errors depends on interpretation of those errors 

as well as forecast accuracy and precision.  As described later in the methods section, loss 

functions help by translating forecast error into a complete analysis of model efficacy by 

connecting the error of a forecast, and the resulting difference between a target and an 

actual value to the cost to individuals or groups using the forecast.  Loss functions depend 

on characteristics of the system being forecasted (sockeye salmon in the Fraser River), 

forecast error (from the management adjustment model), and user preferences (the 

objectives of Fraser River sockeye salmon fisheries managers). 

I will use the following conventions in discussions of asymmetric loss functions.  

For simplicity, this analysis will discuss model forecasts of in-river losses of upstream 

migrating adults compared to observed in-river losses (Table 2-1).  Therefore, a forecast 
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will be described as either an overestimate or an underestimate of the in-river loss, which 

is quantified as the raw error (RE) of a forecast.  Management objectives will be phrased 

in terms of managers’ preferences, with managers either favoring spawning or harvest 

goals.  Loss functions will convert error into a perceived “cost”, not necessarily financial, 

which is quantified as the lost value (LV) of the forecast, so it is important to note that 

favoring spawning means that failing to obtain a spawner abundance as high as a 

spawning objective is the more costly of the two types of forecast error.  For example, 

when managers favor spawning, the cost of having fewer spawners than the target arrive 

on the spawning grounds is larger than the cost of harvesting too few fish, and the 

converse is true when managers favor harvest (Table 2-1, Fig. 2-2). 

Forecast Error 

Even the best ecological models do not produce perfect forecasts, and this is also 

true of models used for estimating in-river losses of upstream migrating adult sockeye 

salmon in the Fraser River.  These imperfect estimates can be quantified in terms of the 

size of the error, i.e., the degree to which the forecast was different from the observed in-

river loss, and the direction of the error, i.e., either an overestimate or an underestimate of 

the in-river loss.  In this study, error is quantified using raw error (RE), (Table 2-1 and 

Methods-Model forecast error).  Once the error has been quantified, it can be placed in 

the context of the fisheries; for example, an overestimate of in-river loss would result in 

greater-than-necessary reduction in harvest and both less harvest and more spawners than 

stated in the objectives.  In contrast, an underestimate of in-river loss would result in too 
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many fish being harvested, causing too few fish to reach the spawning grounds to achieve 

escapement targets (Table 2-1).∗ 

Management Objectives 

Salmon fisheries managers must choose between meeting spawning objectives 

designed to support ecological needs, such as the sustainability and biological diversity of 

the populations, and harvest objectives designed to support social and short-term 

economic needs, such as subsistence, recreation, and employment income.  While the 

managers’ actual preferences and resulting asymmetric loss functions are usually 

unknown, it is reasonable to assume that such preferences are likely to be asymmetric 

because of competing interests managers face when making management decisions.  For 

instance, when managers favor spawning, they view exceeding harvest objectives as 

more costly than exceeding spawning targets, whereas a manager who views exceeding 

spawning objectives as more costly than exceeding harvest objectives favors the latter.  

Either of these possible asymmetries in management preferences can be represented by a 

loss function which, based on preferences of managers or of users, can convert forecast 

errors, i.e., RE, into the value lost (lost value (LV)) due to forecast error. 

Asymmetric Loss Functions 

Standard methods of comparing one model’s forecasts with subsequent actual 

outcomes use squared deviations, e.g., sum of squares, likelihood, or root mean square 

error, which assume symmetry in the loss function.  However, the assumption of 

                                                 
∗ These last two statements are based on two simplifying assumptions; one, that the management 

adjustment applied to the fisheries is the same as the forecasted management adjustment, and two, the 
error in terms of achieving the spawning escapement target is equivalent to the difference between the 
spawner abundance from the management adjustment forecast and the actual spawner abundance. 
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symmetry by standard methods can be problematic if there actually are asymmetric costs 

associated with exceeding or falling below an objective (Walters and Martell 2004). 

Chapter 1 ranked Fraser River sockeye salmon management adjustment models 

based on such standard symmetric performance measures.  Those models were ranked 

using mean raw error, mean absolute error, root mean square error, small sample Akaike 

information criterion (AICc), and adjusted R2.  Based on average rank across these five 

performance measures, the historic model was best for the Early Stuart run-timing group, 

the historic and the temperature-plus-discharge models tied for highest rank for the Early 

Summer run, the temperature and the temperature-plus-discharge models tied for best for 

the Summer run, and the run-timing model was best for the Late run.  However, these 

rankings might change if asymmetric losses are considered. 

The consideration of asymmetric loss functions in fisheries is supported by work 

in the environmental, economic, and forecasting fields.  For example, economic analysis 

has moved toward the realization that one’s point of reference and the direction of a 

change are important in determining both the economic value of that change and the 

likelihood that buyers and sellers will make a transaction.  Economic researchers have 

found that individuals are willing to pay much less to obtain a good than they demand to 

be compensated in order to give up that same good or service if they possess it (Knetsch 

and Sinden 1984, Knetsch 1995b).  This finding is supported by studies demonstrating 

that economists and forecasters often make biased forecasts because of the asymmetric 

costs of forecast error (Goodwin 2005, Lawrence and O'Connor 2005).  All of these 

results have important implications for the evaluation of management strategies and 

forecasts, particularly in the case of environmental goods and services (Knetsch 1990), 
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because failing to account for the discrepancy between willingness to pay and 

compensation demanded can lead to improper assessments of the value of management 

actions, project proposals, and damage settlements that undervalue environmental goods 

(Knetsch 1995a, 2007).  All of these examples point to the need to include an analysis of 

the effect of asymmetric costs on behavior during the development and evaluation of 

resource management policies.  To address this need, Elliott and Timmermann (2008) 

suggest the use of asymmetric loss functions for evaluation of economic forecasts, in part 

based on theoretical studies showing that optimal forecasts under asymmetric loss 

conditions differ from optimal forecasts under symmetric loss conditions (e.g., Granger 

1969, Zellner 1986, Christoffersen and Diebold 1996, 1997, Granger and Pesaran 2000, 

Patton and Timmermann 2007). 

Ecological and environmental researchers also are aware of the presence of 

asymmetric losses (Reckhow 1994, Frederick and Peterman 1995, Walters and Martell 

2004), but asymmetric losses have rarely been directly addressed or formally evaluated in 

ecology.  The research that has been conducted points to the prevalence of asymmetric 

loss as a justification for the incorporation of uncertainty in decision making.  For 

example, Reckhow (1994) recommends formal quantitative decision analysis in order to 

incorporate the impacts of asymmetric loss into the decision making process and shows 

how including safety factors can avoid high-cost outcomes.  Walters and Martell (2004) 

recommend closed loop simulations to evaluate the impacts of asymmetric costs on 

fisheries harvest policies, and Frederick and Peterman (1995) also address the importance 

of including uncertainty and asymmetric losses in fisheries management.  Adkison (2009) 

suggests that models using decision-analysis approaches are more robust to asymmetric 
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loss functions than models selected using maximum-likelihood approaches.  These 

examples illustrate the need to consider asymmetric loss functions in models of fisheries 

management systems. 

Loss functions combine user preferences with the direction and magnitude of 

forecasting errors to determine the expected (i.e., weighted average) cost of a forecast to 

that user.  The loss function takes the raw error (RE) of a forecast as an input, adjusts the 

raw error based on management attitudes, and produces the forecast cost (lost value (LV), 

Table 2-1).  Mathematically, the loss from a forecast is a function of the forecast error 

and management objectives (Granger 1969, Frederick and Peterman 1995).  The lost 

value from the forecast of a model under a particular asymmetric loss function is equal to 

the magnitude of the error from that model’s forecast of in-river loss multiplied by the 

slope of the asymmetric loss function associated with either overestimating or 

underestimating in-river loss, depending on the type of forecast error.  Therefore, 

developing the loss function requires determining the attitudes of managers, for example, 

by identifying the costs they would ascribe to a range of theoretical forecast errors.  The 

function relating those costs to the forecast errors is a loss function (Fig. 2-2).  Once 

managers go through this theoretical process of determining forecast costs from forecast 

errors, actual forecasts from MA model forecasts of Fraser River sockeye salmon can be 

evaluated and MA models can be ranked. 

