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ABSTRACT 

CIMS is a technologically explicit hybrid energy-economy model that forecasts effects of 

policy alternatives on technological change and greenhouse gas emissions. It strives 

towards realistically representing consumer behaviour to better forecast effects of 

policies. This study attempts to improve the behavioural realism of the model by 

calibrating the parameters representing consumer behaviour using historical data from 

1990 to 2004. A statistical simulation called Markov Chain Monte Carlo generates a 

probability distribution over the behavioural parameters for three technology 

competitions. The calibrated model is then applied to a policy analysis forecasting the 

effects of a carbon tax on residential furnace emissions to 2050. Despite insufficient 

variation in energy prices over the historical period, uncertainty in model structure, and 

an absence of revealed preference data for emerging technologies, historical calibration 

can improve model credibility and thus usefulness for policy-makers, particularly when 

used in combination with other, stated preference parameter estimation research.  
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CHAPTER 1: PROJECT RATIONALE 

1.1 Introduction 

Human-induced climate change is a critical environmental policy problem for Canada 

and the rest of the world. Society’s reliance on a wide range of energy-using 

technologies, a major source of greenhouse gas emissions, makes the problem complex. 

Assessing policy options for such a complex problem is challenging. Energy-economy 

models are therefore essential tools for policy makers attempting to manage complex 

environmental issues such as climate change. One such model is CIMS, which forecasts 

the effects of policies on technological change. Analysts can use these forecasts to 

determine the relative effectiveness of alternative policy packages for reducing 

greenhouse gas emissions. These results can provide practical information for policy 

decisions. 

Yet how much confidence should policy-makers place in model forecasts? After all, no 

model is a perfect representation of reality. One way in which models such as CIMS try 

to provide better forecasts of the impacts of policies is with parameters intended to 

realistically simulate the decisions and behaviour of firms, households, and individual 

consumers.1 However, these parameters are highly uncertain, particularly in terms of 

representing future consumer behaviour. 

A possible approach to addressing this uncertainty involves projecting future behaviour 

based on past behaviour.  More specifically, behavioural parameters can be adjusted so 

that model outputs from a simulation over a historical period match actual historical 

outcomes as closely as possible. This process is called calibration. Since calibration is 

based on empirical (historical) data, it can improve the credibility of forecasts. Further, 

                                                 
1 Henceforth, I will refer to all purchasers of energy-using equipment (firms, households, and individuals) 

simply as “consumers.” Residential energy consumers are typically individuals or households, while 
Industrial and Commercial consumers are firms. 
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using a statistical simulation approach, calibration can generate probability distributions 

for behavioural parameter values. Distributions express the probability that parameter 

values reflect historical behaviour. Generating these distributions and integrating the 

results into the forecasting model in order to improve its credibility is the overarching 

goal of this study.  

In the remainder of this chapter, I provide background information and context within the 

energy-economy modelling literature to frame the goals of the study. In section 1.2, I first 

review key issues in modelling consumer behaviour in energy-economy models and 

describe important elements of the CIMS model. I also assess the advantages and 

disadvantages of alternative approaches to empirically estimating behavioural 

parameters. I then discuss issues of uncertainty in energy-economy models. In section 

1.3, I build on this foundation of background research to identify three specific objectives 

for this study. Finally, in section 1.4, I conclude the chapter with a road map to the 

structure of this report in full.  

1.2 Background 

The evolution of energy-economy models in recent years highlights the challenges of 

realistically representing consumer behaviour in models. To help frame the objectives of 

this calibration study, in this section I review issues in modelling consumer behaviour 

and quantifying uncertainty in models. 

1.2.1 Energy economy modelling  

Jaccard (2005a) identifies three criteria to assess the “usefulness” of a model in terms of 

its ability to evaluate the combined effects of alternative policies: technological 

explicitness, behavioural realism, and the incorporation of macro-economic equilibrium 

feedbacks between energy-technology decisions and the larger economy.2 Hourcade et al. 

(2007) redefine these criteria as technological explicitness, microeconomic realism, and 

                                                 
2 “Macro-economic feedbacks” refers to interactions between the energy system and other sectors of the 

economy as a whole. This criterion thus assesses how well an energy model ensures consistency with 
other economic factors such as capital and labour.  
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macro-economic explicitness, emphasizing that “behaviour” in an energy-economy 

modelling context refers to the purchasing preferences of agents (firms or individual 

consumers). Since this study focuses on estimating behavioural parameters, I continue to 

use the “behavioural realism” label. In the past, two main energy-economy modelling 

paradigms, “bottom-up” and “top-down” models, have competed as potential analytical 

tools for policy makers. Figure 1 illustrates a conceptual framework for assessing energy-

economy models and shows how neither paradigm meets all three criteria perfectly.  

Ideal model 

Microeconomic realism

Macro-
economic 
comprehensiveness

Technological 
explicitness

Conventional 
top-down 
model

Conventional
bottom-up 
model

Ideal model Ideal model Ideal model 

Microeconomic realism

Macro-
economic 
comprehensiveness

Technological 
explicitness

Conventional 
top-down 
model

Conventional
bottom-up 
model

Microeconomic realism

Macro-
economic 
comprehensiveness

Technological 
explicitness

Microeconomic realism

Macro-
economic 
comprehensiveness

Technological 
explicitness

Conventional 
top-down 
model

Conventional 
top-down 
model

Conventional 
top-down 
model

Conventional
bottom-up 
model

Conventional
bottom-up 
model

Conventional
bottom-up 
model

 

Figure 1: Framework for assessing the usefulness of energy-economy models 

Source: used with permission from Hourcade et al., 2007 

Conventional “bottom-up” models are technologically explicit. These models compare 

the lifecycle cost of a (typically large) number of technologies that compete to provide a 
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service.3 They then assume consumers have perfect foresight and unerringly choose the 

optimal, lowest cost alternative. Since the lifecycle costs of newer technologies with 

lower greenhouse gas emissions tend to be slightly lower over the full life of the 

technology, bottom-up models tend to show potential for relatively inexpensive 

reductions of emissions through the diffusion of these technologies (Jaccard, 2005a). In 

reality, however, operating and capital costs are not the only factors on which consumers 

base decisions. Similarly, not all consumers have identical preferences and do not make 

identical choices. For these reasons, typical bottom-up models are not behaviourally 

realistic. Further, conventional bottom-up models do not accurately represent the macro-

economic feedback effects of different energy pathways and policies that might affect 

economic growth (Hourcade et al., 2007). They thus fare less well on the second two 

criteria, as illustrated in Figure 1. 

Conventional top-down models, on the other hand, are not technologically explicit, but 

instead represent energy-economy interactions on a macro-economic scale. These models 

depict production systems and technologies on an aggregate scale, though some allow for 

varying degrees of detail within sectors (Carraro and Hourcade, 1998). Computable 

General Equilibrium (CGE) models are one example of top-down models. Computable 

general equilibrium models are more behaviourally realistic then conventional bottom-up 

models if models use historical data to estimate aggregate relationships between energy 

costs, market shares and other inputs to the economy. These relationships are linked to 

total economic output on a broader macro-economic equilibrium framework fulfilling the 

third criteria for model usefulness (Jaccard et al., 2003). Top-down models, however, are 

useful only for modelling top-level policy instruments such as carbon taxes or tradable 

permits: the aggregate nature of top-down models precludes any ability to model 

technology-specific policies or to determine industries most affected by a given policy 

(Jaccard et al., 2003).  

                                                 
3 A life cycle cost calculates the net present value of the costs associated with a technology over its 

lifespan, including annual operating and maintenance, fuel, and capital costs. Alternatively, a “levelized 
life cycle cost” calculates all costs associated with the technology amortized over its lifespan.  
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By combining elements of both bottom-up and top-down models, hybrid models such as 

CIMS attempt to meet all three criteria to as great an extent as possible, again represented 

conceptually in Figure 1. Technologies that demand and supply energy are represented 

explicitly in CIMS, and recent work has improved the model’s representation of macro-

economic feedbacks (Bataille et al., 2007). Finally, CIMS also attempts to realistically 

represent consumer technology-choice behaviour through empirically estimated 

parameters (Jaccard, 2005a). My focus in this study is the behavioural realism criterion. 

In it, I continue efforts to improve the “behavioural realism” of CIMS by providing better 

empirical support for model parameters. 

1.2.2 Consumer behaviour in energy-economy models 

Assumptions about consumer behaviour drive energy-economy models. Consumers’ 

preferences when purchasing a new car, a light bulb, an industrial steam boiler, or any 

energy-consuming equipment, dictate how an energy system changes over time. Different 

models, however, take different approaches to representing consumer behaviour. Nyboer 

and Bataille (2007) provide an overview of the evolution of behavioural modelling 

literature in the context of energy-economy models in particular. This section extracts a 

few key elements from their analysis. Since the goal of this study as a whole is 

calibration, not the total reinvention of CIMS’ behavioural framework, I do not attempt to 

provide an in-depth review of all paradigms of behavioural modelling. Rather, I provide a 

brief overview of key ideas in the field to provide context for CIMS’ representation of 

consumer behaviour.  

Bottom-up models typically assume that consumers purchase a product that has the 

lowest life cycle costs. This principle of cost minimization is consistent with the “rational 

actor” construct and principles of utility maximization, and thus relies on greatly 

simplified micro-economic theory more than empirical realism. Empirical studies, 

however, indicate a disjoint between real-world behaviour and theoretical cost 

minimization; they suggest that the revealed discount rate, reflecting consumers’ time 

preferences, is substantially higher than the productivity of capital (Train, 1985). This 

discrepancy is known as the “energy efficiency gap” (Jaffe, Newell, Stavins, 1999). 
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Essentially, the gap indicates that consumers were less prone to purchasing energy-

efficient goods that would cost more in the short term, but save money in the longer term. 

New energy efficient technologies have diffused through the market much more slowly 

than predicted by bottom-up optimization models. In order to simulate actual behaviour, 

modelling choices through pure cost minimization theory is thus clearly insufficient, and 

further analysis of possible mechanisms for actual consumer behaviour and the energy 

efficiency gap is required.  

Consumer behaviour literature presents different perspectives on the energy efficiency 

gap. One perspective, paralleling bottom-up models, frames the lack of investment in 

energy-efficient technology as the result of market failures, which result in consumers 

making socially sub-optimal choices. More specifically, Ruderman et al. (1987) point to 

a lack of information for consumers, constraints on available capital, small expected 

savings, and manufacturers choosing which products to market as possible causes of 

market failure. High transactions costs, including the high costs of searching for product 

information, as well as negotiating, monitoring, and enforcing contracts may add to the 

market failure. Moxnes’ (2004) empirical study supports these hypotheses, suggesting 

that efficiency standards can improve consumers’ welfare given that they make sub-

optimal decisions as a result of a lack of information. As a bottom line, this perspective 

suggests that policies that overcome the market failures and the lower operating costs of 

efficient new technologies can lead to substantial penetration of these technologies. 

A second perspective, associated with economists, argues that market barriers 

representing real costs, not market failures, are responsible for the lack of penetration of 

efficient technologies (Jaffe, Newell and Stavins, 1999). Given uncertainty, rational 

consumer decisions may transcend simple cost minimization. Trade-offs exist between 

economic efficiency and energy efficiency (Jaffe, Newell and Stavins (1999).4 Further, 

the substantial heterogeneity in the needs of consumers, and thus in their expected value 

for a given technology, further decreases the penetration of an energy-efficient 

technology. Adopting energy-efficient products can have real, though varying, costs for 
                                                 
4 If a choice is not economically efficient, the real costs of a technology are greater than the real benefits, as 

experienced by the consumer.  
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consumers (albeit costs not included in a conventional bottom-up model). Including these 

costs in an energy economy model recognizes that reducing the greenhouse gas intensity 

of an energy system can be more expensive than the pure bottom-up approach assumes. 

Under uncertainty, consumers’ choices of technology might be more complicated. 

Sutherland (1991) argues that energy efficient investments can be very risky due to high 

transaction costs, irreversibility, and the fact that for small households, risks cannot be 

diversified by choosing a combination of high and low risk products. Households have 

real incentives to make cautious, risk averse choices. If a household with limited income 

invests in an expensive vehicle with new, efficient technology, the consequences are 

substantial if the vehicle ends up proving unsatisfactory; the large cost of a replacement 

car might make the decision irreversible. Similarly, unlike a firm, a household cannot 

diversify its risk by populating a corporate fleet of vehicles with a range of newer and 

older technology vehicles. Hassett and Metcalfe (1993) suggest that conservation 

investments require large sunk or irreversible costs; as such, waiting for more 

information before investing has option value. Again, the consumer has an incentive not 

to purchase a new technology before gathering additional information, which in itself 

might be costly. Paralleling the market failure explanation, Johnson (1994) argues that 

the “state of information” of the decision-maker plays a role and that the cost of 

collecting information must be included in comparing product options. Finally, uncertain 

future energy prices increase the value of delaying a decision. A high discount rate might 

therefore represent optimal investment strategic behaviour under uncertainty.5 I discuss 

how these market barriers might be incorporated into a model simulating consumer 

behaviour in the next section.  

In an issue quite separate from the energy efficiency gap debate, energy-economy models 

also have varied in their approaches to addressing how consumer behaviour has changed 

over time. Nyboer and Bataille (2007, p. 10) suggest that many economists have 

                                                 
5 Other explanations for revealed consumer behaviour and the energy efficiency gap try to move away from 

relying solely on an economic framework. Jager et al. (2000) incorporate elements of psychology and 
implicitly describe other sources of behavioural inertia, suggesting that in addition to having sufficient 
information, a consumer must be dissatisfied with the status quo before altering their behaviour. 
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generally tended toward modelling consumer preferences as “an exogenous, unchanging 

parameter derived from historical data” so as to avoid the pitfalls of trying to 

endogenously model complex behaviour. On the other hand, analysts such as Norton et 

al. (1998) argue that consumers’ changing preferences are too important to ignore. For 

example, empirical research by Mau (2002) identifies a “neighbour effect,” which 

suggests that consumers may be more inclined to invest in a new technology as its market 

shares increases and uncertainty surrounding its performance decreases.  

1.2.3 CIMS and behaviour 

To reconcile the discrepancies between revealed consumer behaviour and theories of pure 

cost-minimization, CIMS builds on insights from the behavioural literature in modelling 

technology-purchase decisions. Similar to bottom-up models, CIMS calculates the life-

cycle costs of different competing technologies to predict the market share of future 

purchases of these technologies.6 In addition to capital costs and operating costs, 

however, behavioural parameters play an important role in forecasting technology market 

shares. Drawing lessons from the economist perspective on consumers’ technology 

preferences, CIMS attempts to realistically forecast the adoption of energy efficient 

technologies, given the existence of market barriers.7 These behavioural parameters add a 

degree of behavioural realism not present in most bottom-up models and address issues 

developed in the behavioural literature.  

CIMS applies a market share function to forecast new market shares for alternative 

technologies. The function uses the life-cycle costs of different competing technologies to 

calculate new market shares, MSk,t, for each technology option, k, at each time interval, t, 

as shown in Equation 1. 
                                                 
6 CIMS also tracks stock turnover, modelling retirement of existing stock and demand for new stock. 

Further, the macro-economic component of the model, inspired by top-down models, ensures 
equilibrium between the energy sector and the rest of the economy by adjusting energy prices if 
required. This component helps CIMS partially satisfy the third criterion for model usefulness, 
“incorporation of macro-economic feedback effects.” Again however, the focus of this study is 
improving the model’s performance in terms of “behavioural realism.” 

7 In building on the second, economist perspective on the energy efficiency gap issue, as presented in 
Section 1.2.2, CIMS can also calculate the real costs resulting from imposing a given policy option. 
Costs of policies, however, are outside the scope of this analysis. My focus here is describing the 
mechanisms driving consumer preferences. 
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Equation 1 

 

Where: 

CCk  =  the capital costs for technology option k 

v = heterogeneity factor 

ik = intangible costs of technology option k 

r =  private discount rate 

N = lifespan of technology 

MCk =  annual maintenance costs of technology option k 

ECk,t = annual energy operating costs of technology option k at time; ECk,t  is 
 calculated as the product of annual energy requirements of  technology k 
 times the cost of fuel at time t. 

K = total number of representative technology options, or archetypes, 
 competing for the service 

As evident in Equation 1, three main behavioural parameters are used in the CIMS 

market share calculation to represent consumer behaviour: v, i, and r respectively 

represent market heterogeneity, intangible costs, and a discount rate. While the discount 

rate, r, still represents consumers’ time preferences, the v and i parameters attempt to 
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reflect that actual choices cannot be described through conventional discounted life-cycle 

cost minimization.  