For example, if Fraser River sockeye salmon managers follow the 

recommendations of the Oceans Act (1996), then their priority is to first achieve their 

spawning objectives and then allocate harvest.  In such cases, managers should have an 

asymmetric loss function that weights losses from forecast errors resulting in additional 
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harvest beyond the target catch more heavily than errors resulting in more spawners than 

the spawning target i.e., an asymmetric loss function indicating managers favor spawning 

objectives (Fig. 2-2C).  It is also possible that, given both the economic interests and 

political influence of harvest groups, managers may tend to favor allowing extra harvest 

at the risk of not always meeting spawning targets, which would imply an asymmetric 

loss function in the opposite direction, i.e., treating forecasting errors that result in 

spawner abundances above the target abundance as more costly than errors that result in 

harvest above the target catch. In the latter case, managers would favor harvest objectives 

(Fig. 2-2A). 

The objective of this research is to evaluate the impact of a range of possible 

management preferences for competing objectives, especially those preferences that 

produce asymmetric loss functions, on the cost of utilizing any one of several 

management adjustment models for Fraser River sockeye salmon.  This analysis of 

models for Fraser River MA forecasting aims to evaluate multiple models’ forecasts in 

the presence of asymmetric loss by assigning a loss to each model in retrospective 

analyses of how those models would have performed if they had been used in the past.  

This work should provide additional insight beyond that of previous studies into the 

impact of asymmetric losses, which have demonstrated that the efficacy of decisions are 

affected by asymmetric loss functions.  Here I provide an example of the impact of 

asymmetric losses on an actual fishery as opposed to the theoretical and simulation 

studies of Reckhow (1994) and Frederick and Peterman (1995), respectively.  The 

direction and shape of managers’ asymmetric loss functions may have a large influence 

on their selection of a desired MA model.  By exploring a range of asymmetric loss 
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functions, this research can show how asymmetric loss functions affect choices of MA 

models and the effects of those choices on Fraser River sockeye salmon escapement and 

harvest.  This information may aid managers in both developing an asymmetric loss 

function that represents their preferences and selecting models that result in minimal 

losses.   

Methods 

Data 

Annual sockeye salmon abundance estimates at Mission and estimates of sockeye 

salmon catch upriver of Mission were provided by the Pacific Salmon Commission (PSC) 

while Fisheries and Oceans Canada (DFO) provided historical spawning escapement 

estimates for sockeye salmon (DFO stock assessment, T. Cone, Annacis Island, BC).  

Mission abundance and run-timing estimates were obtained using hydroacoustic sonar 

(Xie and Hsieh 1989, Xie 2000), whereas spawning ground abundance estimates were 

obtained through a variety of observation techniques.  Fraser River temperatures were 

collected as part of the Fraser River Environmental Watch Program (Patterson et al. 

2007a), and Fraser River flows were measured by Environment Canada’s Water Survey 

of Canada (http://scitech.pyr.ec.gc.ca/waterweb/).  Temperature measurements were 

taken at Qualark, B.C. and the flow measurements were from Hope, B.C. (Fig. 2-1).  

Management Adjustment Models 

It is necessary to use a proxy for natural mortality of upstream migrating adults 

because scientists currently lack a direct measure of migration mortality of adult Fraser 

River sockeye salmon (Patterson et al. 2007b).  The proxy is the “difference between 
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estimates” (DBEs), i.e., the difference between estimates of upriver spawning escapement 

abundance (SE) and potential spawning escapement abundance estimates made in the 

lower river at Mission (PSE) (Table 2-1).  Potential spawning escapement accounts for 

the lower river escapement as well as forecasted upriver First Nations and recreational 

catches.  More specifically, the DBE response variable is specified as the natural log of 

the quantity SE divided by PSE, ln(SE/PSE) (Hague and Patterson 2007).  The reasons 

for a log-transformation are: (1) to meet assumptions of homoscedasticity in residuals 

from the fitted models (Zar 1996), and (2) to constrain predictions of SE/PSE within a 

positive range (Macdonald et al. 2009, in review).  

Six different MA models (Eq. 1 – 6 in Table 2-2) containing four different 

predictor variables were used for forecasting adult abundance of Fraser River sockeye 

salmon.  Models 1-3 use either (1) Fraser River temperature (T) in degrees Celsius, (2) 

Fraser River flow, i.e. discharge (Q) in cubic meters per second, or both.  Model 4 uses 

(3) migration timing (D50) i.e. the date at which 50% of the run has migrated past Hells 

Gate, while model 5 uses (4) the observed historical average DBEs (H) for forecasting 

adult abundance of Fraser River sockeye salmon.  These models were all compared to 

cases using no management adjustment, model 6. Run-specific management-adjustment-

model parameters were estimated for each of these six candidate MA models by fitting 

historical DBEs (ln(SE/PSE)) data to historical, environmental, or run-timing conditions 

using equations in Table 2-2. 

Retrospective Analysis 

The a and b parameters of each model were initially fit to data on annual 

environmental variables and historical DBEs from 1977 – 1994 using the linear modeling 
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function in the statistical software package R (http://cran.r-project.org/).  The resulting 

models from the 1977 - 1994 data were then used to forecast the DBEs for each model in 

1995.  In the next iteration, the observed 1995 data on annual environmental variables 

and historical DBEs were added to the time series, model parameters were re-fit, and the 

1996 DBEs were forecasted.  Retrospective predictions were made for each year from 

1995 – 2007.  This resulted in up to 13 iterations for each run-timing group where data 

was available.  Note that because of limited data for the Late run-timing group, the 

temperature-plus-discharge model needed to be initialized from 1977 - 1997 and 

evaluated from 1998 – 2007 in order to have more data points than regression parameters.   

Model forecast error.-- To facilitate interpretation of results, I converted model 

error, the difference between the predicted and observed values of ln(SE/PSE) based on 

equations 1-6, to “raw error” (RE) measured on a linear scale using:  

(7)
 

))/exp(ln())/exp(ln( ,,,, nobsinforein PSESEPSESERE −= , 

where REn,i is the raw error in year n of model i, is the forecasted DBE 

in year n, as forecasted by model i, and ln(SE/PSE)obs,n is the observed ln(SE/PSE) in 

year n (Table 2-1).  By converting to the linear scale, a positive error of a given 

magnitude has the same value relative to the observed in-river loss as a negative error of 

the same magnitude (Table 2-1).   

inforePSESE ,,)/ln(

Raw error, RE, is a unitless measure of the extent to which the forecasted ratio of 

actual spawner abundance divided by Mission abundance represents the actual observed 

ratio.  The larger the ratio SE/PSE, the smaller the in-river loss, assuming negligible 
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estimation error.  Because raw error (RE) is estimated from forecasted minus actual 

(observed) values of the exponentiated terms in Eq. 7, positive raw errors represent 

forecasts of SE/PSE in the left hand term in Eq. 7 that underestimate the true discrepancy 

(right-hand SE/PSE term in Eq. 7) between forecasted and observed escapements 

(negative bias) (Table 2-1).  This situation would result in underestimated management 

adjustments (i.e., more fish being caught than needed to allow for in-river loss), which 

would in turn produce fewer than the target number of spawners (Table 2-1).  In contrast, 

negative forecasting raw error values (RE) represent forecasts that overestimate the true 

in-river loss and result in management adjustments that would produce more spawners 

than necessary to meet the spawning escapement target and therefore a smaller harvest 

than just matching the spawning objective would have allowed (Table 2-1). 