Market heterogeneity, v, represents the extent to which different consumers in the same 

market choose different technologies. Heterogeneity can also be regarded as a measure of 

consumers’ sensitivity to cost: at high values of v, consumer choices show little variation, 

and most choose the least cost option. At low values of v, large variation in technology 

choice suggests consumers are insensitive to the cost of a technology and make their 

choices based on other criteria. Figure 2 illustrates the calculated market share splits 

between two technologies, A and B. As illustrated in the figure, when v = 1, even if one 

technology has a lifecycle cost (LCC) twice that of a competing technology, a consumer 

choosing the expensive technology has a probability of almost 40%. At the other end of 

the spectrum, when v = 15, the model trends toward a 100% probability of the less 

expensive alternative being purchased.  

 

Figure 2: Effect of the value of heterogeneity parameter, v on consumer preferences for a simplified 
technology competition between two technologies, A and B with life cycle costs LCC A 
and LCC B. 

Source: Rivers, 2003 

 

Intangible costs, i, represent apparently non-financial costs associated with a given 

technology. They include factors such as the risk of failure of a new technology, option 

value in delaying adoption of new technologies, or the costs of overcoming market 
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barriers such as lack of information regarding the technology. Each competing 

technology is thus associated with an intangible cost that represents these non-financial 

costs. 

Figure 3 illustrates a conceptual model for CIMS’ representation of technology purchase 

decisions for one technology competition, or “node,” (residential refrigeration in the case 

of the figure) based on these behavioural parameters and technology costs. The figure 

also suggests how the model represents the effects of policies on decision-making: 

subsidies might reduce costs of a given technology; information programs might attempt 

to reduce consumers’ perceptions of risk or overcome information market barriers and 

thus reduce intangible costs. 
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Figure 3: Conceptual model of a single CIMS technology competition (residential refrigeration) 
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1.2.4 Empirical basis for behaviour 

By including the behavioural parameters v, i, and r, the CIMS algorithm can potentially 

represent the purchasing dynamics described in Section 1.2.2 and improve on 

conventional, cost-minimizing, bottom-up models. This improvement can only be 

realized, however, if the values for behavioural parameters are supported by empirical 

evidence.  

Prior to 2000, behavioural parameters for CIMS were estimated using a “combination of 

literature review, judgment, and meta-analysis” (Jaccard, 2005a, p.14). Two main 

approaches exist as options for improving the empirical justification for parameter values, 

discrete choice modelling and calibration. 

Recently, analysts using CIMS have quantified the behavioural parameters using discrete 

choice methods (Horne, 2003; Rivers, 2003; Eyzaguirre, 2004). Discrete choice models, 

drawing on the well-established field of choice theory, can be useful in representing 

choices between discrete options. Such models quantify the trade-offs made by 

consumers choosing a technology. Choice models can be informed either through stated 

or revealed preferences; each approach has strengths and weaknesses.  

Discrete choice models based on revealed preference are based on actual choices made 

by real consumers. These models therefore fully account for all aspects of consumers’ 

decisions, such as income level and access to given technologies (Axsen, 2006). The 

revealed preference approach results in a reliable, credible representation of consumer 

behaviour. However, revealed preference data is limited to current or historical 

conditions; extrapolating to inform a model forecasting future decisions between 

technology options that are not yet available, or choices under dramatically different 

market conditions, is problematic. The revealed preference approach is also statistically 

more complicated, because factors effecting choice may not have varied substantially 

over the historical period, or multiple effects may have changed in the same way 

(colinearity) (Axsen, 2006).  
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In stated preference studies on the other hand, surveys estimating consumer preferences 

from respondents’ hypothetical choices under a range of conditions inform the model. 

Horne (2003) surveyed consumers’ stated vehicle technology preferences. Rivers (2003) 

uses surveys to estimate industrial consumers preferences regarding steam generation 

technologies. Surveys are flexible and can poll respondents choices under a variety of 

conditions. Further, a stated preference approach can assess preferences for new and 

emerging technologies for which no revealed preference data yet exists. Eyzaguirre 

(2004), for example, uses discrete choice surveys to estimate preferences for hydrogen 

powered vehicles. Similarly, Mau (2005) quantifies how consumer preferences for hybrid 

vehicles might change with an increasing hybrid market share. However, stated 

preference approaches are vulnerable to a hypothetical bias: respondents’ responses may 

differ significantly from their actual behaviour. As summarized by Jaccard (2005a), these 

discrepancies may exist because survey respondents do not face real-world budgetary or 

information constraints, may not understand the survey properly, or may answer 

strategically to influence results (Louviere et al., 2000; Train, 2002). Urban et al. (1996) 

suggest that consumers are often more inclined to select higher efficiency technologies in 

surveys than in reality.  

Finally, discrete choice surveys can sometimes combine stated and revealed preference 

approaches. Axsen’s (2006) study attempts to overcome the weaknesses of each approach 

using a discrete choice survey that combines stated preferences survey data with revealed 

preference based on past hybrid car purchases in California.  

Calibration provides an alternative approach to estimating consumer behaviour. A 

calibration process involves adjusting model inputs (parameters) to produce the best fit 

between model outputs and real world data. In the case of CIMS, the model can be run 

over a historical period, and forecasted market shares of selected technologies compared 

to historical market shares over that period. Values for behavioural parameter that result 

in model outputs that best match empirical data can then be determined. This approach 

would represent a dynamic calibration in that it could capture dynamics in model 
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forecasts by calibrating to time series data, unlike a simpler static calibration that matches 

model outputs to real world data for only a single time period.   

Behaviour estimated through calibration represents revealed preferences, given it 

incorporates actual, historical consumer choices. Calibration thus explicitly connects the 

model with the real world. Cooley (1997, p. 56) writes, “Calibration is a strategy for 

finding numerical values of parameters of artificial economic worlds... In the calibration 

approach, measurements are used to give content to theory.” Calibration provides a 

framework for comparing the theoretical model representation with reality by running the 

model over a historical period and comparing it to real world data. This framework can 

thus also allow us to improve the connection between theory and empiricism, model and 

reality, and attempt to reduce the uncertainty associated with representing real consumer 

behaviour with a theoretical model.  

Nevertheless, like a discrete choice modelling approach that relies solely on revealed 

preferences, calibration may be constrained in how much it can inform a model about 

future consumer preferences. Parameters calibrated from historical data could be fully 

valid over a future time period only if market conditions such as energy prices and the 

availability of technology options are consistent with historical conditions. Given that the 

model is used to simulate the effects of policies that would result in substantially different 

market conditions (a carbon tax would effectively change the price of carbon-intensive 

energy, for example), this limitation may be problematic. Still, using calibration to 

estimate behavioural parameter can supplement previous stated and revealed preference 

work and further improve the credibility of  models like CIMS.  

While static calibration is often used in energy-economy models to establish consistency 

in technological parameters in a base year, estimation of consumer behaviour by dynamic 

calibration has not yet been attempted for technologically rich models. One exception 

may be a study by Boonekamp (2005), which runs a bottom-up model for the 

Netherlands over a historical period to determine the effect of historical policies and 

estimate the historical impact of energy price on energy consumption. The study 

estimates heterogeneity parameters similar to the v parameter in CIMS. This estimation is 
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not the main focus of the study, however, and no statistical estimation approach is 

applied. Calibration approaches have been applied more extensively and more 

rigourously, however, to models in other disciplines. In Chapter 2, I assess a range of 

specific calibration methodologies, and review their applications in natural, physical, and 

social science models as well as energy-economy models.  

1.2.5 Sources of model uncertainty 

While uncertainty associated with the behavioural parameters is central to this calibration 

study, other sources of uncertainty are relevant. These additional sources can pose 

challenges to calibrating a model using historical data and are worth a brief review 

Tschang and Dowlatabadi (1995) recognize two distinct types of uncertainty in models: 

parametric uncertainty regarding the value of input parameters and model structure 

uncertainty pertaining to how the model maps inputs to outputs. Smith (2003) suggests 

that model structure uncertainty, also called model inadequacy, can be a more significant 

problem than parametric uncertainty.  

Peterson (2006) and Kann and Weyant (2000) add to the list of model uncertainties with 

the idea of stochasticity, or uncertainty due to variability in the modeled system itself. In 

the case of energy-economy models, stochastic uncertainty could represent random, non-

deterministic events such as the energy price spike of the 1970s.  

Observational uncertainty can also be an important component of model uncertainty 

(Kennedy and O’Hagan, 2001). Observational uncertainty pertains to the uncertainty 

associated with the actual data on which a model is based. This is an important issue for 

calibration, a process dependent on empirical data.  

Finally, Kennedy and O’Hagan (2001) also describe code uncertainty as the uncertainty 

associated with modelling complex systems using computer code. They suggest that if 

the model is complex, it cannot be tested with every possible configuration of inputs and 

that uncertainty about outputs due to unanticipated effects of undetected bugs must 

therefore be acknowledged.  
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All of these types of uncertainty exist in CIMS. The behavioural parameters v, i, and r are 

associated with significant parametric uncertainty. While other parameters, such as 

technology costs and fuel prices are also associated with uncertainty, the behavioural 

parameters are more difficult to estimate because they are not observable as unique 

components; only the aggregate effects can be observed in historical consumer choices. 

Model structure uncertainty is also an issue. Although CIMS models macro-economic 

feedbacks, applies a high level of technological detail, and aims for behavioural realism 

in modeling choices of consumers and firms (Jaccard, 2005a), it is not a perfect 

representation of the energy-economy system; the system is too complex for this to be 

possible. Stochastic uncertainty is also unavoidable, as CIMS will never be able to 

predict stochastic events and shouldn’t try to, given the large range of potentially relevant 

random effects. Similarly, code uncertainty is an issue for CIMS as it becomes more 

complex. Testing the full range of possible inputs becomes impossible. 

1.3 Objectives 

The goal of this calibration study is to improve the credibility and usefulness of forecasts 

by improving the empirical foundation of the model’s behavioural parameters. This 

calibration exercise is an attempt to inform the model’s theoretical framework with a 

historical empirical framework. Given the issues of uncertainty and modelling behaviour 

described in this chapter, I define three specific objectives to frame this overarching goal:  

1. Estimate probability distributions for behavioural parameters through 

calibration to historical data. To better model future behaviour, in this study I 

attempt to gain insight into historical consumer behaviour by estimating values 

for the CIMS behavioural parameters. Since historical data will be used, estimated 

parameters will be based on revealed preferences. Forecasts using these calibrated 

parameters should better simulate technology choices. Further, quantifying 

parametric uncertainty in the behavioural parameter by estimating probability 

distributions will allow me to better assess the parameters currently used in CIMS 

and compare results to previous stated and revealed preference work designed to 

estimate these parameters.  
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2. Explicitly incorporate uncertainty analysis into CIMS forecasting. 

Uncertainty in parameter values can be explicitly incorporated into forecasts by 

statistically sampling from an estimated probability distribution. This approach 

could quantify uncertainty in forecast outputs, given the uncertainty in 

behavioural parameter inputs (as quantified through empirical calibration). Using 

explicit representations of uncertainty would help clearly communicate the 

potential range of impacts of policies and improve the credibility of model 

forecasts.  

3. Understand key issues resulting in differences between historical time trends 

and model forecasts. Comparing model forecasts over a historical time-period to 

empirical historical data over this period can also lead to insights into dynamics in 

the energy-economy system not represented in CIMS. Analysing differences 

between historical and forecasted trends can allow me to qualitatively assess 

structural uncertainty in the model to complement the quantitative calibration of 

parametric uncertainty. I can then evaluate the importance of these effects and 

make recommendations to improve the model if they are necessary and practical.  

1.4 Report structure 

In Chapter 2, I review alternative methodologies used to calibrate energy economy 

models as well as other models of complex systems. I also present a statistical simulation 

methodology used to estimate behavioural parameters in CIMS; in Chapter 3, I present 

the results of this analysis. In Chapter 4, I apply the results of the calibration to policy 

analysis using the improved model to forecast the effectiveness of policy options while 

explicitly incorporating uncertainty analysis. Finally, I conclude in Chapter 5 by 

discussing the significance of the results of this study, recommendations for further 

improvements to CIMS, and a description of potential areas for future research. 
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CHAPTER 2: METHODOLOGY 

2.1 Overview 

Incorporating revealed historical consumer preferences into the CIMS model can improve 

the usefulness and credibility of the model as a forecasting tool. In this chapter, I develop 

a specific methodology designed to meet both this overarching goal as well as the 

specific objectives established in Chapter 1. In Section 2.2, I present the ideas of 

calibration and backcasting in general. Building on this big-picture foundation, in Section 

2.3 I survey specific calibration methodologies used for other energy-economy models as 

well as for complex models from other disciplines. In Section 2.4, I present in detail the 

methodology used in this study, Markov Chain Monte Carlo (MCMC) parameter 

estimation. In Section 2.5, I conclude the chapter by discussing issues in implementing 

the MCMC calibration of behavioural parameters in the CIMS model. 

2.2 Principles of calibration and backcasting 

A CIMS simulation produces time series data consisting of technology market shares for 

each time period in the simulation. To calibrate the model over such a time period, the 

model must be run from an initial (historical) date, and then its outputs compared to real 

world historical data.  

To provide a valid comparison point between historical data and CIMS outputs, a process 

known as backcasting allows modellers to forecast over a historical period. The model’s 

initial conditions are reset to be consistent with a historical starting year, and the model is 

simulated forward through time. Rather than forecasting future trends, the model’s 

outputs instead backcast trends over the historical period. Calibration then involves 

modelling different combinations of inputs and assessing how well the resulting model 

outputs correspond to real world data (Tschang and Dowlatabadi, 1995). Parameter 

values that result in model outputs that best match empirical data can then be determined. 

In the case of CIMS, I run the model over a period from 1990 to the present and compare 
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predicted market shares of selected technologies with historical market shares over that 

period.  

The problem can also be reframed as what is known as the “inverse problem” (Tarantola, 

2005). Essentially, model outputs (historical “observations”) are known, while some of 

the model inputs required to generate the given outputs are unknown and must be 

estimated. The inverse problem in this case, however, may be somewhat challenging 

given that multiple parameter combinations may result in the required outputs. Multiple 

solutions exist due to the parameterization of the CIMS market share function, as 

described in Equation 1. The behavioural parameters overlap in their representation of 

behaviour. Heterogeneity, v, partly refers to heterogeneity in how different consumers 

perceive non-financial costs represented by intangible costs, i. Risk associated with new 

technologies is also associated with temporal preferences, represented by the discount 

rate, r. A further issue arises because the market share function, as described in Section 

1.2.3, calculates market shares for competing technology archetypes based on their 

lifecycle costs. Conceivably, multiple “good fit” combinations could exist for intangible 

costs: if for example, in a simplified competition between two technologies, A and B, if 

iA = $1000 and iB = $4000, the calculated market share might be similar as to the case in 

which iA = $2000 and iB = $5000, in which the relative difference is comparable.8,9  

Calibration through backcasting should thus provide values for the uncertain parameters 

that cause the model to behave in accordance with observed data. That is, these 

parameters allow the model to represent historical purchasing behaviour of firms and 

consumers over the historical period. Policy analysts can then use these improved 

                                                 
8 This example is artificial and clearly dependent on the capital and operating costs for each technology. 

Nonetheless, because the market share function depends on the relative lifecycle costs of competing 
technologies, multiple combinations of intangible costs could clearly replicate a given market share split.  

9 It could be that multiple solutions might exist to the calibration inverse problem not only due to the 
parameterization of the market share function, but also because the multiple years of data available in a 
historical time trend provide essentially only one observation: each year of data is correlated with the 
previous. This limited number of observations suggests that this inverse problem is under-constrained 
(there are more parameters than informative data points), and that multiple (perhaps an infinite) number 
of solutions to the problem will exist. Applying calibration approaches has not shown this to be the case; 
supplemental analysis indicated the historical data matrix was indeed informative for parameter values. I 
nevertheless include this hypothesis here for completeness. 
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parameters in new forecasts. Future behaviour may differ from past behaviour. However, 

in support of previous estimates from stated preference discreet choice survey research, 

the calibration process should improve CIMS’ representation of behaviour and improve 

CIMS forecasts because it relies on an empirical, revealed preference approach.  

2.3 Review of complex model calibration approaches 

Due to the breadth and complexity of the CIMS model, calibrating behavioural 

parameters from historical data is not a simple task. Specific approaches used to calibrate 

parameters in other complex models can provide insight into the critical issues involved. 

In this section, I survey calibration methodologies from a variety of disciplines (including 

statistics, economics, and the physical, natural, and social sciences) though I refer to 

energy-economy models wherever possible. 