Our measures of forecasting error require some explanation.  For example, a 

SE/PSE of 1 indicates all fish estimated as potential spawners at Mission were later 

observed upstream on spawning grounds, whereas a SE/PSE of 0.5 indicates that only 

half of those potential spawners were enumerated there.  A forecast SE/PSE of 0.75 

would predict that 75% of potential spawners at Mission would reach the spawning 

grounds (a predicted in-river loss of 25%).  If the observed SE/PSE was actually 0.5 in 

the latter forecasted situation, i.e., an in-river loss of 50% of the fish, then the positive 

raw error between forecast and observed SE/PSE (underestimate in this case) indicates 

spawning objectives would not have been met (Table 2-1). 

Asymmetric Loss Functions 

The retrospective evaluation described in Chapter 1 assumes that decision makers 

have a symmetric loss function such that positive and negative raw errors of MA model 
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forecasts are of equal cost for a given magnitude of error.  While this is simple 

computationally, the results are not likely true reflections of the more complex reality 

faced by managers.  Therefore, to reflect some of the additional considerations of 

decision makers, this asymmetric loss evaluation places a range of possible hypothetical 

costs on positive and negative errors rather than treating positive and negative errors 

equally. 

To conduct the asymmetric loss function analysis, I converted raw errors in 

forecasts of in-river losses into perceived losses relative to perfectly achieved spawning 

escapement targets (bottom of Table 2-1).  This lost value (LV) was used to measure the 

performance of each of six MA models in each run-timing group.  This LV should reflect 

the loss that managers perceive from the two types of forecast error, i.e., either foregone 

harvest from overestimating in-river loss (negative RE) or reduced population resilience 

to future unfavorable conditions and decreased opportunities for future harvest due to low 

spawner abundance, which would result from underestimating in-river loss (positive RE), 

Table 2-1.  Therefore, the result of each asymmetric loss function scenario examined here 

should reflect the utility lost over the course of the 13-year retrospective analysis from 

the point of view of decision makers. 

To evaluate the impact that managers’ preferences have on the selection of MA 

models, I estimated the loss that would have resulted from applying any one of the six 

MA models that were evaluated in the retrospective evaluation.  I estimated those losses 

across a wide range of scenarios for the shape of the asymmetric loss function.  With a 

symmetric loss function, one unit of raw error is equivalent to one unit of lost value (LV) 

because over- and underestimates are weighted equally.  However, for the asymmetric 
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loss functions used in this analysis, one unit of error for RE will result in either greater or 

less than one lost unit of value (Fig. 2-2A, C).  The degree of asymmetry depends on the 

weighting that managers apply to each objective, which is represented by the slope of the 

limbs of the asymmetric loss function (Fig. 2-2).  The slope of the loss function changes 

as one varies the costs applied to the forecast errors. For example, a slope of O for 

negative RE reflects overestimates of in-river loss by the MA model, and U for positive 

RE reflects underestimates of in-river loss (Table 2-1).  It is important to emphasize that 

underestimates of in-river loss of salmon (slope equal to U) would produce a 

management adjustment (reduction in catch) that is not large enough to fully make up for 

the in-river loss that actually occurs later in the season.  This situation would result in 

fewer sockeye salmon reaching spawning grounds than desired based on spawning 

objectives for that year (Table 2-1).  Conversely, overestimates of in-river loss of sockeye 

salmon (slope equal to O) would lead to harvests below the catch objectives. 

The ratio of O to U represents the lost value resulting from overestimates of in-

river loss (negative RE) compared to underestimates of in-river loss (positive RE) (Fig. 2-

3).  Therefore, a manager who prefers a season that produces additional harvest beyond 

the catch objective twice as much as a season in which the harvest did not reach the 

objective would select an asymmetric loss function with an O:U ratio of 2 (Fig. 2-2A, 

Fig. 2-3).  In contrast, a manager who is twice as displeased by not reaching spawning 

objectives compared to unachieved harvest objectives by the same amount would select 

an asymmetric loss function with an O:U ratio of 0.5 (Fig. 2-2C, Fig. 2-3).  For example, 

if a manager had an O:U ratio of 0.5, with an O weight of 0.5 and U weight of 1, then 

when a model produces an overestimate with a RE of -0.25, the users’ lost value is 0.125, 
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and when the model produces an underestimate with a RE of 0.25, the lost value is 0.25 

(Equation 8).  

(8) 
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where RE is the raw error in year n (Equation 7), W is the weight applied to the error, 

using WO when the raw error is negative and WU when the raw error is positive, and LV is 

the lost value resulting from the application of a given model over the duration of the 

evaluation.  I applied weights of 0.5, 0.6, 0.7, 0.8, 0.9, 1.0, 1.2, 1.4, 1.6, 1.8, and 2.0 

sequentially to both arms (O and U) of the asymmetric loss function, such that all 

combinations of overestimate (from 0.5 to 2) and underestimate (from 2 to 0.5) weighting 

combinations were evaluated. 

The lost value from the forecast of model i under a particular asymmetric loss 

function is equal to the error from that model’s forecast of in-river loss multiplied by the 

weight of either overestimating or underestimating in-river loss (i.e., a slope of either O 

or U), depending on the type of forecast error (Table 2-1).  This calculation is made for 

each forecast in each of the thirteen years of the retrospective analysis to obtain the total 

retrospective cost of using that model (Equation 8).  When both the overestimate and 

underestimate weighting is equal to one (symmetric), the result is identical to that 

model’s mean absolute error (MAE) performance from Chapter 1. 
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Because constraints sometimes preclude choosing the best options, the two 

models that ranked highest out of the six considered were identified for each asymmetric 

loss function, with a rank = 1 given to the model that minimizes Equation 8.  The relative 

additional cost of selecting the second-best model instead of the top-ranked model was 

calculated using: 

 (9) 100
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where ALV is the additional lost value from applying the second-best model relative to 

that of the best model, LV2 is the lost value from the second-best model, and LV1 is from 

the best model. 

Results 

The rank order of management adjustment (MA) models is sensitive to the shape 

of the asymmetric loss function, but that sensitivity varies depending on run-timing 

group.  Specifically, the best model for the Summer run-timing group was insensitive to 

the range of shapes of asymmetric loss functions, but the best model for the other three 

run-timing groups changed according to the shape of the asymmetric loss functions 

(Table 2-3 and Fig. 2-4).  Complete tables of results of applying asymmetric loss 

functions are in Appendix 4. 

With a symmetric loss function (O:U = 1), the performance of each MA model is 

identical to the model’s performance using a mean absolute error performance measure, 

the average of the absolute values of the raw error (Chapter 1 of this thesis, and Fig. 2-4).  
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Therefore, with a symmetric loss function, the smallest loss occurs from applying the 

temperature-plus-discharge (T+Q) model every year when managing the Early Summer 

and the Summer run-timing groups, while the historic (H) model results in the smallest 

error for the Early Stuart run-timing group, and the run-timing (R) model performs best 

for the Late run-timing group (Chapter 1 of this thesis). 

Early Stuart Run 

For the Early Stuart run-timing group, the top-ranked model in terms of the cost 

of the forecast error is quite sensitive to the shape of the loss function.  Within the range 

of weights examined, three different models perform best.  The H model is best when 

there is equal error weighting (a symmetric loss function, or a 1:1 ratio) and when 

spawning is favored, i.e., an O:U ratio of less than 1, indicating greater loss associated 

with underestimates of in-river loss (Fig. 2-4A).  However, when harvest is favored only 

slightly over spawning i.e., an O:U ratio between 1.18 and 1.33, indicating greater loss 

associated with overestimates of in-river loss, the temperature (T) model performs best, 

whereas more heavily favoring harvest objectives over spawning objectives (O:U > 1.33) 

results in the discharge (Q) model performing best (Fig. 2-4A). 

It is also important to note the behavior of a given model across the range of 

asymmetric loss functions for the Early Stuart group.  For example, although the historic 

model ranks best when spawning is favored, it ranks the worst among the six models 

when harvest is heavily favored (Appendix 4).  In addition, although the Q model ranks 

best when harvest is favored, it ranks fourth among the six models when spawning is 

favored. 
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For the Early Stuart run-timing group, the additional lost value (ALV) of selecting 

the second-best model instead of the top-ranked one varies considerably, depending on 

the degree of asymmetry in the loss function (Table 2-3).  When managers favor 

spawning (O:U ratios less than one depicted to the left), the ALV of selecting the next-

best model rather than the H model varies between an ALV of 6% and 33%.  However, 

when harvest is favored (O:U ratios greater than one on the right in Table 2-3), the ALV 

from the next-best model is quite small, 3% or less (Table 2-3, Appendix 4). 