Calibration is essentially an attempt to quantify uncertainty using empirical (historical) 

data. While the focus in this analysis is primarily on parametric uncertainty in the 

behavioural parameters, the existence of multiple sources of uncertainty in a model such 

as CIMS, particularly model structure uncertainty has some important implications for 

estimation of behavioural parameters. A survey of calibration methodologies suggests 

that, in general, the simplest approaches are deterministic, more complex approaches 

attempt to explicitly account for parametric uncertainty, and the most complex 

approaches also try to manage other sources of model uncertainty. I review alternative 

approaches here moving from the simplest to the most complex.  

2.3.1 Subjective parameter estimation 

The simplest method of calibration is to use judgement or expert opinion to set parameter 

values and to check the validity of the values by comparing model outputs to empirical 

data. Even when a more rigorous calibration approach is applied, the calibration problem 

can be under-determined (there are more unknown parameters than observations) and can 

only be solved if some parameter values are exogenously determined. When econometric 

estimates are not available, these calibrations are often based on assumptions and 

judgement (Wing, 2006).  
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Subjective parameterization has the advantages of being simple to implement and easily 

incorporating the intuition of experts. The approach does not, however, explicitly 

incorporate empirical data into the model or account for uncertainty. Nevertheless, these 

“semi-quantitative” assessments of uncertainty can be useful in improving a model’s 

credibility (Peterson, 2006).  

2.3.2 Partial calibration 

Simple or “partial” calibration techniques are often used to estimate supply and demand 

parameters in computatable general equilibrium (CGE) models (Bergman and Henrekson, 

2003; IPCC, 2004; Bohringer, 1998). In these cases, smaller components of the larger 

model are calibrated to exogenous data. Similarly, in CIMS, technological parameters are 

statically calibrated using historical data from one time period, the base year of the 

simulation. Disaggregated data for technological parameters (e.g., costs, energy 

efficiency) are not always available at a high level of detail; modellers can, however, 

estimate annual energy consumptions of specific technologies by calibrating the 

simulated energy consumption to aggregate real world data for a given base year 

(Jaccard, 2005a). While this process is helpful in verifying technology cost parameters in 

the model, it is unrelated to improving parameters that represent consumers’ technology 

acquisition behaviour. 

2.3.3 Deterministic optimization or model fitting 

As an improvement over subjective or partial approaches, uncertain parameters can be 

more formally optimized to a single set of values such that model outputs best match 

empirical data. Liu et al. (2004), for example, calculate optimum values for elasticities of 

substitution in a CGE model. By comparing model outputs over a backcasting period 

with historical data, they generate a likelihood function and choose parameter values with 

the maximum likelihood.  

Though it does not quantify or explicitly account for uncertainty, this approach is 

common due to its relative simplicity. Peterson (2006), in her survey of uncertainty in 



 

 22

energy policy models, suggests that few complex models quantify uncertainty, and even 

then, usually do so through ad-hoc, or guesstimated approaches.  

Sometimes, uncertainty is addressed, though not quantified, through calibration. 

Freedman et al. (2005), for example, calibrate non-linear parameters in a groundwater 

hydrology model using an optimization approach. To limit the scope of their analysis, 

they first use sensitivity analysis to determine which parameters have the greatest effect 

on outputs. They then replace the least sensitive parameters with constants and optimize 

the remaining parameters to best fit historical data. Uncertainty is handled separately 

from the calibration by comparing model predictions to a separate set of experimental 

field data and applying confidence intervals.  

To calibrate a CGE model, Roberts (2004) also takes an ad-hoc approach to uncertainty. 

In this study, some parameters are optimized in a calibration process while others are 

calibrated subjectively. Model outputs are statically calibrated to a single year, which is 

assumed to be an equilibrium state. The analysts then implement a kind of sensitivity 

analysis; the process is repeated for alternate benchmark years to test sensitivity and 

robustness of calibrated parameter values. Again, however, this approach does not 

dynamically calibrate to the entire time series. 

Warr and Ayres (2006) calibrate the Resource Exergy Services (REXS) model using 

American historical data spanning a century. Parameters are calibrated with a standard 

optimization algorithm; best fitting parameters minimize the root mean square of error 

between prediction and data. Interestingly, the authors also take an innovative approach 

to modelling temporal dynamics in consumer preferences: to correctly reproduce 

empirical time series, parameter values were allowed to shift over the backcasting period. 

Simulating a simple shift in consumer preferences, optimization methods were again used 

to identify the years in which parameter values should change.  
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2.3.4 Parameter estimation with uncertainty 

Explicitly quantifying uncertainty in parameter values adds complexity to a calibration 

approach but credibility to model forecasts. Monte Carlo approaches can sample from 

probability distributions over parameter input values in order to quantify uncertainty in 

model forecast outputs. Parameter estimation involves calculating probability 

distributions or confidence intervals over parameter values, thus quantifying parametric 

uncertainty if model structure uncertainty can be ignored. If the model structure is 

assumed to be accurate, or close to accurate, all discrepancy between modeled outputs 

and empirical (historical) data is assumed to be due to parametric uncertainty 

(Balakrishnan et al., 2003; Smith 2003).  

Balakrishnan et al. (2003) use a Bayesian statistical framework to estimate posterior 

probability distributions for parameter values in a ground-water hydrology model. In 

Bayesian statistics (an alternative to more conventional, frequentist statistics) posterior 

probability distributions expresses uncertainty in parameter values given both empirical 

data and prior knowledge regarding appropriate values.10 They apply a Markov Chain 

Monte Carlo (MCMC) approach and use a Metropolis-Hastings simulation to 

approximate the posterior without having to reduce the analytical complexity of their 

model. This is the approach I apply to the CIMS model in this study (see Section 2.4 for 

more details) 

Walters and Ludwig (1994), Kuhner (1995), and Patz and Junker (1999) provide other 

examples of studies that explicitly quantify uncertainty in calibrated parameters. Walters 

and Ludwig (1994) explore the suitability of a range of parameter values using a simple 

grid-search to estimate posterior probability distributions for key fish population 

parameters. Kuhner (1995) calibrate a genetics model using a maximum likelihood 

framework while Patz and Junker (1999) take a Bayesian approach in calibrating a 

psychology model that quantifies attitudes from survey response data.  

                                                 
10 For a brief summary of the Bayesian statistical framework, see Appendix A. 
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2.3.5 Bayesian Monte Carlo updating 

Applying an alternative Bayesian approach, Tschang and Dowlatabadi (1995) present a 

Bayesian updating technique for reducing uncertainty in the Edmonds-Reilly global 

energy model (a partial equilibrium model). Similarly, Dowlatabadi and Oravetz (2006) 

apply this approach to estimating parameters representing technological change in a top-

down energy-economy model. Their approach uses observations of model outputs to 

filter out combinations of parameter values that do not match outputs. The approach is 

Bayesian because it takes into account initial uncertainty distributions for inputs (or 

“prior probability distributions”), as generated by expert opinion or other subjective 

approaches. Backcasting then improves the prediction quality of the model by combining 

these distributions with the results of a comparison with historical data to generate 

posterior probability distributions.  

Tschang and Dowlatabadi (1995) also suggest that their calibration approach can account 

for both model structure and parametric uncertainty. They suggest that comparing outputs 

of competing model parameterizations, or functional structures, can be used to update the 

posteriors to include model structure uncertainty. Casman et al. (1999) further analyse the 

implications of combined model structure and parametric uncertainty in a Bayesian 

framework. As I will discuss in Chapter 3, interactions between structural and parametric 

uncertainty is an important issue for calibration.  

2.3.6 Calibration under uncertainty  

Some of the latest statistical literature on calibration builds on the ‘calibration under 

uncertainty’ approach pioneered by Kennedy and O’Hagan (2001).11 This approach 

explicitly recognizes that the model to be calibrated is imperfect. A stochastic process 

(essentially a randomized error term), called a “discrepancy function”, is used to 

represent uncertainty in model structure in the comparison of observed and forecasted 

data. The statistical model thus quantifies both parametric and structural uncertainty as 

distinct elements. Calibration then uses multiple data sets to calibrate both parametric 

uncertainty distributions and the discrepancy function. Higdon et al. (2004) build on 
                                                 
11 The classification “calibration under uncertainty” was assigned by Trucano et al. (2006). 
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Kennedy and O’Hagan’s (2001) approach by applying a Markov Chain Monte Carlo 

(MCMC) simulation to explore the posterior distributions for parameters in both 

engineering and nuclear physics models.  

Challenor (2002) lays out the framework for an initial attempt at applying this Bayesian 

calibration under uncertainty approach to an integrated assessment energy policy model. 

This effort appears to be the first research aiming toward applying Kennedy and 

O’Hagan’s (2001) statistical approach to calibrating an energy-economy model.  

2.3.7 Sequential experimental design 

A sequential experimental design is a calibration approach drawn from new, 

methodological research being developed in the Simon Fraser University statistics 

department. This methodology specifically targets the challenge of the existence of 

multiple combinations of behavioural parameters that would allow the model to 

reproduce historical data trends. 

The sequential experimental design methodology (Ranjan et al., 2007) deals with this 

challenge explicitly by outputting a contour. The contour through parameter space 

specifies all behavioural parameter combinations that result in a best-fit with historical 

data, explicitly recognizing the potential for multiple solutions. Uncertainty bounds 

around the contour can then quantify uncertainty for the infinite number of combinations 

represented by the contour. This approach is more sophisticated than simple parameter 

estimation which quantifies uncertainty around only a single best-fit parameter 

combination.  The methodology achieves this goal through minimizing the number of 

trial parameters combinations that must be simulated by optimizing the expected value of 

a candidate point before running the forecast for this combination of parameter values. 

The approach therefore generates the contour with a reasonable number of model runs.  

2.4 Bayesian Markov Chain Monte Carlo (MCMC) theory 

Given the variety of possible approaches available, what then is the best methodology for 

calibrating CIMS through estimation of behavioural parameters? In developing a 
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methodology, a balance must be achieved between outputting informative results and 

moderating the complexity required for implementation. The research objectives outlined 

in Section 1.3 emphasize the importance of explicitly accounting for uncertainty, so the 

simplest approaches described in Section 2.3 provide insufficient detail to meet my 

objectives. On the other end of the spectrum, implementing a new methodology such as 

Sequential Experimental Design is outside the scope of this analysis. Similarly, the 

limited data available (particularly due to the time correlation between successive 

historical data points) inhibits the application of Kennedy and O’Hagan’s (2001) 

approach to accounting for model structure uncertainty. As a compromise between simple 

implementation and informative results, this study will therefore apply a Bayesian 

Markov-Chain Monte Carlo (MCMC) parameter estimation approach.  

MCMC has been evaluated in detail in statistical literature and in biological, physical, 

and social science applications. Energy-economy models have not yet applied the MCMC 

approach to parameter estimation. Metropolis-Hastings is one, quite versatile, example of 

an algorithm implementing MCMC. MCMC, and Metropolis-Hastings in particular, has 

several advantages: it is relatively simple to implement, it is capable of handling complex 

models, it allows the analyst to explore complex posterior distributions that might have 

multiple, high probability, local maxima (Gelman et al, 2004). Stochasticity in the 

algorithm’s “pseudo-random walk” provides the algorithm with robustness against 

getting “stuck” at local maxima or saddle points (Denison et al, 2002). Further, the 

Bayesian nature of the approach makes it possible to incorporate the results of past 

studies or of expert opinion into the analysis in the form of prior probability distributions. 

For all of these reasons, this study applies the Metropolis-Hastings algorithm to the 

calibration of CIMS.   

I will first describe a generalized Metropolis-Hastings approach, before customizing this 

algorithm for implementation in calibrating CIMS in Section 2.5. Figure 4 illustrates the 

process flow for code that implements a Metropolis-Hastings algorithm through the 

following steps (adapted from Denison et al., 2002; Gelman et al., 2004; Tanner, 1996; 

and Walters and Ludwig, 1994): 
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1. Select initial starting parameters, )0( =sθ , where s is the MCMC iteration and θ is a 

vector of the behavioural parameters (i.e., v, i1 through iK, for K competing 

technologies, and r).  

2. Run the CIMS model with parameters 0θ to generate forecasted market shares over 

the historical period. 

3. Compare historical and forecasted data; calculate likelihoods at each historical 

interval )|( θyL  given historical market share data, y. A distribution shape (e.g. 

normal, log-normal, etc.) can be selected for the likelihood function.12 

4. Combine the likelihood with prior probability distribution, p(θ) (See Section 2.5.5 

for more details regarding the prior), to calculate an unscaled posterior density 

)|( 0 yp θ :13 

)|(*)()|( 00 θθθ yLpyp =  Equation 2 

 

5. For s = 1, 2, 3…S, where S = the number of MCMC iterations. 

a. Sample a new, proposal point *θ  from a “jumping distribution”. For this 

analysis, a normal distribution was used for a jumping distribution. The 

jumping function represents a “pseudo-random walk” algorithm because it 

is stochastic, but depends on the previously sampled point: the proposal 

                                                 
12 Although using a likelihood function is the typical approach in an MCMC algorithm, in this study, I take 

a slightly different approach, as described in Section 2.5.3. However, I describe the basic approach here 
first in order to better make clear the nature of the MCMC algorithm. 

13 “Unscaled” indicated that the integral of the posterior density over the full range of values does not sum 
to one. Scaled posterior probability densities could be calculated by normalizing the unscaled densities 
by this integral. 
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point is a random step through parameter space away from the previous 

point, θs-1. 

b. Run the CIMS model to calculate the unscaled posterior 

density )()|( ** θθ pyL  as in steps 2-4. 

c. Assess the ratio, R, of the posterior likelihood for θs-1and *θ  normalized 

by the jumping function:  

*)/(/)|(
)/*(/)|*(

11

1

θθθ
θθθ

−−

−=
sss

ss

Jyp
JypR  Equation 3 

 

Where:  

)*( yp θ    = the posterior probability density of a proposal  

    parameter combination given historical data, y 

 θ*   =  the proposal point; a vector (v,i, r)* 

)/*( 1−ssJ θθ   =  the probability of the random walk (jump   

    distribution) walking to parameter combination θ*  

    given the previous point in parameter space, θs-1. 

*)/(/)|( 11 θθθ −− sss Jyp  = the normalized posterior probability density of the  

    previous parameter space point in the MCMC  

    iteration.  
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d. If the jump increases the posterior likelihood, set *1 θθ =+s . If the jump 

decreases the posterior likelihood, set *1 θθ =+s with a probability of the 

ratio calculated in step (c), and otherwise, set ss θθ =+1  

6. If the MCMC algorithm has implemented a sufficient number of iterations, s, the 

frequency distribution of iterations of sθ  approximates the joint posterior 

probability distribution over all behavioural parameters. 

 

Figure 4: Process flow diagram for conventional Metropolis-Hastings Markov Chain Monte Carlo 
parameter estimation simulation 

 

2.5 Implementing Metroplis-Hastings for CIMS 

Applying the principles of the Metropolis-Hastings algorithm described above to the 

calibration of CIMS requires making some choices specific to this study. These choices 
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are important for customizing the implementation for CIMS and ensuring the calibration 

is computationally tractable.  

2.5.1 Scoping the analysis 

Because each competing technology in CIMS is associated with an individual intangible 

cost, calibrating the complete CIMS model – consisting of thousands of technologies – is 

clearly impractical. Rather, this study will calibrate a few key technology competitions 

(nodes) as indicators for other nodes in CIMS. Four criteria were applied to select 

representative nodes:  

1. Availability of data: availability of detailed historical market share data limits 

which nodes can be calibrated. 

2. Energy / emissions share: nodes that use larger amounts of energy and emit more 

greenhouse gas emissions were targeted so as to be more relevant to CIMS when 

it is run in its entirety. 

3. Compatibility with existing CIMS structure: complex and data-intensive nodes 

were avoided for ease of application of the MCMC methodology and to reduce 

data demands.  

4. Significance of behavioural parameters: calibration is particularly relevant in 

refining parameters specific to technology decisions for purchasing decisions that 

might not be explained by simple cost minimization 

Given these criteria, this study calibrates the following nodes: 

1. Refrigerators (residential sector) 

2. Furnaces (residential sector) 

3. Gasoline vehicles (transportation sector) 
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While it would have been useful to estimate parameters for a node in the industrial or 

commercial sector to compare the preferences of firms to those of individual consumers 

or households, obtaining sufficiently disaggregated market share from these sectors 

proved too difficult. 

2.5.2 Matching historical and model frameworks 

These three nodes were modelled separately using code that replicates the CIMS 

algorithm.14 These individual CIMS nodes allow for greater flexibility in slightly 

adjusting the configuration of the full CIMS model to better match available data, and 

make running MCMC statistical calibration simulations (requiring thousands of model-

run iterations) possible.  

Cooley’s (1997, p. 58) “rules for calibration” recommend “matching the measurements to 

the model and matching the model to the measurements.” Cooley suggests that an 

important part of calibration is aligning the theoretical framework (represented by the 

model) with a real economy (represented by data) and vice versa: a common reference 

point is required between model forecasts and data. For CIMS, this reference point is 

forecasted market shares of specific technology types. Depending on the data available, 

the backcast models can calculate either new market shares (matching up to sales data) or 

full stock turnover (matching up to stock survey data). 

In terms of designing the separate backcast models, tradeoffs exist between satisfying 

Cooley’s (1997) principles and pragmatism. The better the structure of the separate nodes 

corresponds with that of the full CIMS model, the more informative and applicable to the 

full model are the calibration results. On the other hand, if data cannot be manipulated to 

match the structure of the existing model, pragmatism dictates that the structure of the 

calibration node models must be adjusted to match the available data.  

For example, in the refrigeration node, the full CIMS model calculates market shares for 

arbitrary refrigerator archetypes based on energy consumption (standard, 10%, 20%, 

                                                 
14 CIMS backcast nodes were coded in the R programming language, as was the MCMC calibration code. 
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30%, and 40% more efficient). Over a historical period, however, for a simulation based 

on these archetypes (which were designed for a base year of 2005), almost all historical 

refrigerator sales fall into the “standard” archetype. A calibration with these archetypes 

therefore does not output meaningful results. To better represent the historical 

preferences, a different range of arbitrary archetypes was used in the individual 

calibration node. While the calibrated intangible costs of these archetypes will not 

directly translate to the archetypes in the full model, they nevertheless do provide more 

insight into historical refrigeration purchase preferences. Similarly, in the furnace node, 

ground source heat pumps are grouped with air source heat pumps and wood furnaces are 

omitted due to lack of historical market share data for these technologies. 

Consistent with Cooley (1997), Dowlatabadi and Oravetzs’ (2006) backcasting study 

provides specific suggestions for establishing consistency between the model framework 

and historical data. First, the start year of the model is reset to the beginning of the 

historical period, 1990, establishing a common initial condition between model and 

history. Second, all known, observable parameters, such as capital and operating costs, 

are set to their historical values. Historical energy prices replace exogenous forecasts 

used in CIMS forecasts, and the macro-economic equilibrium component of CIMS is not 

included; no price adjustment is required for equilibrium as historical energy prices are 

available. Though any relevant policies implemented over the historical period should 

also be represented in the backcast, initially I include no policy effects over the historical 

period, as Canada mostly relied on ineffective subsidy or voluntary programs (Jaccard et 

al., 2003; Jaccard et al., 2006). I do, however, revisit this assumption in Chapter 3. Third, 

the time steps of the simulation were reduced to increase the resolution at which 

parameters can be calibrated. Rather than calculate market shares or stocks every five 

years, the individual node models calculate market shares annually, since annual 

historical data are available. Finally, endogenous processes are replaced with historical 

data. In some cases, for example, declining capital costs (as a result of learning) can be 

determined from historical cost data. Early analysis in the residential furnace node also 

indicated that the linear base-stock retirement function used to retire technology stock in 

the base year was not an accurate representation of historical trends. Since the retirement 
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function parameters are not part of the set of parameters being calibrated, however, this 

function was eliminated and the endogenous stock decline was replaced with the 

historical trend.  

On a related note, Hilborn and Mangel (1997), in the ecological modelling literature, 

differentiate between calibrating for process uncertainty and observational uncertainty. 

While process uncertainty refers to the uncertainty in parameters representing processes 

of interest – such as the behavioural parameters in CIMS representing the process of 

technology choice – observational uncertainty refers to uncertainty in data observation. 

The distinction is important in the calibration of the residential furnace node, as described 

in Section 3.3, in which total stocks dependent on stocks in the previous year are 

calculated. This study is interested in quantifying what Hilborn and Mangel (1997) refer 

to as process uncertainty, a combination of the parametric and model structure 

uncertainties. Ideally, a process-uncertainty calibration approach would calculate stocks 

in year t based on the historical data in year t-1. Because CIMS requires data on the 

vintage of stock in year t-1, this approach is not possible. Instead, the model calculates 

stocks in year t based on the forecasted stocks in the previous year t-1. This approach is 

more in line with calibrating for observational uncertainty. Note, however, that by 

replacing endogenous trends such as the base-stock decline with historical data, the 

model and data frameworks are aligned as closely as possible, thus mitigating some 

propagation of error. 

2.5.3 Selecting likelihood and posterior functions 

Having matched data and model frameworks, a likelihood function (as represented by 

)|( θyL  in Equation 2), is then required to quantify differences between forecasts and 

historical market shares or stocks. However, selecting a likelihood function also 

introduces additional parameters (in the case of a normal distribution, the variance) that 

must also be estimated in a formal parameter analysis. To avoid the complexity of 

additional dimensionality in the parameter estimation, Walters and Ludwig (1994) 

replace the posterior with an expression that is independent of these “nuisance 
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parameters,” representing a marginal probability integrated over the variance. The 

posterior used in the MCMC algorithm (Equation 4) parallels this work. 

Where: 

)|( yp θ  =  the posterior probability of parameters θ, given data, y 

K  =  the number of technology archetypes competing 

nT   =  the number of time periods simulated in a backcast 

Pk,t  = the predicted, or backcasted market share of technology k, in  
   time period, t 

Ok,t  = the observed, or historical market share of technology k, in ‘ 
  time period, t 

The expression in Equation 4 modifies the process flow of the conventional Metropolis-

Hastings algorithm described in Section 2.4. Instead of calculating the likelihood of the 

data using a standard deviation (that must also be estimated) and combining it with a 

prior distribution to estimate posterior probability, Equation 4 calculates the posterior 

independent of a standard deviation. This expression thus effectively replaces steps 3 and 

4 of the process flow. Note that the expression calculates the negative log of the 

posterior. As a result, to include the prior distribution p(θ), the negative log of the prior is 

added to the function rather than multiplied. The modified algorithm is represented in 

Figure 5, as adapted from Figure 4. 
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Figure 5: Process flow diagram for modified Metropolis-Hastings Markov Chain Monte Carlo 
parameter estimation simulation 

2.5.4 Constraining parameter space 

To facilitate parameter estimation, parameter values are limited to realistic values. A log 

transformation ensures positive values for the v parameters and a logit transformation 

ensures values for the r parameter between zero and one when it is included in the 

calibration. Negative intangible costs are permitted, so the parameter i is not transformed. 

Thus parameter space Θ, through which the Metropolis-Hastings algorithm steps, actually 

represents these transformed parameters. 

2.5.5 Informative prior probability distributions 

Because the MCMC algorithm I have described functions in a Bayesian statistical 

framework, the estimation of a posterior probability uses prior information about 

parameter values in the form of prior probability distributions (often referred to simply as 
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“priors”, and represented as p(θ) in Equation 2 and Equation 4). In this study, I use 

informative priors based on expert opinion as well as previous stated and revealed 

preference studies. Standard deviations for the distributions were set so as to result in a 

mildly informative prior that did not dominate the posterior, allowing the likelihood 

function derived from the data to remain as the predominate factor in the calculation of 

the posterior probability distribution. See Appendix A for additional detail. 

In addition to incorporating existing prior knowledge regarding parameter values, 

applying informative priors is also important for the convergence of the MCMC 

algorithm. The calibration algorithm does not converge using non-informative priors (a 

uniform distribution). This behaviour may be a result of the existence of multiple 

parameter combinations that output backcast data that match historical trends. As I have 

discussed in Section 2.2, multiple combinations might exist because the market share 

function is over-constrained. Informative priors, however, focus the calibration algorithm 

on a specific region of parameter space and allow it to approximate the posterior 

probability distribution around a single parameter combination. 

2.6 Methodological summary 

A Markov Chain Monte Carlo (MCMC) approach to calibration as described above, can 

meet the objectives for this study. MCMC is an established and versatile method of 

parameter estimation and can generate probability distributions for parameters from 

historical data, allowing for explicit incorporation of uncertainty into policy analyses. By 

matching model and historical frameworks for three CIMS technology competition 

models, parameter distributions can incorporate historical revealed preferences, which 

improves the behavioural realism of the model. Finally, assessing the “reasonableness” of 

estimated parameter distributions can lead to insight as to the model’s successes and 

failures in replicating historical technological preferences. 
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CHAPTER 3: ANALYSIS AND DISCUSSION 

3.1 Overview 

To estimate behavioural parameters in CIMS, I apply the methodology to each of three 

CIMS nodes, or technology competitions: refrigerators, residential furnaces, and gasoline 

vehicles. In this chapter, I evaluate posterior probability distributions of the behavioural 

parameters for each technology competition, justify their validity, and assess possible 

drivers of historical behaviour over the calibration period that might not be captured by 

the model’s existing structure. 

3.2 Refrigerator node 

The residential refrigeration node competes refrigerator technology archetypes of varying 

efficiencies. For this analysis, four archetypes were competed in the model: “low 

efficiency,” “medium efficiency,” high efficiency,” and “super efficiency” refrigerators. 
15While these are not the archetypes used in the full CIMS model, this range of 

efficiencies does suitably illustrate the spectrum of technological changes from 1990 – 

2005 as evident from historical data. The node was calibrated using sales data from 

British Columbia generated by Natural Resources Canada (Canada, 2005a). For 

calibration, sales data were compared to forecasts of new market share.  

3.2.1 Dynamic historical refrigerator market share trends 

The MCMC algorithm outputs what appear to be generally reasonable posterior 

distributions for the refrigerator behavioural parameters. Figure 6 shows approximated 

marginal posterior probability densities for refrigerator behavioural parameters 

                                                 
15 Note that “high efficiency” refers to a refrigerator that has a very good energy performance and uses a 

small amount of energy per volume of refrigeration. Conversely, a “low efficiency” refrigerator has 
relatively poor energy performance and thus uses a large amount of energy per volume of refrigeration.  
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(excluding r, which was fixed at 0.6).16 The y-axis on the histograms reflects the 

frequency of particular parameter values in the posterior sample (reflecting the frequency 

in which the calibration algorithm accepts a parameter value combination). Since the 

calibration algorithm tends to climb toward parameter values that provide the best fit with 

historical data, “frequency” is a measure of the unscaled probability density of a given 

parameter value. Calibration actually outputs a single, joint probability distribution over 

all parameters calibrated. Because this multi-dimensional distribution is difficult to 

present graphically, I instead present the marginal distributions (showing a probability of 

one parameter integrated over the other parameters). 

  

Figure 6: Marginal posterior probability distributions for refrigerator parameters, heterogeneity, v, 
and intangible costs i1 through i4, for low, medium, high and super efficient refrigerators respectively. 

 

However, further analysis reveals that the calibrated parameters do not result in a “good 

fit” between history and model outputs. Figure 7 compares historical market shares to a 

model backcast in which the behavioural parameters are set to the modes of the marginal 

distributions (the value for each parameter with the highest probability, or frequency, in 

the marginal distributions in Figure 6). The figure illustrates that the CIMS new market 

share calculation is incapable of replicating the dynamics shown in historical data. CIMS 

                                                 
16 This value for the discount rate, r, is consistent with Train’s (1985) survey of several studies which found 

consumers’ discount rates for refrigerators to be in the range of 0.39 to 1.00. 0.6 is the value currently 
used for refrigeration in the full CIMS model.  

($) i1 (low efficiency) ($) 

i2 (medium efficiency) ($) i3 (high efficiency) ($) 

i 4 (super efficiency) ($) 
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calculates forecasted market shares as a function of the life cycle costs of competing 

technology archetypes, which in turn are calculated from a technology’s capital, 

operating, energy, and intangible costs. Because capital and operating costs were 

considered static, only historical changes in fuel costs could result in variation across 

time in new market shares. Further, because capital costs are very large relative to 

refrigerator operating costs, and the electricity price fluctuation is relatively small, the life 

cycle costs of the archetypes and the forecasted new market share are effectively static. 

Calibration estimates behavioural parameters that match the average of the historical 

time trend without replicating the details of these trends.  
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Figure 7: Historical (points) and forecasted (lines) new market shares (forecasted trajectories are 
generated by running the model on the most probable parameter combination as 
estimated by calibration) 

 

Clearly, this issue is a problem both for calibration and for forecasting refrigerator 

choices into the future. CIMS can represent dynamics in the energy system through 

capital stock turn over: over time, even if the forecasted market share of new fridges are 

constant, the retirement of older, inefficient fridges will result in the gradual penetration 

of higher efficiency models. The historical data, however, suggests dynamics in the new 
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market shares, not just total stock. The inability of the model to replicate this dynamic 

trend, no matter what behavioural parameter values are used, suggests that CIMS is 

missing some important element in forecasting refrigeration market shares over the 1990 

– 2004 period. Though this issue makes calibration problematic, assessing the factors 

driving this discrepancy is valuable in determining the effectiveness of CIMS’ 

forecasting approach. 

3.2.2 Declining capital costs and autonomous energy efficiency increases 

One possible factor causing the historical change in refrigeration preferences could be 

declining capital costs of higher efficiency refrigerators. Due to “learning by doing” 

(Arrow, 1962; Rivers and Jaccard, 2006) the costs of manufacturing a new technology 

tends to decrease as more units are produced and cheaper manufacturing techniques are 

developed. For the sake of simplicity, declining capital costs were not included in the 

calibration analysis, but this dynamic effect could help explain the discrepancies between 

new market shares and historical trends.  

Consumer Reports (1992; 1994, 1995; 1997; 1999; 2002; 2004) provides useful insight 

into historical costs of residential refrigerators. Table 1 overviews costs of “freezer-on-

top” refrigerator models from most major models sold in the United States. Costs have 

been adjusted to 1992 US Dollars through historical consumer price indices.  

Table 1: Overview of Consumer Reports refrigerator cost data  
(freezer-on-top models only) 

    1992 1994 1997 2002 
Annual Energy (kWh) 865 723 638 411 
Capital Cost ($) 610 770 800 750 
Capacity (cu. Ft) 13.8 - 22 18.8 

Lowest 
energy 

consumption 
available Capital Cost in 1992 $ 610 729 699 585 

Annual Energy (kWh) 1225 1072 963 523 
Capital Cost ($) 500 550 1000 650 
Capacity (cu. Ft) 14.8 - 25 21.7 

Highest 
energy 

consumption  
available Capital Cost in 1992 $ 500 521 874 507 

Annual Energy (kWh) 1000 800 650 450 
Capital Cost ($) 550 800 800 600 
Capacity (cu. Ft) 14.5  - 21- 22 18 - 22 

Typical 
energy 

consumption 
model Capital Cost in 1992 $ 550 757 699 468 
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This cost data demonstrates that incorporating dynamic capital costs into the calibration 

is not practical. Though capital costs did change with time, as the Highest and Lowest 

capital cost trends illustrate, the rapid and substantial shift toward lower efficiency 

fridges over the time-period cannot be easily represented in the model. Indeed, the fridge 

with the lowest energy consumption available in 1997 uses more energy than the fridge 

with highest consumption in 2002. In this shift toward more efficient refrigerators over 

time, the data thus seem to illustrate what a top-down model would call autonomous 

energy efficiency increases (AEEI). In a technologically explicit model such as CIMS, 

however, the drivers behind such increases should be endogenous to the model. 

The Consumer Reports data thus show clear changes in the range of availability of 

refrigerators. Consumers may not be choosing more efficient fridges over less efficient 

ones; the choice may instead be being made by the manufacturer. Alternatively, this shift 

could be a response from manufacturers to changing consumer preferences; determining 

definitively whether the effect is manufacturer or consumer driven is difficult. 

Nevertheless, part of the reason CIMS fails to show appropriate dynamics is the rapid 

shift in the range of commercially available technologies. This effect cannot be easily 

represented in the model. Simply phasing out the least efficient models every year 

through an exogenous retirement function, and having a larger range and number of 

fridge archetypes that become available or unavailable as time passes seems arbitrary and 

neither particularly useful nor practical to implement.  

3.2.3 Changing services  

Table 1 only displays data for the standard “freezer-on-top” refrigerator model, as it is the 

most common fridge and the most consistent model through the historical time period. 

Nevertheless, the top-freezer model data does not clearly illustrate the other changes in 

the service provided by fridges. Each subsequent Consumer Report publication (1992; 

1994, 1995; 1997; 2002) documents the proliferation of additional features available with 

refrigerators, including water dispensers, ice makers, meat drawer temperature controls, 

freezer lights, butter softeners, and digital displays. The 2002 report even comments on 

“speed chilling” features and faster ice-making capabilities. Similarly, other fridge types, 
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such as the less efficient but more convenient side-by-side and freezer-on-bottom models, 

have also significantly increased their market shares (Canada, 2005a). Finally, as evident 

from Table 1, and supported by Natural Resources Canada (Canada, 2005a), average 

refrigerator size increases over the period as well, partially offsetting gains in efficiency.  