Early Summer Run 

For the Early Summer run-timing group, the top-ranked model only changes at 

the ends of the O:U range (the more extreme asymmetries) (Fig. 2-4B).  The T+Q model 

performs best unless there is a strong preference for meeting either spawning or harvest 

objectives.  Only when the preference for harvest is at least 2.09 times greater than the 

preference for spawning (O:U ratio of 2.09) does the T model perform better than the 

T+Q model (Fig. 2-4B).  In the opposite direction, when the preference for spawning is 

at least 1.48 times greater than the preference for harvest (O:U ratio of 0.68), the H 

model outperforms the T+Q model (Fig. 2-4B).   

The ranking of a given Early Summer model is also sensitive to the range of 

asymmetry in the loss functions (Table 2-3).  For example, the T model performs best 

when harvest is highly favored, but ranks fifth out of 6 models when spawning is strongly 

favored.  Likewise, the H model performs best when spawning is highly favored, but 

ranks last when harvest is strongly favored.  The T+Q model is not as sensitive to the 

range of asymmetry, however, because harvest must be favored more than four times as 
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strongly as spawning (i.e., beyond the range of asymmetric loss functions considered) for 

the T+Q model to perform worse than second best. 

As seen in the Early Stuart run-timing group, the additional cost of using the 

second-ranked model instead of the best one was correlated with the degree of 

asymmetry in the loss function.  When managers favor spawning (O:U ratios less than 

one on the left), the ALV of selecting the next-best model (T+Q) rather than the H model 

was as great as 30% (Table 2-3).  For most of the remaining O:U ratios, the ALVs were 

less than 10%. 

Summer Run 

The Summer run-timing group is completely insensitive to the shape of the loss 

function (Fig. 2-4C).  The ranking of the models under a symmetric loss function is the 

same as the ranking over the entire range of asymmetric loss functions tested. From best 

to worst they are:  T+Q, T, Q, H, NMA, R.  This result is due to the consistency in the 

direction of the forecast error across the six forecasts.  The raw error for a given model is 

either positive or negative (i.e., the models are consistently biased) for all six models in at 

least 9 of the 13 years forecasted; therefore, the error weighting shifted the cost of each 

model’s forecast error in the same direction.  With a symmetric loss function, the ALV of 

the T model’s raw error compared to the T+Q model’s raw error is 12% (Table 2-3).  

When harvest is favored (O:U ratios greater than one depicted to the right in Table 2-3), 

the ALV of the T model decreases (to a minimum of 8% for the loss functions examined), 

whereas the cost increases when spawning is favored (O:U ratios less than one depicted 

to the left) to a maximum ALV of 15% for the loss functions examined. 
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Late Run 

As with the Early Stuart and Early Summer runs, the selection of the top-ranked 

model for the Late run-timing group also depends upon whether managers favor harvest 

or spawning.  When spawning objectives are heavily favored over harvest objectives i.e., 

by 3.33 times or more (O:U ratio of 0.30 or less), the H model performs best (Fig. 2-4D).   

Conversely, favoring harvest objectives over spawning objectives by 1.44 times or more 

(O:U ratio of 1.44 or greater) results in the Q model performing best.  Between these 

points when objectives are more symmetric -- when spawning objectives are favored over 

harvest objectives by less than 3.33 times, or when harvest is favored over spawning by 

less than 1.44 times -- the R model performs best (Fig. 2-4D). 

The ALV of selecting the second-best performing model is greatest for the Late 

run-timing group (Table 2-3).  When harvest is heavily favored (O:U ratios greater than 

one depicted to the right), the ALV from applying the second-best model can be up to 

62% greater than the cost from using the best model.  With symmetric loss functions 

(O:U = 1), the ALV of the second best model is 25%, and the cost declines to 4% when 

spawning is heavily favored (O:U ratios less than one depicted to the left). 

Discussion 

Results of this asymmetric loss analysis show that selection of the most 

appropriate model based on quantitative performance measures can be strongly affected 

by how managers value competing objectives.  Thus, I support past recommendations 

that fisheries scientists and managers should consider asymmetric loss functions in the 

course of their analyses and decision making, respectively (Peterman 1990, Reckhow 

1994, Frederick and Peterman 1995, Walters and Martell 2004).  The effect of 
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asymmetric losses varied among the run-timing groups of Fraser River sockeye salmon.  

In the Summer run-timing group, asymmetric loss had no impact on model selection.  

However, in the other three run groups, model performance was sensitive to changes in 

the shape of the asymmetric loss functions.  Therefore, management objectives may be 

insufficiently reflected by failing to consider asymmetric losses that reflect comparative 

disadvantages of deviations from target escapements and catches. 

The degree of preference for achieving spawning or harvest objectives that is 

necessary to affect model selection was quite variable across run-timing groups.  For 

example, in the Early Stuart run-timing group preferring harvest objectives by only 1.18 

times as much as spawning objectives resulted in an alternative model selection, while in 

another run-timing group (Early Summer), one objective must be preferred by at least 

1.48 times over the other to cause an alternative model selection, and in the Summer run-

timing group none of the asymmetries examined caused alternative model selection.  The 

more asymmetric a loss function is, the more likely it is to have an effect on model 

selection. 

Certain situations are more likely to be associated with highly asymmetric loss 

functions.  For example, the loss function will be highly asymmetric where populations 

are extremely rare (e.g., listed as threatened or endangered or near to reaching such 

listing thresholds) and are subject to harvest. In such cases, there are high costs associated 

with failing to achieve spawning objectives.  In situations which suggest the use of highly 

asymmetric loss functions, model selection based on standard symmetric performance 

measures should not be used unless decision makers explicitly acknowledge that a 

symmetric loss function indeed reflects their management objectives. 
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Costs varied for selecting a model other than the model recommended by an 

asymmetric loss function.  In some cases, very little is lost by selecting the second-best 

model, but in other cases within the range of asymmetric loss functions considered here, 

the additional costs (ALV) ranged up to 63% for the next-best model.  When the benefit 

of selecting the top-ranked model is small, managers might want to evaluate whether the 

effort in terms time spent in meetings to develop asymmetric loss functions is worth the 

potential benefit of doing so.  That is, they should do an informal opportunity cost 

analysis to compare the cost of determining the appropriate asymmetric loss function 

versus the benefits of doing so.  For Fraser River sockeye salmon, based on the ALVs 

from this analysis, it appears there could be considerable benefits of selecting models 

based on the asymmetric loss functions of managers.  Conversely, if managers have a 

particular reason not considered here for selecting a second-best model instead of the best 

one, the ALV results can be used to determine the cost of that decision compared to using 

the best model over the range of asymmetric loss functions. 

An additional reason to consider developing asymmetric loss functions is that the 

greater the asymmetry is, the greater the impact on an individual model’s performance.  

In the Early Stuart run-timing group, applying the historic model (the best one based on a 

symmetric loss function analysis) could have major consequences if the actual loss 

function should have been asymmetric but was assumed to be symmetric.  For example, 

applying the historic model without examining the management objectives and 

determining the asymmetric loss function for the management of that run-timing group 

could result in the perceived performance of the historic model being anywhere from best 

to worst among the suite of models.  Thus, failing to consider the probable asymmetry of 
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the loss associated with forecast error could potentially result in a manager choosing an 

inappropriate model for the management of a fish stock, thus reducing the chances of 

reaching spawning and harvest targets. 

Further Studies 

Further research could expand upon this analysis with more complex loss 

functions.  Loss functions can take any form, not just the linear symmetric and 

asymmetric forms evaluated here.  For example, the preferences of individuals may be 

best represented by loss functions that are non-linear or contain tolerance zones in which 

forecast errors are not associated with any loss (Lawrence and O'Connor 2005).  In such a 

case, Fraser River sockeye salmon fisheries managers might not attribute any loss to 

errors that are reasonably small, and would only be concerned when errors are large 

enough to garner attention or cause a large deviation from harvest expectations or 

spawning requirements that managers deem necessary to estimate and take into account.  

In this case, a loss function that prescribes no cost to small errors and large costs to large 

errors would be more appropriate.  This could be achieved by adding a threshold point to 

the loss function, or using a logistic-type cost function.  Other possible loss functions 

could include costs that increase exponentially with larger errors or reach infinity if a 

stock goes extinct.  Model evaluations with these different loss function shapes could 

produce different model rankings from those shown here. 

The loss associated with the range of asymmetric loss values in this analysis was 

intended to reflect the complex multi-attribute valuation process inherent in managers’ 

selection of a management adjustment that includes many aspects of decision-making, 

such as political pressure, societal norms, or cultural values.  Alternatively, in 
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conjunction with an economic analysis of the Fraser River sockeye salmon fisheries, the 

use of asymmetric loss functions could provide an economic value for forecast errors 

associated using a particular MA model. 

In addition, managers may be interested in comparing the performance of more 

than the two top-ranked models.  Appendix 4 provides the cost of the forecast error for 

each model for all the asymmetric losses considered, and a comparison of that model’s 

cost with the cost of the best performing model using each asymmetric loss function. 

Recommendations 

Managers may want to consider a MA model selection process that involves 

asymmetric loss functions, given the sensitivity of model choice to the weighting of raw 

errors. Under current practices, failure to develop management objectives in terms of 

asymmetric loss could result in inappropriate model selection and management actions.  

The differences among run-timing groups suggest the need to develop asymmetric loss 

functions specific to each group.  For example, due to the current conservation concerns 

associated with the Early Stuart run-timing group (David Patterson, pers. comm.), it is 

reasonable to assume that decision makers are likely to favor spawning more heavily than 

harvest in the management of this stock.  Based upon this assumption, decision makers 

would have an O:U ratio of less than one, causing them to minimize the cost of forecast 

error through the selection of the best model in that region, the historic model.  Different 

conditions specific to other run-timing groups may affect parameters of their asymmetric 

loss functions. 
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The Early Summer run-timing group is an aggregate group made up of many 

smaller stocks.  The mixing of these stocks causes harvest to primarily occur on the run-

timing group as an aggregate.  Harvesting a stock aggregate can have detrimental affects 

on the weaker stocks in the aggregate, which would limit the ability to harvest the 

aggregate as a whole due to the concerns associated with the weak stocks.  In these 

situations, managers may favor spawning objectives in order to avoid depleting weak 

stocks and ensure continued fishing on the aggregate stock.  Therefore, for aggregate 

stocks, managers may particularly favor spawning objectives in years typically associated 

with high in-river loss, such as high Fraser River temperatures and flows, in order to 

avoid depleting weaker stocks, which would constrain aggregate harvest while weaker 

stocks recover.  As a result, managers may wish to select the historic model for the Early 

Summer run-timing group so that in general the aggregate stock is more likely to exceed 

spawning objectives, providing a surplus that may help the population persist through 

extremely unfavorable years. 

Recovery efforts for some stocks of the Late run-timing group, and concerns 

associated with changes in Late run sockeye salmon migration behavior, indicate that 

managers probably favor meeting or exceeding spawning objectives for this run-timing 

group.  Based on this assumption, managers would be likely to select the run-timing 

model because it performs best when spawning is favored and even when harvest is 

slightly preferred.  However, because of the large overall abundance of this run-timing 

group, if recovery efforts for the small populations are successful, it is possible managers 

would change their preferences to strongly favor harvest objectives, which would cause 

the discharge model to perform best based on those preferences. 
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The Summer run of Fraser River sockeye salmon is abundant, which results in 

strong pressure to harvest this more abundant group.  However, the asymmetric loss 

function analysis showed no reason to change the choice of management adjustment 

model from the case of the symmetric loss function for which the T+Q model was best.  

Therefore, using the performance measures from Chapter 1 assuming symmetric loss 

should be sufficient for selecting a MA model for the Summer run-timing group.  

However, the results from Chapter 1 showed that even without considering the impact of 

asymmetric loss on model selection, based upon the variability in model rank among the 

management objectives represented by the five performance measures in Chapter 1, there 

is not an obvious choice for best model.  Therefore, in addition to the well-recognized 

trade-offs among competing management objectives such as spawning escapement and 

harvest, managers should also take into account the factors that indicate good or bad 

model performance in general, such as the size of a model’s bias, the frequency of large 

forecast errors, or other measures. 

Both management objectives and management preferences for one objective over 

another affect model selection.  Therefore, managers should identify their primary 

management concerns and then develop both appropriate performance measures and loss 

functions to enable them to properly identify the best models for their system, and thus 

increase the chances of meeting their management objectives. 
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Table 2-1.  Example of management adjustment (MA) data and forecast error 

calculations.  The first row contains a hypothetical example of actual abundances (in 

thousands of fish) and calculated variables used to evaluate the model forecasts.  Each 

year the potential spawning escapement (PSE) is calculated by subtracting the forecasted 

in-river catch (C) from the abundance estimate obtained at the Mission sampling location 

(M).  Later in the season, the in-river loss is calculated by subtracting the actual observed 

spawning escapement (SE) from the PSE and the difference between estimates (DBE) is 

calculated by taking the natural log of SE divided by PSE.  The middle two rows contain 

two hypothetical examples of model forecasts and their outcomes.  Models forecast a 

DBE each year that is used to produce the forecasted SE/PSE and a forecasted SE based 

on the predicted PSE.  Model forecasts are evaluated by subtracting the observed SE/PSE 

from the forecasted SE/PSE to produce the raw error (RE), and by comparing the 

outcome of the model forecast to the actual in-river loss and the latter actual loss is the 

ideal management adjustment.  Finally, these calculations assume both (1) that the 

management adjustment applied to the fisheries is the same as the forecasted 

management adjustment, and (2) that the error in terms of achieving the spawning 

escapement target is equivalent to the difference between the spawner abundance from 

the MA forecast and the actual spawner abundance, the forecasted spawner abundance is 

compared to the spawning escapement target.  The last two rows contain examples of 

components used to determine the lost value (LV) and additional lost value (ALV) of the 

same two hypothetical model forecasts based on hypothetical managers’ preferences (Fig 

2-2 has additional information).  LV is the product of the raw error and the slope of the 

appropriate limb of the loss function (O for overestimates and U for underestimates).  

The additional lost value compared to the best model is the lost value of a given model 

minus the lost value of the best model divided by the latter, i.e., lost value of the best 

model, expressed as a percentage.
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Table 2-1        

  

Potential spawning 
escapement  

(PSE) 

Mission total  
abundance estimate 

(M) 

Forecasted  
in-river catch

(C) 

Actual 
Spawning 

escapement 
(SE) 

In-river  
loss 

(PSE-SE)

Difference Between 
Estimates (DBE) 

Ln(SE/PSE) 
Observed 
SE/PSE 

Actual  400 500 100 350 50 -0.134 0.875 

 
 

Forecasted 
DBE 

Ln(SE/PSE) 
Forecasted 

SE/PSE 
Raw Error 

(RE) 
Forecasted SE  
(if PSE = 400) 

Estimate of in-river 
loss by MA model

 
Management 
Adjustment 

estimated by 
MA model  

Actual spawners 
compared to 

spawning 
escapement target∗ 

Forecast 
(Model 1) -0.078 0.925 0.05 370 30  

(an underestimate) Too small Below target 

 Forecast 
(Model 2) -0.192 0.825 -0.05 330 70  

(an overestimate ) Too big Above target 

 Raw 
Error 
(RE) 

slope 
(O) 

slope 
(U) 