All of these trends seem to indicate that efficiency and operating costs do not play a 

major role in consumer choices of refrigerators. Manufacturers seem to be competing for 

sales by providing additional services alongside food refrigeration. This shift may reflect 

a kind of rebound effect; savings from energy efficiency have been coupled with 

additional energy expenditures on additional services. These effects will not be captured 

by CIMS and thus could contribute to the failure of the calibration of the refrigerator 

node.  

3.2.4 Effects of policies 

Another possible explanation for the observed AEEI, and thus for the dynamics in 

historical new market shares, is that utility and government policies between 1990 and 

2004 might indeed have had a significant effect on consumers’ choices. The following 

effects of several government and utility programs may influence the trends in the 

historical cost data in Table 1:17  

• In 1993, the US Department of Energy mandated a minimum increase in 

refrigerator efficiency of 30%. The effect of this regulation is apparent in the 

changes in available fridges from 1992 to 1994 (Consumer Reports, 1992; 1994): 

energy consumption was reduced considerably, but capital costs actually went up 

as manufacturers were forced to meet the standard. The efficiency increase was 

achieved through several key technological changes: high efficiency compressors, 

thicker insulation, and better door seals, which were all implemented at this time 

(Consumer Reports, 1994). 

                                                 
17 Note that this analysis focuses on American regulations and programs as they are likely driving Canadian 

manufacturing decision-making given the size of the American market:   
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• Fridges using CFCs (chlorofluorocarbons) were banned in 1995 (1994 fridges 

were the last generation to use Freon). HFCs (hydro-fluorocarbons) were 

effectively a perfect substitute for CFC refrigerants; the new fridges provided 

similar efficiencies to their predecessors and almost indistinguishable service 

(Consumer Reports, 1997). Capital costs, however, increased for refrigerators as 

manufactures altered designs to meet the regulation. The regulation thus may 

explain the jump in capital costs evident from 1994 to 1997 in the representative 

data in Table 1. 

• A group of major utilities sponsored the “Golden Carrot” program in 1993: 

they provided a $30 million prize for a fridge that was CFC-free and 25% 

more efficient. The winning design by Whirlpool became commercially available 

in 1995. Other manufacturers soon followed suit (Consumer Reports, 1995). This 

program may be largely responsible for the efficiency changes from 1994 – 1997. 

It perhaps also sparked a continuing competition for more efficient fridges 

between manufacturers responsible for the continuing (and dramatic) efficiency 

improvements.  

These policies may provide partial explanations for the growth in efficient refrigerators, 

and the lack of availability of inefficient models between 1990 and 2004. I have not 

evaluated, however, the evolution of refrigerators in previous time-periods. Without 

determining whether an autonomous energy efficiency increase also existed in previous 

periods (in which no policies existed), I cannot confirm that the policies described above 

were the cause of the increase of efficient refrigerator market shares. 

3.2.5 Dynamic intangible costs 

Finally, my assumptions regarding technological change and dynamic parameters should 

also be re-evaluated. Changing preferences, modelled as dynamic intangible costs could 

also explain the dynamism in the historical trends. The declining intangible cost function 

developed by Mau (2005), for example, could be relevant if consumers felt that high-

efficiency refrigerators became more desirable as more high-efficiency refrigerators 
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penetrated the market. However, since dynamic intangibles are more difficult to estimate 

through calibration, given the additional parameters involved, a “quick and dirty” 

approach can give some sense of how dynamic intangibles might allow the model to 

reproduce historical trends. By running an optimization routine for each year of the 

historical run (with v and r fixed at 10 and 0.6 respectively), the dynamic intangible costs 

required for the model forecast to duplicate the historical trend can be calculated. 

Essentially, the freely changing intangible cost can be treated as a “fitting” variable for 

each year of the simulation.  Figure 8 shows these calculated dynamic intangible costs.  
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Figure 8: Calculated dynamic intangible costs for refrigerator archetypes at v = 10 and  r = 0.6  

 

As Figure 8 indicates, the historical shift toward efficient refrigerators could be replicated 

in a model backcast if the intangible cost of low efficiency refrigerators increased and the 

intangible cost of high efficiency refrigerators decreased. This analysis thus supports the 

idea that a declining intangible cost such as the “neighbour effect” might be relevant 

historically. Conceptually, however, the neighbour effect does not seem relevant in this 

case: more efficient refrigerators are not a new, untested technology that consumers 

might initially perceive as “risky” investments until they penetrated the market. To a 
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consumer, a high efficiency refrigerator provides much the same service as does a low 

efficiency model. 

Since for this analysis, capital costs were maintained at the previous, static values, the 

calculated “fitting” intangible could really reflect required changes in capital costs. The 

“fitting” intangible refers to the optimized intangible cost for each technology for each 

simulation time period that is required for model forecasted market shares to match 

historical market shares. Note especially the jump in required cost in 1993: at this time-

period, historical capital costs spiked due to regulation. The dynamic curve might 

therefore provide support to the hypothesis that policies enacted in the 1990s affected the 

diffusion of high efficiency refrigerators. Still, we should be careful about how we 

interpret these dynamic intangible cost curves; the “optimized” curves could be 

influenced by noise in other model parameters such as prices and costs as well as the 

availability of each archetype in a given year. Nevertheless, the “calculated dynamic 

intangibles” do give an indication of how changing capital costs or changing non-

financial preferences might also explain the discrepancy between model forecasts and 

historical trends.  

3.2.6 Refrigeration node summary 

Overall, calibrating behavioural parameters in the refrigeration node is not possible given 

the model’s inability to reproduce dynamic historical trends without dynamic capital 

costs. Dynamic capital costs cannot be incorporated into the calibration because an 

apparent autonomous energy efficiency improvement results in rapid changes in the 

availability of CIMS refrigerator archetypes over the period of 1990 – 2005.  

Still, analysis of the drivers of changing capital costs and efficiency improvements 

provide interesting insights into the performance of CIMS. Changes in refrigerators since 

1990 may not be driven by consumers choosing more efficient fridges, but rather by 

manufacturers supplying only lower consumption fridges. This supply-side effect may be 

attributable to government regulations as well as utility demand side management 

programs (namely the Golden Carrot program of 1993) specifically aimed at 
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manufacturers. The apparent efficacy of these programs is interesting and bears further 

study and more quantitative analysis. To truly assess whether the programs accelerated 

the penetration of more efficient refrigerators, previous time periods would have to be 

evaluated to determine if a similar autonomous energy efficiency improvement existed in 

periods without policies, driven only by technological change in a competitive market.  

Further, since efficient and inefficient fridges provide essentially the same service, 

consumers may be more likely to base their decision on other factors: additional service 

features, greater refrigeration capacity, or convenience. CIMS currently does not account 

for expanding or changing energy services, though new research currently in progress 

will attempt to account for this effect in CIMS (Groves, unpublished). 

3.3 Furnace node 

The residential furnace node competes technology archetypes that provide residential 

heating through forced air distribution systems (electric baseboard heaters, for example, 

are competed in a separate node). For this analysis, I considered six archetypes: low and 

medium efficiency oil furnaces, low, medium, and high efficiency natural gas furnaces, 

and heat pumps. These archetypes are similar to those used in the full CIMS model, with 

two differences. First, the “high efficiency oil furnace” archetype is omitted due to lack 

of availability of this technology over the historical period. Natural Resources Canada 

(Canada, 2005b) data indicates a zero market share for this technology from 1990 to 

2007, and a cursory survey of oil furnace vendors suggests that no product is available 

with efficiencies greater than 95% to match the archetype characteristics. Second, due to 

limitations in available data, a single aggregate “heat pump” archetype was used in lieu 

of CIMS’ current disaggregation of ground source and air source heat pumps.  

The node was calibrated using data for Ontario, as generated by Natural Resources 

Canada (Canada, 2005b). For calibration, total stock data were compared to forecasted 

stocks, and thus (unlike for the refrigerator calibration) I implemented the CIMS stock 

turnover model to backcast historical stocks rather than new market shares. 
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3.3.1 Posterior probability distribution for residential furnace parameters 

The calibration algorithm approximated reasonable probability distributions for uncertain 

behavioural parameters in the residential furnace node, as presented in Figure 9. 

Distributions were not estimated for intangible costs of the low efficiency oil furnace and 

the low efficiency natural gas furnace. These parameters are excluded from the 

calibration because these two technology archetypes were modelled as base-stock with no 

new stock purchased over the period (see Section 3.3.5), and behavioural parameters do 

not affect the retirement of base stock. Similarly, the discount rate, r, was not estimated 

because including this parameter added complexity to the calibration and made the 

convergence of the MCMC algorithm problematic. Further, economists are somewhat 

confident about the value of the private discount rate. Train (1985) surveys several 

sources to suggest a revealed discount rate range of 0.044 to 0.36 for space heating. For 

this analysis, r was fixed at 0.3, to match the value currently used in CIMS. 
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Figure 9: Unscaled marginal posterior probability distributions output from MCMC calibration 
routine with 40000 iterations; Ratio of accepted points to total number of candidate 
points = 0.228; standard deviation of jump distribution = (0.01, 0, 5, 0, 5, 5 , 5, 0.0). 
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These marginal distributions each show the probability of one parameter integrated over 

the other calibrated parameters. The histograms indicate the unscaled probability density 

(frequency of accepted points in calibration) for given values of each behavioural 

parameter. The distributions were generated through the MCMC calibration algorithm 

using mildly informative normal prior probability distributions (priors) centred over the 

values currently used in CIMS: heterogeneity v = 10 and all intangibles ik = 0.  

As illustrated by these marginal posterior distributions, the calibration algorithm 

estimates reasonable values for the furnace behavioural parameters. The marginal 

posterior for the heterogeneity factor, v, is centred around a value of about 6.4, suggesting 

a substantial degree of heterogeneity in residential furnace preferences. This value 

suggests market shares will be split more evenly between technologies than has been 

modelled in the past with CIMS (which uses a value of v = 10), despite differences in life 

cycle costs. The value was estimated, however, over a historical period in which the price 

of energy did not vary dramatically. Heterogeneity may be much larger for a forecast 

scenario in which a policy such as a carbon tax could result in much larger energy prices 

than existed during the calibration period. 

The estimated intangible costs are also generally reasonable. The intangible cost of the oil 

furnace is the largest and suggests that owning an oil powered furnace is less desirable. 

This value may reflect the fact that oil heaters require a storage tank and that the tank is 

refilled by truck delivery; consumers may perceive the inconvenience of this system 

relative to a natural gas pipeline or electricity distribution lines as additional, non-

financial costs. An intangible cost on oil furnaces is consistent with parameters currently 

used in CIMS. The negative intangible cost on the high efficiency natural gas furnace 

may reflect perceived non-financial benefits such as insulation from risk of future 

increases in the price of natural gas. The non-zero natural gas intangibles also might, 

however, reflect actual capital costs being different than the values used in the model. 

The largest difference between calibrated and un-calibrated parameters is the intangible 

cost on the heat pump archetype. The large negative intangible cost estimated in 

calibration (with -$5700 being the most probable value) would suggest consumers find 
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substantial, apparently non-financial, value in heat pumps relative to the other available 

technologies. This calibrated value seems counter-intuitive given how consumers can 

have difficulty understanding how heat pumps work, and risks associated with longer 

pay-offs (especially for ground source heat pumps, in which heat exchange loops are 

installed underground, which might be perceived as unfamiliar, high risk technology). 

Rather than representing non-financial benefits, however, this negative intangible cost 

may instead represent an incorrect capital cost for the heat pump archetype. Ground and 

air-source heat pumps were aggregated into a single archetype even though the actual 

capital costs of these two technologies are quite different. The estimated negative 

intangible might then suggest that more (inexpensive) air source heat pumps were sold 

than (expensive) ground source heat pumps, and that the aggregate capital cost of the 

archetype should thus be lower. While this explanation may be plausible, the large 

negative intangible for heat pumps has significant repercussions when extrapolated to a 

forecast. I return to this issue in Chapter 4.  

The shape of the distribution also seems to indicate successful calibration. Each marginal 

distribution is relatively normal, with no major bi-modality or even substantial skewness. 

3.3.2 Justification for convergence 

Further analysis suggests that MCMC calibration included enough iterations to 

approximate the posterior probability distribution. Trace plots in Figure 10 show the 

trajectory of the Metroplis-Hastings algorithm’s random walk through parameter space. 

The oscillation of the random walk results from the stochasticity in the calibration 

algorithm; to ensure the walk doesn’t get “stuck” at a local maxima in the distribution, 

the algorithm sometimes accepts a point even if it doesn’t improve the fit between model 

and data. The apparent oscillation around consistent values in Figure 10 shows good 

mixing through parameter space, indicating that algorithm has converged around the 
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mode of the distribution. The plots do not show any autocorrelation that might skew the 

posteriors, suggesting that a sufficient number of “burn-in” iterations were removed.18 
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Figure 10: Trace Plots for MCMC run with 40,000 iterations (burn-in iterations removed); Ratio of 
accepted points to total number of candidate points = 0.228 

 

Figure 11 provides even stronger evidence that the MCMC sample points approximate 

the posterior. The figure compares historical stock trends for each technology with 

backcasted trends, calculated using CIMS with the behavioural parameters set to the 

modes of the distributions output by calibration. As the figure illustrates, for each 

technology, the historical data correspond very well to the backcasted trends. Note that 

the perfect matches for the low efficiency oil and low efficiency gas furnace archetypes 

have been artificially imposed on the backcast so as to not distort the model’s calculation 

of demand. As discussed in Chapter 3, these are older base stock technologies that 

                                                 
18 Removing “burn-in” iterations refers to the practice of not including the initial set of MCMC iterations in 

parameter estimations in order to remove effects of auto-correlation (time correlation between 
subsequent points in the random walk) as it “climbs” toward the mode of the posterior distribution. For 
the furnace calibration, 10,000 “burn-in” iterations were removed. 
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decline with time.  They are independent of behavioural parameters since no new stock is 

purchased; the new market share for these technologies is always zero. 
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Figure 11: Comparison of forecasts with modes of MCMC-output marginal posterior probability 
distributions (θ = 6.35, 670, 15, -585, -5695, 0.3) (lines) vs historical trends (points)  

3.3.3 Importance of prior probability distributions 

An advantage of a Bayesian approach to calibration is that previous research and expert 

opinion can supplement historical data in describing values for parameters through prior 

probability distributions.19 In the case of the furnace calibration, priors became critical. 

Without incorporating informative priors into the calibration, the MCMC algorithm did 

not converge. Using priors centred around the deterministic values previously used in the 

model (see Appendix A) causes the calibration to converge to the distribution in Figure 

11.  

                                                 
19 Prior probability distributions, or “priors,” represent previous knowledge of parameter values. Because 

large standard deviations were applied to the prior probability distributions, the priors do not dominate 
the posterior. Historical data have the strongest effect on calibration.  
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Non-convergence with non-informative priors seems to result partly from the fact that the 

posterior function compares historical and forecast market shares for multiple 

technologies. A given combination might, therefore, result in a good fit with one 

technology, but a poorer fit with another. Since no combination results in an exact fit, the 

random walk in the calibration algorithm tends to oscillate somewhat between different 

parameter combinations. I confirmed that this effect had some impact on calibration by 

calculating the sum of squares error between forecast and historic data for each 

technology archetype separately. As the random walk moved to new points in parameter 

space the sum of squares decreased for some technologies but increased for others. 

The lack of convergence might also result because relative market shares are determined 

by relative costs of the technology archetypes. As discussed in Chapter 2, if all intangible 

costs for all archetypes are increased by the same factor, relative lifecycle costs might 

remain approximately constant depending on capital and operating costs. Given this issue 

in parameterization, multiple combinations of intangible parameters could result in a 

good fit with data.  

Informative priors, however, focus the calibration on a specific region in parameter 

space, and result in more distinct parameter estimation, as illustrated in the normally 

shaped, uni-modal joint distribution in Figure 11. By setting the means of the priors to 

zero, the calibration finds the mode in the joint posterior with the lowest values of 

intangible costs, rather than oscillating between alternative modes. A log-normal prior 

distribution was used for v, and normal distributions were used for all i-parameters. 

Standard deviations of these distributions were set such that the magnitude of the prior 

distribution was small relative to the posterior; the priors are therefore only mildly 

informative and do not dominate the data-driven likelihood function. 

But how much do the prior distributions affect the estimated posterior distributions? 