O:U 
ratio 

Manager or 
user 

preference 

Lost 
Value 
(LV) 

 
Additional 
Lost Value

(ALV) 

 
Estimate of in-river 
loss by MA model Harvest Spawners  

Forecast 
(Model 1) 0.05 1.25 1 1.25 Harvest 0.05 25% Underestimate 

(slope = U) 
Too many 
harvested 

Below target 

Forecast 
(Model 2) -0.05 0.8 1 0.8 Spawning 0.04 0 Overestimate 

(slope = O) 
Reduced 
too much 

Above target 

                                                 
∗ Outcome based on two simplifying assumptions; one, that the management adjustment applied to the fisheries is the same as the forecasted management 

adjustment, and two, the error in terms of achieving the spawning escapement target is equivalent to the difference between the spawner abundance from the 
management adjustment forecast and the actual spawner abundance. 
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Table 2-2.  Management Adjustment models. T is the 31-day symmetric average river 

temperature measured at Qualark (oC) in the lower Fraser River symmetrically centered 

on the Hells Gate 50% date (i.e., the date at which 50% of the run has migrated past Hells 

Gate).  Q is the 31-day symmetric average discharge measured at Hope (m3/s) 

symmetrically centered on Hells Gate 50% date.  D50 is the date when 50% of a run has 

passed Hells Gate.  H is the historical average DBE (the historical difference between 

estimates of upriver spawning escapement abundance and lower-river potential spawning 

escapement abundance estimates), n is calendar year, and the a and b parameters are the 

best-fit regression parameters that result from fitting each of the models in each year of 

the retrospective analysis.  The symbol for each model is used as an abbreviation for the 

full model name within the text. 



 

 

Table 2-2    

Equation Symbol Model Variables 
(Model Name) 

Equation 

1 T Temperature 

(Temperature) 
2

21ln TbTba
PSE
SE

++=⎟
⎠
⎞

⎜
⎝
⎛  

2 Q Discharge 

(Discharge) 
2

21ln QbQba
PSE
SE

++=⎟
⎠
⎞

⎜
⎝
⎛  

3 T+Q Temperature-plus-
discharge 

(Temperature-plus-
discharge) 

2
43

2
21ln QbQbTbTba

PSE
SE

++++=⎟
⎠
⎞

⎜
⎝
⎛

4 R Run-timing date 
501ln Dba

PSE
SE

+=⎟
⎠
⎞

⎜
⎝
⎛  

(Run-timing) 

5 H Average historical 
DBE 

(Historic) 

Hba
PSE
SE

1ln +=⎟
⎠
⎞

⎜
⎝
⎛  

 
N

PSESEobserved
H

N

n
n∑

== 1977
)/ln(

 

6 NMA None 

(No Management 
Adjustment) 

0ln =⎟
⎠
⎞

⎜
⎝
⎛

PSE
SE
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Table 2-3.  For each of the four run-timing groups, the first row is the additional lost value (ALV) of selecting the second-best model 

as a percent of the best model’s cost, conditional upon the cost of overestimates (O) and underestimates (U) of in-river loss, which are 

associated with overescapement and underescapement, respectively. Shading corresponds to the top-performing model (not the 

second-best model listed in rows below) for each O and U combination:  Historic model =  , Temperature model = , 

Discharge model = , Temperature-plus-discharge model = , Run-timing model = .  The second row for each run-timing 

group displays the second-best performing model for that O and U combination.  Model labels are: T = Temperature, Q = Discharge, 

T+Q = Temperature-plus-discharge, R = Run-timing, H = Historic, NMA =  No management adjustment model. 

 

                     O:U 
Run-timing 

group 
O 0.5 
U 2.0 

O 0.5 
U 1.8 

O 0.5 
U 1.6 

O 0.5 
U 1.4 

O 0.5 
U 1.2

O 0.5 
U 1.0

O 0.6 
U 1.0

O 0.7 
U 1.0

O 0.8 
U 1.0

O 0.9 
U 1.0

O 1.0 
U 1.0

O 1.2 
U 1.0 

O 1.4 
U 1.0 

O 1.6 
U 1.0

O 1.8 
U 1.0

O 2.0 
U 1.0

O 2.0 
U 0.9

O 2.0 
U 0.8

O 2.0 
U 0.7

O 2.0 
U 0.6

O 2.0 
U 0.5

33 31 29 26 23 19 15 12 9 6 4 0 1 1 1 1 2 2 2 2 3 E. Stuart 
T T T T T T T T T T T H T R R R R R R R R 
30 27 24 20 15 9 4 1 5 9 12 9 6 4 2 1 1 3 5 8 6 

E. Summer 
T+Q T+Q T+Q T+Q T+Q T+Q T+Q H H H T T T T T T T+Q T+Q T+Q T+Q NMA
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Figure 2-1.  Fraser River map showing data collection points and spawning locations.  

Dates in the legend are the historic median Hells Gate 50% run-timing dates for each run-

timing group. 
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Figure 2-2.  Example loss functions.  (B) Symmetric loss function.  Equal lost value 

(LV) results from both overestimates and underestimates of in-river loss of equal 

magnitude.  That is, the perceived loss from failing to meet spawning objectives by a 

given amount equals the loss from failing to meet harvest objectives by the same amount.  

(A) Asymmetric loss function, case A; O = 2, U = 0.5, ratio O:U = 4.  Overestimates of 

in-river loss are 4 times as undesirable as underestimates of in-river loss.  That is, harvest 

is favored because the perceived loss from failing to meet harvest objectives is four times 

as large as the perceived loss from failing to meet spawning objectives. (C) Asymmetric 

loss function, case C, O = 0.5, U = 2, ratio O:U = 0.25.  Overestimates of in-river loss are 

0.25 times as undesirable as underestimates of in-river loss.  That is, spawning is favored 

because the perceived loss from failing to meet spawning objectives by a given amount is 

four times as large as the perceived loss from failing to meet harvest objectives by that 

same amount.
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Fig. 2-2 
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Figure 2-3.  Characteristics of the loss functions produced by the cost of overestimating 

in-river loss (O) i.e., a negative RE, and the cost of underestimating in-river loss (U), i.e., 

positive RE.  An O:U ratio of 1 produces a symmetric loss function representing cases in 

which managers are indifferent between (no preference for) spawning and harvest 

objectives.  The further to the right of the O:U ratio of 1, the greater the cost of 

overestimating in-river loss of adult sockeye salmon relative to underestimating it and the 

more managers prefer to meet harvest objectives rather than spawning objectives. The 

further to the left of the O:U ratio of 1, the greater the cost of underestimates relative to 

overestimates and the more managers prefer to meet spawning objectives rather than 

harvest objectives. 

0%
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Figure 2-4.  For each of the four run-timing groups of Fraser River sockeye salmon, the 

optimal model conditioned on the ratio of the cost of overestimates (O) and 

underestimates (U) of in-river loss (O:U). O:U ratios less than 1.0 indicate spawning 

objectives are favored and O:U ratios of greater than 1.0 indicate harvest is favored. Each 

shaded area is labeled with the model that performs best for the asymmetric loss function 

created by that O:U ratio.  Model labels are: T = Temperature, Q = Discharge, T+Q = 

Temperature-plus-discharge, R = Run-timing, H = Historic. Run-timing group labels are:  

A = Early Stuart, B = Early Summer, C = Summer, D = Late. 
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APPENDICES 

Appendix 1: Yearly Results 

I calculated the yearly model error to show which model would have performed 

best in each year of the retrospective evaluation, thereby providing a means to compare 

management results on a yearly basis with the long-term performance measures discussed 

previously. The following tables show the raw error (RE, Eq. 7) from each model in each 

year from 1995 to 2007 separated by run-timing group.  The first table shows the raw 

error from the six models evaluated in the retrospective analysis while the second 

includes the raw error from the alternative forecasting techniques.  The models with the 

two best forecasts in each year are highlighted.  
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Appendix 2: Jack-knife 

I used a jack-knife technique (Shao and Dongsheng 1995) to test the robustness of 

results from the retrospective analysis to the particular sequence of events/years used in 

my evaluation.  One year of the retrospective analysis was removed at a time, the 

performance measure results were reassessed for each model using the remaining data, 

and then that data point was put back into the data set.  This was repeated for all 13 years 

of the retrospective analysis.   