While carrying out a full sensitivity analysis on the value of the mean of the prior 

distribution is impractical given that a single calibration is computationally intensive, 

testing an alternative parameter “scenario” can be informative. Using an alternative prior 

probability distribution (with a mean for v of 12 rather than 10), I generated a second 
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posterior probability distribution, centred on a different mode (v =7.7, i1 = 1720, i2 = 

1070, i3 = 475, i4 = -4600, r = 0.3). This alternative combination of behavioural 

parameters also resulted in a good match with historical data. The alternative estimated 

intangible costs are each shifted upwards by a similar magnitude (about $1000) from the 

first calibrated result to adjust for a higher value of v. The relative magnitude of lifecycle 

costs of the archetypes are similar to the first calibration.  

The posterior thus does appear to be somewhat sensitive to the prior. Still, while the 

existence of multiple “good fit” parameter combinations makes the use of informative 

priors important for calibration, applying informative priors is not unreasonable. Previous 

parameter values have been estimated from a combination of expert opinion and previous 

revealed and stated preference surveys, as described in Section 1.2.4. This past research 

is relevant, and should not be ignored in the calibration. 

3.3.4 Correlation between parameters 

The posterior sample generated from calibration of the residential furnace node indicates 

strong correlation between the parameters, as illustrated in Table 2.  

Table 2: Correlation between calibrated parameters in estimated joint posterior probability 
distribution 

 v i (med. 
eff. oil) 

i (med. 
eff. NG) 

i (high. 
eff. NG) 

i (heat 
pump) 

v 1.00 - - - - 

i (med. eff. oil) -0.58 1.00 - - - 

i (med. eff. NG) 0.68 0.17 1.00 - - 

i (high. eff. NG) 0.44 0.40 0.95 1.00 - 

i (heat pump) -0.15 0.76 0.58 0.72 1.00 

 

The strong relationship between almost all parameter values is unsurprising. As I 

discussed in Section 2.2, the behavioural parameters overlap in how they represent 

consumers’ preferences. Heterogeneity, for example, can represent variation in how 
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different consumers perceive intangible costs and risk. Further, since the market share 

function calculates market shares as a function of the relative lifecycle costs of 

technology archetypes, multiple combinations of intangible costs could result in similarly 

scaled lifecycle costs and a single market share output. The strong correlation between 

intangible costs, therefore, is logical given that higher intangible costs for one archetype 

are likely associated with higher intangibles for the others.  

Figure 12, for example, shows a snapshot of two dimensions of Table 2, showing the 

correlation between the intangible costs of the medium and high efficiency natural gas 

furnace, i2 and i3. The figure shows all points in the calibration’s random walk in the 

parameter space dimensions of these two parameters, illustrating that larger values of i2 

have a high probability of being associated with a larger value of i3. Because the 

parameters are strongly correlated (by a factor of 0.95, as shown in Table 2), changes in 

one parameter dimension are offset by changes in another.  

 

Figure 12: Correlation between medium efficiency natural gas furnace intangible cost, and high 
efficiency natural gas furnace intangible cost in posterior sample points. 

 



 

 55

3.3.5 Modeling historical policies 

A final point of interest in the calibration of the residential furnace node concerns policies 

that might have affected historical furnace preferences. First, two policies likely played a 

role in consumer preferences over the historical period. In 1995, the Canadian federal 

government (Canada, 2007), required all new gas-fired furnaces to have a minimum 

“annual fuel utilization efficiency” (AFUE) of 78% and in 1998 required all oil-fired 

furnaces to have a minimum AFUE of 78%. Similarly, the Ontario provincial government 

had already regulated under the Energy Efficiency Act, (Ontario Ministry of Energy, 

2007), that all gas furnaces manufactured after January 1, 1992 and all oil furnaces 

manufactured after September 1, 1994 must have minimum AFUE ratings of 78%. The 

Ontario regulations therefore should limit the availability of the low efficiency gas and 

oil-fired furnaces.  

Normally, these regulations could be modelled in CIMS by not competing the low 

efficiency archetypes in the years in which they were not available, and retiring existing 

stock according to CIMS’ retirement functions. The federal and provincial regulations 

would only affect the retirement of base stock, not the choices of new technologies. 

However, as discussed in Section 3.3.2, for the analysis of the furnace node, the 

retirement functions were removed, and the backcasted stocks for the low-efficiency 

archetypes was instead set to the actual, historical stocks. Thus while the regulations 

might explain why the linear declining base stock function usually used in CIMS did not 

accurately explain historical trends, excluding an explicit representation of these policies 

in the backcast did not affect calibration. 

3.4 Vehicle node 

In the full version of CIMS, vehicle options are competed against each other to meet the 

demand for “vehicle-kilometres travelled”.20 CIMS policy forecasts are often concerned 

with consumers’ choice between hybrid electric, conventional gasoline, and other 

emerging vehicle technology options. A backcast from 1990 to 2003, however, is 

                                                 
20 “vehicles-kilometres travelled” is an energy service in the urban transportation node in CIMS, reflecting 

the demand for mobility through personal vehicles. 
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different in that over this historical period, hybrid vehicles had very small market shares 

and were not necessarily available. For the purposes of calibration in the historical 

backcast I model a competition between gasoline vehicles in four technology archetypes: 

low efficiency cars, high efficiency cars, low efficiency light trucks, and high efficiency 

light trucks.  

Furthermore, I structure the model in two levels, as a “node-compete” competition. As 

illustrated in Figure 13, this structure means that the average of the two car archetypes 

competes against the average of the truck archetypes to determine the market split 

between cars and trucks, and in a nested technology competition, the low and high 

efficiency cars compete to determine a split within the car market share. Similarly, low 

and high efficiency trucks compete for the truck share of the total vehicle market. The 

“node-compete” nature of the vehicle node complicates model parameterization. Now 

three heterogeneity parameters, v, are required: one for the node competition between 

cars and trucks (vNC), and one for each technology competition (vcar and vtruck).  

Gasoline Vehicles

Cars Light Trucks

Low 
Efficiency 

Cars

High 
Efficiency 

Cars

Low 
Efficiency 

Trucks

High 
Efficiency 

Trucks  

Figure 13: Structure of gasoline vehicle node for backcasting 

 

Unlike the previous two nodes, which were calibrated to regional Canadian data, the 

vehicle node was calibrated with American new market share (sales) data (derived from 
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Automotive News (2000) data and a U.S. Department of Transportation (2004) report). 21 

American data were used because the equivalent Canadian market share data were very 

difficult to obtain due to confidentiality issues. An American model, however, is a good 

substitute. As the Canadian market is similar to the American, parameter values 

calibrated with the American model may be extrapolated in part to the Canadian. One 

caveat for this extrapolation may be that since Americans have somewhat higher 

incomes, their preferences on average may be more disposed towards larger, more 

expensive vehicles.  

3.4.1 Dynamic historical vehicle preferences 

Similar to the refrigerator node calibration, the historical data displays dynamic market 

shares through time; generally, light trucks gain new market shares at the expense of cars. 

Essentially, the data illustrate the growth in popularity of Sport Utility Vehicles (SUVs). 

However, again paralleling the refrigerator analysis, the CIMS model is incapable of 

replicating this trend. Fuel costs vary too little over the time-period, and consist of too 

small a portion of the levelized life-cycle costs for the modelled market share forecasts to 

vary substantially over time. Capital costs (accounting for inflation) of similar vehicle 

types did not vary substantially over the historical period (Consumer Reports, 1990; 

2000). Again, as illustrated in Figure 14, the calibration can thus match only the average 

market shares over the historical period. The forecasted market shares are essentially 

horizontal lines, while the historical trends change through time: low efficiency cars, and 

high and low efficiency trucks show clear trends, while the time series for high efficiency 

car market shares is quite noisy and shows no clear trend from 1990 – 2003.  

                                                 
21 Historical market shares were calculated by aggregating the Automotive News (2000) nameplate data 

into market share splits for efficiency categories for vehicles for 2000. These splits were extrapolated 
over the more generalized historical time trends from 1990 to 2003 from the U.S. Department of 
Transportation data derived from the CAFE (corporate average fuel efficiency) program. 
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Figure 14: Comparison of historical data (points) with forecasted trends using 
calibrated, best-fit parameters (lines) 

 

A combination of several effects is likely responsible for the change in consumer 

preferences towards light trucks and SUVs. Possible factors include: 

• Perverse effect of the CAFE (Corporate Average Fuel Efficiency) standards: 

CAFE standards were introduced in the United States in 1975 and relaxed slightly 

in 1986. The standards required automotive manufacturers to maintain a 

minimum average fuel efficiency for all vehicles manufactured. Higher standards, 

however, were imposed on the “passenger automotive” category than on “light 

trucks.” Godek (1997) argues that this disparity allowed SUVs (categorized as 

light trucks under CAFE) to become a more economical substitution for large 

passenger cars.  

• Perceived safety “prisoner’s dilemma” effect: Because SUVs are larger and 

heavier than cars, if an SUV collides with a car, the occupant of the SUV is more 

likely to avoid serious injury. As more SUVs appear on the market (and the road), 
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consumers have increasing incentives to also purchase an SUV so as to not be on 

the “wrong side” of a collision (Vanderheiden, 2006). 

• Larger margins for manufacturers: Pelkmans et al. (2003) suggest that 

initially, manufacturers saw a larger price margin on the SUV than the car. This 

large margin caused more SUV models to be produced and promoted. This 

margin would have declined as more manufacturers tried to compete in the SUV 

market as it moved toward equilibrium.  

• Price signal lag effect: Low energy prices in the late 1980s may have given the 

consumer reason to be more confident that gasoline prices would remain low, and 

thus could have provided incentive to purchase less fuel efficient vehicles such as 

SUVs. 

• Rising income effect: Increasing Gross Domestic Product (GDP) over this period 

may have provided vehicle purchasers with more disposable income and more 

willingness to purchase more expensive vehicles that provided additional benefits 

(larger cargo space, better performance on backcountry roads, status) (Frank, 

1999; Vlek and Steg, 2007).  

3.4.2 Modeling dynamic preferences for vehicles 

How then can these possible effects be accounted for in a backcast so as to match model 

and empirical frameworks? Perverse effects of CAFE are difficult to model, as they 

mostly affect supply (i.e., the range of vehicle models that manufacturers offer). Price 

signal lag effects are also difficult to model, given that life cycle costs are calculated with 

only the current price of fuel, though Peters’ (2006) work in modelling consumers 

expectations for the future could be relevant. Due to the difficulty associated with 

modelling these effects directly, however, including them in the model is outside the 

scope of this work.  
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All other effects discussed in Section 3.4.1 effectively describe dynamics in intangible 

costs (representing changes in perceptions of safety, provision of additional services, or 

status associated with owning a vehicle). The structure of the changing intangible costs, 

however, remains uncertain. The collision safety effect suggests intangible costs should 

be a function of the market share of light trucks already sold. Similarly, a neighbour 

effect (Mau, 2005) might suggest an aysmptotic decline in intangible costs. An income 

effect suggests intangible costs as a function of GDP. Many other relationships might 

also be reasonable. 

More complex relationships do not, however, necessarily constitute a better model. In 

this case, choosing a function for a dynamic intangible introduces additional model 

structure uncertainty since the theoretical causal mechanism (i.e., the driver of dynamic 

preferences) is unclear. Calibrating parameters under larger structural uncertainty makes 

estimating parametric uncertainty more challenging; determining which type of 

uncertainty is driving the differences between the historical data and the backcast is not 

possible. Indeed, the inability of the model to replicate changing historical preferences 

suggests that structural uncertainty does play a significant role. Forecasting with 

calibration results in this case could thus introduce additional (and unquantified) 

uncertainty into forecasts and CIMS policy assessments.  

Nevertheless, the move toward SUVs and light trucks was clearly a significant trend in 

consumer preferences and cannot be ignored. For the purposes of calibration, I apply a 

linear dynamic intangible cost on the truck archetypes to represent the increasing appeal 

of light trucks over cars. Assuming that the dynamics are mostly relevant in the node-

competition between trucks and cars, the slope of the linear intangible can be the same 

for both truck efficiency archetypes. No dynamic intangible need be applied to the car 

archetypes at all, as the dynamic truck intangible will drive the changes in differences in 

life cycle costs between cars and trucks. I therefore attempt to model the intangible costs 

for trucks as per Equation 5 
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tmii ktk *0,, +=  Equation 5 

 

Where: 

ik,t  =  the capital costs for technology option k (low efficiency or high 
 efficiency truck)at time period, t  

ik,0 = the initial intangible costs of technology k (low efficiency or high   
  efficiency truck), or the y- intercept of the dynamic truck intangible 

m = a trend parameter indicating the change in the dynamic truck intangible  
  between subsequent time periods (the same value for low efficiency or  
  high efficiency truck archetypes) 

The linear trend can serve as a approximate representation of the historical temporal 

dynamics. This somewhat arbitrary structure is useful for further exploration of historic 

preference dynamics. Only one additional parameter (the rate of intangible change, m) 

must be calibrated, making calibration tractable. The value of this calibrated parameter 

will also provide an indicator of the magnitude of the historical preference changes in 

general.  

Nevertheless, the linearly declining intangible is clearly not a true representation of the 

mechanism of historical preference dynamics. Using this relationship in a forecast into 

the future would be problematic. Since the causal mechanism is undefined, the linear 

decline consistent with past trends will not necessarily be relevant for the future. Indeed, 

the linear trend cannot continue indefinitely into the future, or the intangible cost would 

eventually decline toward negative infinity. Further, in the context of a CIMS forecast, 

even if policies were implemented to encourage a shift toward lower carbon-emitting 

vehicles, the model would still be “hard wired” for a continued shift toward light-duty 

trucks.  
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3.4.3 Vehicle parameters with dynamic intangible costs 

Applying the dynamic truck intangible to the model does allow the calibration algorithm 

to replicate the dynamics of the historical trends. Parameter distributions generated by the 

calibration algorithm are illustrated in Figure 15.  
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Figure 15: Unscaled marginal posterior probability distributions for behavioural parameter values. 
Ratio of accepted points in calibration = 0.278; number of iterations = 50,000 
(additional 50,000 removed as burn-in) 

 

Several indicators suggest that the calibration included a sufficient number of iterations to 

approximate the posterior distribution. First, the distribution is generally normal in shape, 

though some skewness is apparent. Second, as Figure 16 shows, the modes of the 

parameter distributions estimated do result in an approximate fit with historical data. 

Third, paralleling the furnace analysis, I again generated trace plots that showed good 

mixing. Finally, the ratio of accepted points (0.278) is small enough to indicate that each 

step in the random walk is big enough such that the random walk did not become 
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“trapped” on a local minimum in the distribution, but small enough that the true shape of 

the distribution could be estimated.  
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Figure 16: Comparison of historical and forecasted (using behavioural parameters equal to the mode 
of the estimated posterior distribution) market shares from 1990 - 2003 for gasoline 
vehicles 

 

The estimated posterior distributions in Figure 15 suggest reasonable values for the 

behavioural parameters. The heterogeneity parameter distribution for the choice between 

cars and trucks, vNC, has a mode of 2.4, with an approximately normally shaped marginal 

distribution. This value suggests substantial heterogeneity in the market, and that the split 

between cars and trucks in general is less sensitive to the difference in price between the 

two archetypes than currently represented in CIMS. This value is consistent with the 

results from previous empirical research, as illustrated in Table 3. 

Similarly, the distributions for the heterogeneity factors describing the technological 

competitions between high and low efficiency cars and trucks appear reasonable. Both 

are normally shaped, and have means close to v = 10, the value used currently in the 
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model. While this value is quite different from the values of v estimated in other studies 

(Horne, 2003; Eyzaguirre, 2004; Mau, 2005; Axsen, 2006), these studies estimated only a 

single v parameter rather than the three parameters estimated here for the node-compete 

structure. This study seems to suggest less heterogeneity in the choice of high and low 

efficient vehicles than previous empirical research. As this historical shift toward SUVs 

illustrates, however, the node-compete split seems to play a very important role in 

assessing preferences. The fact that these past studies are very much consistent with the 

calibrated vNC suggests that past studies may have been driven more by the car – truck 

choice than the high efficiency – low efficiency choice. Further, these past studies 

included new, emerging low emission vehicles such as hybrid cars while the calibration 

backcast included only gasoline cars and trucks. It makes sense that consumers would be 

less price sensitive when faced with the option of a new, emerging technology and more 

inclined to base their decision on other factors such as risk. CIMS policy analyses 

forecast the effects of future policies on the penetration of just these kinds of new 

technologies. As such, the calibrated heterogeneity parameter may be too low for policy 

forecasting.   