The plots below show the variability in performance measure results from year to 

year.  The filled red circles indicate the best score for each performance measure when 

that year was removed from the analysis.  The open black circles show results for the 

model being plotted.  When the red circle falls inside of the black circle, that model 

performance was best when that year was removed from the retrospective analysis.  See 

Chapter 1, Figure 1-4 for the model ranking for the full retrospective analysis. 
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Appendix 3: Alternative Forecasting Techniques 

Plots in this Appendix show the environmental conditions in each year in the past 

and the model that performed best in those environmental conditions (i.e., had the 

smallest raw error (RE, Eq. 7) in that year).  To produce these plots, I used all of the 

management adjustment data available between 1977 and 2007 to conduct regressions. 

Using these full time series model fits, historical DBE forecasts were produced for each 

year of the historical time series.  In each year, the model with the best forecast (i.e., the 

one with the smallest raw error) has been plotted.  The positions of points on the graphs 

correspond to the environmental conditions present in the year of the model forecast, 

while the colors correspond to the model that performed best in the year that those 

environmental conditions occurred. 

Multi-Dimensional Plots 

The following plots show the best performing model based on either a set of two 

or three environmental conditions tracked every year during upstream migration of adult 

sockeye salmon (entry timing x discharge x temperature, discharge x temperature, entry 

timing x temperature, or entry timing x discharge).  The variation in model selection is 

plotted as a function of entry timing (day), discharge (1,000s m3/s), and or temperature 

(degrees C).  Each colored point in the two- and three-dimensional plots below 

corresponds to the model that produced the smallest raw error in a given year historically. 

For the two dimensional plots, R2 and p-values are shown for the association between the 

two variables. 
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Early Stuart 

 

R2 = 0.15 
P-value < 0.05 

R2 = 0.02 
P-value = 0.49

R2 = 0.64 
P-value < 0.001
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Early Summer 

 

R2 = 0.24 
P-value < 0.01

R2 = 0.001 
P-value = 0.86

R2 = 0.31 
P-value < 0.01
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Summer 

 

R2 = 0.11 
P-value = 0.07

R2 = 0.01 
P-value = 0.56

R2 = 0.24 
P-value < 0.01
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Late 

 

R2 = 0.56 
P-value < 0.01 

R2 = 0.37 
P-value < 0.05 

R2 = 0.04 
P-value = 0.45 
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Single-Dimension Plots 

The following plots show the best performing model (the model with the smallest 

raw error) based on a single migration condition (entry timing, discharge, or 

temperature).  Each point in the plots below corresponds to the model that produced the 

least raw error in a given year historically. The variation in model selection is plotted as a 

function of entry timing (day), discharge (1,000s m3/s), and or temperature (degrees C). 
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Early Stuart 

   No MA 6. 
  Historic 5. 
  Run-timing 4. 
  Temperature-plus-discharge 3. 
  Discharge 2. 
  Temperature 1. 

 
  Model name 

Model number 
(y axis #) 
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Early Summer 

   No MA 6. 
  Historic 5. 
  Run-timing 4. 
  Temperature-plus-discharge 3. 
  Discharge 2. 
  Temperature 1. 

 
  Model name 

Model number 
(y axis #) 
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Summer 

   No MA 6. 
  Historic 5. 
  Run-timing 4. 
  Temperature-plus-discharge 3. 
  Discharge 2. 
  Temperature 1. 

 
  Model name 

Model number 
(y axis #) 
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Late 

   No MA 6. 
  Historic 5. 
  Run-timing 4. 
  Temperature-plus-discharge 3. 
  Discharge 2. 
  Temperature 1. 

 
  Model name 

Model number 
(y axis #) 
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Appendix 4: Asymmetric Loss Function Tables  

Forecast Cost 

These tables show the cost of each model’s forecasting error for each of the four 

run-timing groups of Fraser River sockeye salmon for each asymmetric loss function 

examined.  Highlighted cells indicate that for a given O:U ratio, the model with the 

highlighted cells performed best based on the weighted-average loss produced by the 

given O:U ratio.  Each panel in a table corresponds to a model, which is indicated by 

capital letters in the top-left corner of each table and where T = temperature model , Q = 

discharge model, T+Q = temperature-plus-discharge model, R = run-timing model, H = 

historic model, and NMA = no management adjustment model.  Historic model =  , 

Temperature model = , Discharge model = , Temperature-plus-discharge model 

= , Run-timing model =  .  For example, in the top-left table, which is for the T 

model, there are only six O:U ratios (pink cells) for Early Stuart in which that T model is 

top ranked, whereas the Q model (top-right table) is best (blue cells) in cases of O:U 

ratios in the top-right corner.  
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Early Stuart 
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Early Summer 
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Summer 
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Late 

 

Additional Cost 

These tables below show the additional forecast cost of each model for each of the 

four run-timing groups for each asymmetric loss function examined relative to the best 

performing model for the given O:U ratio.  Cells that are colored indicate that for a given 

O:U ratio the model performed best, while grey cells indicate for that given O:U ratio that 

the model performed second best.  Each panel in a table corresponds to a model, which is 

indicated by capital letters in the top-left corner of each table and where T = temperature 

model , Q = discharge model, T+Q = temperature-plus-discharge model, R = run-timing 

model, H = historic model, and NMA = no management adjustment model.  Historic 
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model =  , Temperature model = , Discharge model = , Temperature-plus-

discharge model = , Run-timing model =  .  For example, in the top-left table, 

which is for the T model, there are only six O:U ratios (pink cells) for Early Stuart in 

which that T model is top ranked, whereas the Q model (top-right table) is best (blue 

cells) in cases of O:U ratios in the top-right corner. 

Early Stuart 
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Early Summer 
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Late 
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Appendix 5: Data 

These are the raw data used for this research.  Cycle year is the year in the four-

year sockeye salmon life-history cycle.  Note that this value is not always sequential in 

the table due to years without data.  SE is the spawning escapement.  PSE is the potential 

spawning escapement (Mission abundance minus in-river catch).  D50 is the date at 

which 50% of a run-timing group reaches Hells Gate.  Q is the average discharge during 

the 31-day period centered around D50 in cubic meters per second.  T is the average 

temperature during the 31-day period centered around D50 in degrees Celsius. 

Early Stuart 

Year 
Cycle 
year SE PSE SE-PSE SE/PSE ln(SE/PSE) D50 Q (m3/s) 

T 
(°C) 

1978 2 50 85 -35 0.59  -0.53 8-Jul 4985 16.4 
1979 3 93 148 -55 0.63  -0.47 9-Jul 5263 15.1 
1981 1 138 200 -62 0.69  -0.37 12-Jul 4961 15.7 
1983 3 24 52 -28 0.46  -0.77 12-Jul 5305 15.3 
1985 1 238 222 16 1.07  0.07 16-Jul 4646 16.3 
1987 3 148 154 -6 0.96  -0.04 16-Jul 4070 17.5 
1988 0 180 166 14 1.08  0.08 12-Jul 4705 16.0 
1989 1 385 275 110 1.40  0.34 11-Jul 4271 16.8 
1990 2 97 116 -19 0.84  -0.18 15-Jul 6386 16.7 
1991 3 141 192 -51 0.73  -0.31 21-Jul 5765 16.9 
1992 0 66 179 -113 0.37  -1.00 18-Jul 3725 18.6 
1993 1 688 490 198 1.40  0.34 19-Jul 3480 17.2 
1994 2 29 158 -129 0.18  -1.70 16-Jul 5204 16.7 
1995 3 123 166 -43 0.74  -0.30 12-Jul 4142 17.3 
1996 0 88 128 -40 0.69  -0.38 15-Jul 6445 15.3 
1997 1 267 900 -633 0.30  -1.22 22-Jul 7046 15.8 
1998 2 33 169 -136 0.20  -1.63 13-Jul 3993 18.6 
1999 3 25 145 -120 0.17  -1.76 14-Jul 8786 13.8 
2000 0 90 152 -62 0.59  -0.52 8-Jul 6809 14.7 
2001 1 171 205 -34 0.83  -0.18 10-Jul 5149 16.0 
2002 2 25 57 -32 0.44  -0.82 15-Jul 6915 15.7 
2003 3 13 29 -16 0.45  -0.80 15-Jul 4491 17.1 
2004 0 9 96 -87 0.09  -2.37 16-Jul 3858 18.5 
2005 1 99 199 -100 0.50  -0.70 27-Jul 4266 17.3 
2006 2 36 46 -10 0.78  -0.25 18-Jul 3669 18.5 
2007 3 5 12 -7 0.42  -0.88 12-Jul 6817 16.0 
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Early Summer 