The values of the distributions for intangible costs are generally consistent with Horne’s 

(2003) study, as again illustrated in Table 3, at least in terms of the approximate relative 

differences between archetypes. High efficiency models are small, light, and usually have 

poorer performance; these characteristics are represented by the high estimated intangible 

costs. Similarly, even though lower efficiency vehicles are more expensive and less 

efficient, they offer non-financial benefits such as storage space, power, and versatility of 

use that are reflected in the estimated negative intangible costs. (An SUV, for example, 

might have off-road capability where a small compact car would not). While the relative 

values are similar, the absolute values are not. These differences are likely the result of 

the parameterization issue described in Section 2.2, given that since the model calculates 

market share as a function of relative life cycle costs, multiple, scaled combinations of 

intangibles could result in the same market share. Further, since a different set of 

available vehicle technology options are modelled in Horne’s (2003) study, the 
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calibration algorithm may estimate intangible costs that have been scaled differently. A 

direct comparison may not be valid.  

Unlike in the furnace calibration, I also estimate the revealed private discount rate, r, for 

vehicle choice. The calibration routine estimated a distribution with a mode of 26.5%, 

which falls directly amidst the range of values estimated by previous studies (Horne, 

2003; Eyzaguirre, 2004; Mau, 2005; Axsen, 2006), as illustrated in Table 3. Further, the 

estimated distribution ranged from about 20% to 35%, which again is consistent with the 

other estimations. It is also consistent with literature: Train’s (1985) survey suggests 

revealed preference discount rates lie within a range between 2 and 41%. The fact that the 

estimation of consumers’ time preferences matches so well with previous studies and 

with literature provides further evidence that the calibration algorithm successfully 

estimated parameter value distributions. 

Table 3: Results from other CIMS parameter estimation studies for values of behavioural 
parameters 

 Mean behavioural parameter values estimated  

Study v (node 
choice) 

v (vehicle 
choice) 

i (low 
efficiency 

car) 

i (high 
efficiency 

car) 

i (low 
efficiency 

truck) 

i (high 
efficiency 

truck) 
r (%) 

Horne, 2003 - 2.9 -$2,693 $16,058 -$2,693 $16,058 22.6 

Eyzaguirre, 
2004 - 5.2 - - - - 27.6 

Mau, 2005 - 2.4 - - - - 21.8 

Axsen, 2006 - 5.3 -$3,420 $6,555 $301 -$10,325 21.6 

MCMC 
calibration 22 2.525 cars: 9.8 

trucks:11.5 -$2,850 $4,450 -$5,430 $970 26.5 

3.4.4 Alternative model structures 

Even though the parameter values suggested by the posterior are generally reasonable, 

the imperfect model fit in Figure 16 suggests that the model still does not fully represent 

                                                 
22 For the purpose of comparing results of the calibration with other parameter estimations, the linearly 

declining truck intangible parameter, m = -$435 / year, is not reported in Table 3, since the other studies 
did not use such a parameter. Instead, fixed intangibles are reported as the average of the dynamic 
intangibles over the historical period.  



 

 66

preferences over the historical period. Some noise may exist in the historical data that 

does not reflect a significant process in representing consumer preferences (note in 

particular the oscillating market share for high efficiency cars). However, more generally 

speaking, the best-fit forecasted trends also do not perfectly match the trends in the 

historical data. In the high efficiency truck panel in Figure 16, for example, the model 

trends fits the first half of the historical trend much better than the second. Similarly, the 

low efficiency car forecast fits the historical data very well in the latter years of the 

historical run, but seems much flatter than the steep historical trend in the first five years. 

The inability of the model forecast to match the historical trend over the entire historical 

period could indicate that the data series provides conflicting information at different 

times in the series and therefore that the model is not capturing some significant effect 

evidenced by the data. This structural inadequacy of the model is hardly surprising: after 

all, the linear dynamic intangible was imposed on the truck archetype arbitrarily to 

represent the historical change in preference towards SUVs. As I discuss in Section 3.4.2, 

many factors likely contributed to this change, and the mechanisms for these factors are 

not necessarily easy to model. A simple linear trend is probably not an ideal description 

of historical preference dynamics. Ideally, these dynamics could be further explored by 

repeating the calibration for alternative parameterizations (representing the dynamic 

intangibles, for example, with an asymptotic exponential effect, as is suggested by the 

neighbour effect research (Mau, 2002), or even with non-stationary random walk 

parameters). The usefulness of these alternative model structures could then be compared 

and assessed using a Bayesian Information Criterion (BIC).23 However, given that the 

dynamics in historical preferences may be totally different from those in the future, this 

analysis may not be helpful for forecasting. The usefulness of replicating the historical 

dynamics is particularly questionable given that historical preference dynamics took 

place in an environment without strong policies or price signals. The historical dynamics 

are therefore even less likely to accurately forecast consumers’ responses to policies such 

as a carbon tax. For these reasons, a more detailed assessment of alternative intangible 

                                                 
23 The BIC allows different models (i.e. parameterizations) to be compared. It takes into account how well 

the forecast matches the data (the residuals) as well as complexity of the parameterization (the number of 
free parameters estimated).  
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structures is outside the scope of this study. I nevertheless return to this issue in Chapter 

5.  

3.5 Summary 

Table 4 summarizes the modes of the estimated parameter posterior distributions from 

each of the nodes calibrated. The parameter values estimated for these nodes are 

generally consistent both with past parameter estimation research using CIMS and with 

results from literature.  

Table 4: Summary of estimated parameters through calibration 

Mode behavioural parameter values estimated 
Node 

v  i  r other 

Refrigerators not successfully 
estimated not successfully estimated NA NA 

v = 6.4 i(med. eff. oil) = $670 NA NA 
 i(med. eff. natural gas) = $15   

 i(high eff. natural gas) =  
-$585   

Residential 
Furnaces 

  i(heat pump) = -$5695     

v(node compete) = 2.4 i(low. eff. car) = -$2650 r = 0.265 m(truck) =  
-$435/year 

v(truck) = 9.8 i(high eff. car) = $4450   

v(car) = 11.5 i(high eff. truck) = -$1850   

Gasoline 
Vehicles 

  i(low eff. truck) = $4450     

 

Using these parameters in CIMS policy forecasts will incorporate revealed consumer 

preferences, which may pose problems for modelling policies such as carbon tax. In this 

case, the model would forecast consumers’ response to apparent energy prices (as 

modified by the tax for carbon-intensive fuels) well outside the range represented in the 

historical calibration period. Calibrated parameters may not be relevant under these 

different economic conditions. Nevertheless, since the results of calibration can be used 

in support of other empirical parameter estimations generated through stated and 

combined stated and revealed preference approaches, they should improve the model’s 
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representation of the consumer behaviour. Using the distributions to explicitly 

incorporate uncertainty into a forecast can further improve its credibility.  

Even failure of calibration (as with the refrigerator node, and to a lesser extent the vehicle 

node) is useful in qualitatively assessing structural uncertainty in CIMS. The inability of 

the refrigerator mode to replicate the dynamics in historical preferences may suggest that 

manufacturer decisions drove an apparent autonomous increase in refrigerator efficiency 

over time. Historical trends implicitly suggest that demand-side management programs 

such as the “golden carrot” might have been more significant than anticipated in 

accelerating technological change. These hypotheses cannot, however, be confirmed 

without additional analysis of rates of technological change in previous time-periods. The 

refrigerator analysis also indicates that changing refrigerator-related services might have 

a substantial effect on consumer preferences. Consumers may tend to choose a 

refrigerator based refrigeration volume and the availability of features such as icemakers, 

rather than on the amount of energy it consumes. 

Similarly, the failure of the static vehicle model to match dynamics in historical 

preferences also led to insight regarding possible drivers of the shift away from cars 

toward light trucks during the 1990s. While a linear declining intangible cost function 

model was capable of providing an approximate fit with historical trends, both the 

arbitrariness of the structure and the lack of a perfect fit suggest additional effects may 

also be relevant. These effects are not, however, necessarily relevant to forecasts of future 

technological change under very different economic conditions as modified by policies 

such as a carbon tax. 
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CHAPTER 4: POLICY ANALYSIS UNDER UNCERTAINTY 

4.1 Introduction 

Fundamentally, CIMS is a tool designed to help address an important policy problem: 

how can Canadian greenhouse gas emissions be reduced as part of a global effort to 

reduce future risks of climate change?24 CIMS can help policy-makers answer this 

question by forecasting the effects of alternative energy policies on technological change. 

By predicting the potential for low carbon-emitting technologies, CIMS can help indicate 

which policy instruments will most effectively reduce greenhouse gas emissions. In this 

chapter, I apply the behavioural parameters estimated in this study to a policy analysis 

using CIMS forecasts and evaluate how the results of calibration affect this analysis.  

4.2 Energy policy instruments 

Alternative policy instruments are available to policy-makers. These options can be 

assessed using multiple criteria: efficacy measures the success of a policy in reducing 

emissions, economic efficiency is a metric of the per unit cost of reducing emissions, and 

political feasibility assesses the potential for a government to actually implement a 

policy, given the varied interests of an electorate.25 I overview the main types of policy 

alternatives in this section. For more details regarding energy policy instruments designed 

to mitigate emissions, see Jaccard and Rivers (2007) and Jaccard (2005b).  

Command and control policies, such as minimum efficiency standards for manufacturers, 

use government regulations to mandate specific technology characteristics. While 

regulations can be effective, overly prescriptive regulations can be economically 

inefficient, causing higher abatement costs than necessary. Regulations are only 

                                                 
24 While CIMS can also be useful for other environmental policy problems, such as reducing emissions of 

“criteria air contaminants (CACs), it has been most often used in the climate change context, and I 
continue to focus on this primary application.  

25 Other policy assessment criteria might be administrative feasibility and equity. 
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moderately politically feasibly; some economists have suggested that regulations impose 

an unnecessary economic burden on firms (Jaccard, 2005b).  

Financial disincentive policies, such as a carbon tax, send a price signal through the 

economy to consumers, encouraging the transition to lower carbon-emitting technologies. 

Disincentives can be both effective and economically efficient since they allow firms and 

consumers the flexibility to choose the lowest cost approach to reducing emissions. Taxes 

are often politically challenging; they can be perceived as government intrusion on the 

economy (Jaccard, 2005b).  

Financial incentives include policies such as subsidies, low interest loans, publicly 

funded research and infrastructure, and tax credits. While incentives are politically 

feasible, studies have shown them to be less effective and economically efficient 

(Loughran and Kulick, 2004) relative to disincentives. Due to a free-rider problem, 

subsidies may reward firms or consumers who would have adopted a low-efficiency 

technology even in the absence of the subsidy.  

Voluntarism and information policies, such as advertising, labelling, demonstration 

projects, and information brochures, attempt to convince firms and consumers that 

changing their behaviour and reducing energy use is ethical or in their best interest. The 

effectiveness of these programs, however, is questionable given their historical failure to 

reduce emissions, and their economic efficiency is usually low (OECD, 2003) 

Finally, market-based regulatory policies, such as a “cap and trade” system or the 

California vehicle emissions standards, are economically efficient because they allow 

flexibility for abatement. For example, under a cap and trade scheme, firms for whom 

abating emissions is expensive can purchase emission credits from those for whom 

abatement is less expensive.  
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4.3 Stochastic policy analysis 

CIMS can quantitatively forecast the impacts of these different policy instruments. By 

comparing forecasts of greenhouse gas emissions under a combination of policy 

instruments to a business as usual (BAU) scenario representing the status quo, the model 

can assess the forecasted effectiveness of the policy package in reducing emissions. 

Including uncertainty in a policy analysis can improve analysis. Two of Morgan and 

Henrion’s (1990, p. 39) “ten commandments of good policy analysis” are to “be explicit 

about uncertainties,” and to “perform systematic uncertainty analysis.” By applying the 

probability distributions estimated through calibration to a policy forecast, uncertainty in 

the behavioural parameters can be explicitly accounted for and propagated through CIMS 

forecasts. Incorporating uncertainty into the CIMS model can further improve its 

usefulness to policy makers because risks can be quantified and a range of possible 

outcomes can be assessed (Morgan and Henrion, 1990).  

I apply a Monte Carlo simulation technique to explicitly include uncertainty in a forecast 

of future greenhouse gas emissions from residential furnaces in Ontario. This approach 

involves: 1) randomly sampling behavioural parameter values from their joint posterior 

probability distributions; 2) running the model for each sample; and 3) calculating an 

average, or “expected value” over a number of simulation of trials. Calibration outputs 

are ideally suited to Monte Carlo simulation. Sampling from the joint posterior over all 

the parameters calibrated includes correlation between parameter values, which provides 

a better representation of the interactions between the behavioural parameters than using 

marginal distributions (as for example, in Figure 9). 

Still, Monte Carlo sampling in the full CIMS model is impractical because a single CIMS 

run takes 10 – 15 minutes. The hundreds of runs required for a stochastic forecast make 

this approach infeasible. For this calibration study, however, individual CIMS technology 

competition nodes were modelled outside of the full CIMS model as custom-coded, 

individual node models.26 Monte Carlo sampling is possible and practical for these 

                                                 
26 A “node” is a technology competition for a single service (eg. heating, vehicle-km-travelled, etc. as 

modelled within CIMS which includes multiple nodes). 
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simplified models. While running policies on single nodes cannot assess system-wide 

GHG reductions, it does provide an opportunity to assess the impacts of incorporating 

uncertainty into forecasts. 

4.4 Incorporating uncertainty into a CIMS policy analysis 

For my stochastic policy analysis, I focus on the residential furnace node, because 

calibration results were most reliable for this node. Further, the node is an important one: 

in 2004, space heating was responsible for almost 54% of residential greenhouse gas 

emissions in Canada (Canada, 2006). While also running a stochastic policy for the 

vehicle node might also be interesting, to do so is problematic for several reasons. First, 

though the linearly declining intangible cost provides good fit for the historical period, no 

evidence suggests the linear structure will necessarily be applicable in the future. 

Similarly, in the historical period gasoline vehicles were the most significant technology 

archetypes.  A future policy analysis would assess the effect of a carbon tax price regime 

on the penetration of alternative technologies such as hybrid, plug-in hybrid, or hydrogen 

vehicles which were unavailable in the historical period, and thus not informed by the 

calibration.   

I also chose to focus on a financial disincentive in the form of a carbon tax as a policy 

instrument. This approach also parallels recent analysis by Bataille et al. (2007) for the 

Canadian National Roundtable on the Environment and the Economy (NRTEE). In my 

analysis, I simulate a carbon tax (Table 5) on the residential furnace node using the 

shadow prices for the NRTEE study’s middle reductions trajectory in which all Canadian 

greenhouse gas emissions are reduced to 65% below 2005 levels. While the simulation 

runs the residential furnace node in isolation, the analysis implicitly includes the effects 

of the carbon tax on electricity generation. By separately running the electricity 

generation sector under the tax policy in the full CIMS model, I determine the forecasted 

greenhouse gas intensity of electricity in Ontario, and exogenously impose this trend on 

the isolated furnace simulation. Macro-economic feedback effects are not included in this 

run; the electricity price is not endogenously adjusted in the model to ensure equilibrium 

between energy supply and demand.  
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Table 5: Escalating carbon tax simulated in policy analysis, paralleling Bataille et al. (2007) 

 

 

The policy simulation compares a business as usual (BAU) run in which no policy is 

modelled, and a policy run in which the escalating carbon tax affects the lifecycle 

technology costs of each archetype in the model. These two trends are modelled under 

each of three modelling scenarios, with parameters as described in Table 6: 

1. using un-calibrated parameter values currently used in CIMS; 

2. using deterministic calibrated parameter values; and  

3. explicitly incorporating uncertainty using calibrated probability distributions. 

Table 6: Behavioural parameters used in forecasting for each of three modelling scenarios 

Parameter values for each modelling scenario 
Parameter 

(1) uncalibrated (2) calibrated; 
deterministic 

(3) calibrated, stochastic 
(mean ± standard deviation) 

v 10 6.4 6.4 ± 0.23 
i (medium efficiency oil 

furnace) $200 $670 $687 ± 40.0 

i (high efficiency 
natural gas furnace)27 $200 $670 $687 ± 40.0 

i (medium efficiency 
natural gas furnace) $0 $15 $14 ± 32.7 

i (high efficiency 
natural gas furnace) $0 -$585 -$587 ±  29.2 

i (heat pump) $0 -$5,695 -$5681 ± 31.0 

                                                 
27 An intangible cost for high efficiency gas furnaces could not be estimated from historical data because no 

such technology existed over the historical period. However, given the market growth of gas furnaces 
over the period, the development of a high efficiency model seems likely. For the purposes of a forecast, 
the intangible cost estimated for the medium efficiency oil furnace was also used for the high efficiency 
furnace. Given that these technologies provide a very similar service, this assumption seems reasonable. 
Still, the differences between the backcast and forecast model introduces additional uncertainty.  