Year Cycle year SE PSE SE-PSE SE/PSE ln(SE/PSE) D50 Q (m3/s) 
T 

(°C) 

1977 1 46 69 -23 0.67  -0.41 2-Aug 4393 17.0 
1978 2 77 76 1 1.01  0.01 10-Aug 3225 17.9 
1979 3 168 233 -65 0.72  -0.33 6-Aug 3155 18.0 
1980 0 60 87 -27 0.69  -0.37 4-Aug 3142 17.0 
1981 1 60 63 -3 0.95  -0.05 1-Aug 4395 18.2 
1982 2 91 110 -19 0.83  -0.19 12-Aug 5196 16.8 
1983 3 86 181 -95 0.48  -0.74 8-Aug 4101 17.6 
1984 0 109 92 17 1.18  0.17 27-Jul 5532 16.1 
1985 1 42 34 8 1.24  0.21 7-Aug 3240 17.5 
1986 2 196 180 16 1.09  0.09 11-Aug 3563 17.1 
1987 3 186 328 -142 0.57  -0.57 6-Aug 3331 17.2 
1988 0 180 439 -259 0.41  -0.89 8-Aug 3299 17.8 
1989 1 47 97 -50 0.48  -0.73 31-Jul 3548 17.5 
1990 2 429 561 -132 0.76  -0.27 15-Aug 3414 19.4 
1991 3 248 449 -201 0.55  -0.59 9-Aug 4691 18.2 
1992 0 93 145 -52 0.64  -0.44 4-Aug 3016 19.7 
1994 2 239 380 -141 0.63  -0.46 9-Aug 3400 19.2 
1995 3 154 137 17 1.12  0.12 11-Aug 3739 16.5 
1996 0 313 368 -55 0.85  -0.16 2-Aug 4976 16.7 
1997 1 53 108 -55 0.49  -0.71 4-Aug 5725 17.0 
1998 2 150 418 -268 0.36  -1.03 6-Aug 3118 19.9 
1999 3 69 266 -197 0.26  -1.35 5-Aug 6411 16.4 
2000 0 532 464 68 1.15  0.14 29-Jul 5474 17.2 
2001 1 170 207 -37 0.82  -0.20 28-Jul 5096 16.5 
2002 2 367 446 -79 0.82  -0.20 8-Aug 3681 16.8 
2003 3 115 193 -78 0.60  -0.52 9-Aug 3079 19.2 
2004 0 89 498 -409 0.18  -1.72 5-Aug 2902 20.1 
2005 1 163 417 -254 0.39  -0.94 3-Sep 2167 16.3 
2006 2 353 969 -616 0.36  -1.01 19-Aug 2026 18.3 
2007 3 81 104 -23 0.78  -0.25 16-Aug 3513 17.4 
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Summer 

Year Cycle year SE PSE SE-PSE SE/PSE ln(SE/PSE) D50 Q (m3/s) 
T 

(°C) 

1977 1 737 662 75 1.11  0.11 3-Aug 4346 17.1 
1978 2 227 263 -36 0.86  -0.15 18-Aug 2885 17.2 
1979 3 582 593 -11 0.98  -0.02 14-Aug 2685 18.3 
1980 0 571 613 -42 0.93  -0.07 15-Aug 2741 16.5 
1981 1 1055 1205 -150 0.88  -0.13 8-Aug 4114 18.7 
1982 2 376 353 23 1.07  0.06 14-Aug 5013 16.7 
1983 3 510 338 172 1.51  0.41 14-Aug 3615 17.7 
1984 0 643 798 -155 0.81  -0.22 13-Aug 4004 17.3 
1985 1 1738 1635 103 1.06  0.06 18-Aug 2678 16.9 
1986 2 581 752 -171 0.77  -0.26 16-Aug 3217 17.5 
1987 3 659 398 261 1.66  0.50 18-Aug 2886 16.7 
1988 0 745 346 399 2.15  0.77 17-Aug 2980 17.9 
1989 1 2557 2558 -1 1.00  0.00 21-Aug 3021 16.9 
1990 2 1597 1911 -314 0.84  -0.18 23-Aug 2884 18.9 
1991 3 1257 1178 79 1.07  0.07 24-Aug 4200 17.3 
1992 0 635 867 -232 0.73  -0.31 20-Aug 2378 18.6 
1993 1 5072 3920 1152 1.29  0.26 31-Aug 2378 17.4 
1994 2 1323 1872 -549 0.71  -0.35 16-Aug 2896 18.8 
1995 3 918 985 -67 0.93  -0.07 14-Aug 3650 16.3 
1996 0 1411 1129 282 1.25  0.22 13-Aug 4012 17.1 
1997 1 3807 3894 -87 0.98  -0.02 26-Aug 3603 17.4 
1998 2 2382 3936 -1554 0.61  -0.50 19-Aug 2526 19.1 
1999 3 1281 1493 -212 0.86  -0.15 17-Aug 5148 17.0 
2000 0 1650 1058 592 1.56  0.44 13-Aug 3978 17.6 
2001 1 4684 3749 935 1.25  0.22 19-Aug 3705 17.3 
2003 3 1002 1277 -275 0.78  -0.24 22-Aug 2415 18.4 
2004 0 273 898 -625 0.30  -1.19 15-Aug 2559 19.8 
2005 1 2455 3886 -1431 0.63  -0.46 4-Sep 2147 16.2 
2006 2 815 1152 -337 0.71  -0.35 21-Aug 1942 18.3 
2007 3 431 483 -52 0.89  -0.11 16-Aug 3513 17.4 
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Late 

Year Cycle year SE PSE SE-PSE SE/PSE ln(SE/PSE) D50 Q (m3/s) 
T 

(°C) 

1978 2 2008 1832 176 1.10  0.09 28-Sep 2404 12.6 
1982 2 3404 3419 -15 1.00  0.00 1-Oct 2750  
1986 2 2483 3355 -872 0.74  -0.30 27-Sep 1578 13.5 
1990 2 3760 3003 757 1.25  0.23 25-Sep 1612 16.5 
1994 2 1459 910 549 1.60  0.47 29-Sep 1534 15.7 
1996 0 105 367 -262 0.29  -1.25 9-Sep 2814 15.2 
1997 1 38 71 -33 0.54  -0.63 16-Sep 2486 15.5 
1998 2 1478 2836 -1358 0.52  -0.65 18-Sep 1427 16.3 
1999 3 406 957 -551 0.42  -0.86 14-Sep 2769 14.7 
2000 0 15 339 -324 0.04  -3.12 18-Aug 3572 17.3 
2001 1 44 375 -331 0.12  -2.14 25-Aug 3272 17.1 
2002 2 5693 6217 -524 0.92  -0.09 17-Sep 2330 14.3 
2003 3 446 640 -194 0.70  -0.36 1-Sep 1953 17.5 
2004 0 32 178 -146 0.18  -1.72 25-Aug 2670 18.6 
2006 2 3128 4897 -1769 0.64  -0.45 10-Sep 1377 16.5 
2007 3 229 451 -222 0.51  -0.68 23-Aug 2991 17.1 
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