Year Price of Carbon ($ / tonne) 
2001- 2005 0 
2006-2010 0 
2011-2015 18 
2016-2020 88 
2021-2025 176 
2026-2030 284 
2031-2035 317 
2036-2040 317 
2041-2045 317 
2046-2050 317 
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The results of this approach thus have relevance to issues of modeling in terms of the 

usefulness of calibration, the robustness of the deterministic model, and the potential 

worth of explicit uncertainty analysis. They can also inform substantive policy issues in 

terms of how uncertainty in consumer behaviour affects the efficacy of a carbon tax. 

While CIMS can be used to assess costs of policy options (Peters, 2003), costing was not 

built into the single technology competition backcast models. This policy analysis is 

limited to assessing the efficacy of a carbon tax policy under different modelling 

scenarios to test and implement the results of the calibration. A detailed assessment of 

policy options under other evaluative criteria, such as economic efficiency or political 

feasibility, is outside the scope of this analysis. 

4.5 Policy simulation results 

Figure 17 illustrates simulation results under each of the three modelling scenarios. The 

leftmost panel shows forecasts under scenario 1 (un-calibrated parameters currently used 

in CIMS). Similarly, the middle panel shows forecasts using the mode of the estimated 

joint posterior probability distribution for the behavioural parameters (scenario 2). 

Finally, the right panel shows the results of a Monte Carlo analysis in which 300 points 

are sampled from the calibrated posterior (scenario 3). Ninety percent of the sampled 

points result in trajectories within the dotted lines on this final panel, which indicate the 

uncertainty in the forecasts, given uncertainty in the behavioural parameters. Comparing 

each of the plots in Figure 17 provides insight into the effects of incorporating calibration 

results of Chapter 3 into a forecast into the future.  
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Figure 17: Historical (points; prior to 2005) and forecasted greenhouse gas trajectories for Ontario 
residential furnace technologies under three alternative modelling scenarios under no 
policy, or “business as usual” (solid) and under an escalating carbon tax (dashed). 
Dotted lines in panel (c) represent 90% uncertainty bounds.  300 iterations were used in 
the Monte Carlo stochastic run.  

4.5.1 Impact of calibrated parameters 

The substantial differences between the plotted forecasts in the first panel and the second 

and third illustrate the impact of using calibrated parameters in place of uncalibrated 

ones. The un-calibrated parameters, as illustrated in the first panel, result in a sharp 

increase of greenhouse gases, whether or not a carbon tax is imposed. This climb in 

emissions results from an increasing market share of oil-burning furnaces, which itself is 

a consequence of anticipated increases in the price of natural gas in around 2020.28 The 

insensitivity of the model to the carbon tax price signal reflects that fact that no 

inexpensive electrical (low carbon) option was competed in the model as baseboard 

heaters were excluded.29 Alternatively, a forecast using the modes of the parameter 

distributions actually suggests that greenhouse gas emissions from residential furnaces in 

                                                 
28 CIMS uses an exogenous forecast for the price of energy. In this case, the forecasted price of natural gas 

parallels the NRTEE report (Bataille et al., 2007) which adapts forecasts developed by Natural 
Resources Canada and the U.S. Department of Energy. 

29 Baseboard heaters are competed separately in the full CIMS model based on floor space and were 
excluded here to avoid the interactions between space heater choices and insulation technology choices. 
In my furnace model, baseboard heaters were accounted for by subtracting a fixed percentage of the total 
forecasted households in Ontario.  
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Ontario will level off somewhat, before oil furnace shares again begin to grow in 2020. 

The sharp growth illustrated in the first panel starting in 2005 seems inconsistent with the 

historical levelling of emissions (more detailed market share forecasts for the three 

scenarios are reported in Appendix B). The new parameters seem to result in a smoother 

transition from historical emissions to forecasted emissions under the “business as usual” 

conditions. This continuity between history and forecast suggests the calibrated 

parameters provide a better forecast than the un-calibrated parameters.  

Under the calibrated parameter scenario, the carbon tax is very effective in curbing 

emissions, as indicated in Figure 17b. The principal difference between parameter values 

in the two scenarios is the large negative intangible cost associated with heat pumps in 

the calibrated run. This large negative value results in substantial forecasted market 

penetration for heat pumps. In 2050, the model suggests 27% of all new furnaces will be 

heat pumps, in the absence of a policy, and almost 70% under the carbon tax. 

This large growth in heat pumps may be exaggerated. Part of this effect likely results 

because the node has been constructed to exclude baseboard heaters. The heat pump 

market share responds strongly to the carbon tax policy because it is the only available 

archetype that uses electricity (which is less greenhouse gas intensive, especially under 

the carbon tax, than oil or natural gas). Under a carbon tax regime, the lifecycle cost of 

heat pumps becomes very favourable relative to the other technology archetypes. 

Extrapolation problems may also be responsible for heat pump growth. The calibration 

process estimates a large negative heat pump intangible cost parameter to replicate the 

historical growth of heat pumps (the number of heat pumps in Ontario more than doubles 

from 1990 to 2004). This growth continues into the forecast, resulting in the large 

forecasted penetration. The calibration effectively extrapolates the historical growth into 

the future, and the exogenous future increase in natural gas prices enhances the effect; 

however, such an extrapolation may not be realistic. Technology penetration often takes 

the form of a logistic function, eventually flattening out into an asymptote. Logistic 

growth might make sense for heat pumps: perhaps an environmentally-minded niche 

market forms a finite subset of the entire Ontario market. On the other hand, as a very 
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efficient technology, perhaps heat pumps will indeed develop into a dominant space 

heating technology; certainly at some high level of carbon tax this would be the case. The 

historical data only show the very beginning of heat pump penetration and can therefore 

give no indication of how large a maximum market share might be. Further, the 

calibrated parameters were estimated under historical prices; they do not necessarily 

reflect consumer responses to the substantially different prices that would occur under the 

carbon tax. These ambiguities emphasize potential limitations of calibrating a model of 

future behaviour from historical data. I return to this issue in Section 5.3.  

A second issue arises from comparing forecasts between calibrated and uncalibrated 

parameters, in that the large growth in oil-fuelled furnaces may also not be realistic. 

Historical data show a steady growth in medium efficiency oil and high efficiency oil 

furnaces; by 2050 under a “business as usual” model run, oil furnaces make up 75% of 

new furnace sales. Since oil furnaces are more often used in rural households and rarely 

in urban ones, a maximum penetration might exist. In reality, the total stock of oil 

furnaces might actually be “capped” at a maximum penetration. Also, the isolation of the 

furnace node from space heating and baseboard heaters limits the effects of the carbon 

tax. Even if the oil furnaces are arbitrarily limited to smaller market shares, natural gas 

furnaces absorb the difference in market share. Without baseboard heaters, a low-cost, 

low carbon intensity alternative (assuming the electricity sector responds to the carbon 

tax) is not available for consumers. For these reasons, the growth of greenhouse gases in 

Figure 17a under both the business as usual and carbon tax runs may also be unrealistic. 

4.5.2 Impact of explicitly incorporating uncertainty 

While Figure 17b runs the forecasting model using a single set of parameters (the mode 

of the calibrated joint distribution over the behavioural parameters), the third panel 

explicitly incorporates the uncertainty in the distribution into the forecast by sampling 

300 points from the distribution. Given the historical calibration data and the Bayesian 

prior distribution, greenhouse gas emissions have a 90% probability of falling within the 

dotted lines for both the business as usual and policy runs. Comparing the second and 

third panels reveals some interesting results. 
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Despite the variation in the behavioural parameter distributions (market heterogeneity, v, 

for example, varies from 5.8 to 7.0 within the posterior distribution) there is very little 

uncertainty in the emissions forecast (Figure 17c). Under the carbon tax, the 90% 

probability band ranges only from 4.08 to 4.55 megatonnes of greenhouse gases (carbon 

dioxide equivalents), or by about 11%.  

The Monte Carlo uncertainty analysis samples from the joint distribution, which is made 

up of the parameter combinations accepted by the calibration algorithm. Effectively, 

strong correlation between the parameters reduces the impact of the range of parameter 

uncertainty on the forecast. Though 300 different points are sampled in the stochastic 

policy analysis (with substantial variation in each input parameter dimension), the 

correlation between parameters results in small variation in forecasted outputs. The cases 

in which both parameters are small and in which both are large results in similar relative 

life cycle costs, and similar calculated market shares. A third case in which one is small 

and one is large results in very different calculated market shares. The strongly correlated 

distribution, however, indicates this third case is highly unlikely, and therefore is 

weighted very lightly when averaged into the stochastic run. The correlated posterior thus 

reduces the impact of variation in the dimensions of individual parameters. 

Limited variation in forecasted emissions, might also be specific to the residential furnace 

node. While the variation in forecasted greenhouse gas emissions is small for both the 

“business as usual” and “policy” model runs, the BAU run has a particularly tight 90% 

probability band, which results from the larger uncertainty in the oil furnaces, particularly 

the medium efficiency archetype. The intangible cost parameter for medium efficiency 

oil furnaces is fairly uncertain. Under a “business as usual” scenario, the oil furnace 

archetype takes on a large market share because it has a relatively low lifecycle cost that 

is fairly robust to variation in the intangible cost. Even with a large intangible, the 

archetype is relatively inexpensive and the resulting market share relatively large. Under 

the policy run, however, few oil furnaces are purchased. When a carbon tax that penalizes 

the high emission oil furnace is included, the lifecycle cost becomes sensitive to the 

variation in the intangible cost modelled in the Monte Carlo uncertainty analysis. 
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Finally, and perhaps most significantly, the parametric uncertainty quantified by the 

uncertainty bounds is truly valid only under the energy price regimes in the historical 

calibration period. Uncertainty is likely much larger for a forecast with a carbon tax than 

Figure 17 suggests, since the calibration does not provide any information on how 

consumers respond to the much larger energy prices that would be associated with a 

carbon tax. Further, structural uncertainty is not quantified by this analysis or included in 

the uncertainty bounds. For these reasons, the bounds may underestimate the true 

uncertainty in emissions.  

4.6 Summary 

To summarize the application of parameter calibration in a policy analysis, I return to 

Figure 17, which illustrates an interesting paradox. First, as I have discussed, using 

calibrated parameters in the place of un-calibrated parameters has a very large effect on 

both greenhouse gas trajectories and the efficacy of a carbon tax. Clearly, the model is 

sensitive to values for the behavioural parameters, when the changes are substantial. Yet 

when uncertainty in these parameters is explicitly included in the analysis, the expected 

greenhouse gas trend is almost identical to the deterministic case. Though the posterior 

probability distributions have moderate variation in each parameter dimension 

independently, the distribution as a whole constrains the forecast quite substantially. 

Effectively, policy analysis for the furnace model seems to be strongly affected by 

calibrating parameters, but weakly affected by explicitly including uncertainty in 

parameter values. Part of this inconsistency may result from the fact that the uncertainty 

associated with consumers’ response to a substantially different price regime under a 

carbon tax is not captured by the calibration. The calibration does not inform the model 

regarding consumers’ response to prices outside the range of the historical calibration 

period.  
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CHAPTER 5: CONCLUSIONS 

5.1 Modelling conclusions 

In this study’s calibration of three CIMS technology competition nodes, I have attempted 

to meet three specific objectives: to approximate probability distributions for behavioural 

parameters given historical data; to explicitly incorporate uncertainty into CIMS forecasts 

of future greenhouse gas emissions; and to identify key issues resulting in differences 

between historical trends and model forecasts. The extent to which I have met these 

objectives has several implications for future modelling work and policy analysis. 

5.1.1 Estimating behavioural parameters 

To meet the first objective, I used the calibration algorithm to generate posterior 

probability distributions for behavioural parameters for the residential furnace technology 

node and to a lesser extent, for the gasoline vehicle node. Posteriors incorporate both the 

likelihood of historical data and prior knowledge of parameter values from previous 

studies. They incorporate revealed preferences: when backcast over a historical period 

using the modes of these distributions, the model successfully replicates historical market 

share and stock trends. Further, these estimated distributions appear reasonable and 

generally consistent with past studies, even though only mildly informative priors were 

incorporated into the analysis. Estimated distributions for heterogeneity parameters, v, 

and private discount rate, r, in particular, are consistent with past results.  

5.1.2 Incorporating uncertainty 

I have addressed the second objective by explicitly incorporating uncertainty in 

behavioural parameters (as estimated through calibration) into a forecast-based analysis 

of a carbon tax. Interestingly, 90% probability bounds around the greenhouse gas 

forecasts were very narrow, especially for the business as usual case. This minimal effect 

of parametric uncertainty on forecasts may be due to strong correlation between 

parameter values. Alternatively, the minimal variation in forecasts may be specific to the 
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residential furnace node. The characteristic costs of technologies in this particular node 

may make it robust to parametric uncertainty. Calibration may also underestimate the 

uncertainty associated with consumers’ response to higher energy prices associated with 

a carbon tax. 

5.1.3 Assessing model structure 

Analyses of the less successful calibrations of the refrigerator and vehicle node are also 

informative. In these cases, the results provide insight into qualitatively assessing 

structural uncertainty in CIMS, as per the final objective generated in Chapter 1. This 

insight comes primarily from the cases in which calibration proved incapable of 

matching historical trends; that is, parametric uncertainty was insufficient in explaining 

the model’s deviation from history. For these analyses (namely the refrigerator and 

vehicle analysis) I have attempted to describe possible drivers for the discrepancy and 

thus to describe possible inadequacies in the model’s structure.  

In both the refrigerator and vehicle analyses, CIMS had difficulty replicating historical 

market shares, presumably as a result of exogenous changes in consumer preferences. In 

the vehicle node, for example, a linearly declining, time-dependent intangible was 

imposed to allow the parameter calibration to correctly replicate the historical shift in 

preferences toward light duty trucks and away from cars. Potential drivers for this shift 

include a perverse effect of the CAFE (corporate average fuel efficiency) standards, 

higher perceived collision safety in larger vehicles than smaller, high manufacturer profit 

margins, and shifting preferences. 

 The critical point here is that when running a forecast, a modeller could not have 

anticipated these exogenous shifts. In a forecast, CIMS represents only a baseline for 

consumer behaviour. Inevitably, it will not replicate shifts in behaviour driven by factors 

outside its framework of energy costs. Nevertheless, while this issue is problematic for 

calibration, it does not preclude the usefulness of forecasting. After all, good modellers 

and policy analysts explicitly recognize that a model forecast is uncertain. While 

unexpected exogenous effects might indeed drive actual future adoption of a given 
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technology well above the model forecast, other unexpected effects may instead result in 

future adoption trends well below the forecast.  

5.2 Policy conclusions 

Evaluation of less successful calibrations may also provide insight into the efficacy of 

historical policies. The inability of the backcasting model to replicate historical trends in 

refrigerator market shares, for example, implicitly suggests that demand-side 

management policies, especially those targeted at manufacturers might have resulted in 

an increase in refrigerator efficiency. Backcasts in both the residential refrigeration and 

furnace nodes suggested that government regulations mandating minimum efficiency 

standards may also have resulted in emissions reductions. This evidence may support 

assertions by Jaccard (2005b) that regulations and demand-side-management specifically 

targeting manufacturers can be effective. These hypotheses cannot, however, be tested 

within the context of this study. To do so would require showing the rate of autonomous 

energy efficiency increases in refrigerators between 1990 and 2003 was faster than in 

previous periods. 

The policy analysis component of this study (Chapter 4) also has implications for policy-

makers. On one hand, variation in consumer behaviour has a large effect on baseline 

emission trends and on the effectiveness of a carbon tax regime. Using calibrated and un-

calibrated parameters in a forecast resulted in substantially different forecasts. On the 

other hand, explicitly incorporating uncertainty into a forecast-based policy analysis did 

not substantially affect the model’s forecast of emissions reduced from household 

heating. The analysis thus may suggest that a carbon tax policy instrument could be 

somewhat robust to bounded uncertainty in consumer preferences (“bounded uncertainty” 

in this case meaning bounded by empirical data, historical prices, and the structure of the 

model used in calibration). 

5.3 Limitations of the analysis and potential future research 

Several key limitations in the analysis represent challenges to extrapolating the 

calibration results to CIMS forecasts. These limitations may represent opportunities for 
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additional analysis that might further solidify the empirical grounding of the behavioural 

elements of the model.  

5.3.1 Accounting for the possible multiple parameter values 

One limitation of this analysis is the existence of multiple parameter combinations 

capable of matching a backcast to historical data. All possible “good fit” parameter 

combinations are not specified. Choosing informative Bayesian priors, however, 

constrained the calibration’s search through parameter space for “good fit” combinations. 

These combinations of parameters are not selected exclusively as a function of the 

historical data; priors rely on subjective judgement. Still, the prior probability 

distributions are partially based on past empirical research (Rivers, 2003; Mau, 2005; 

Axsen 2006).  

Applying a sequential experimental design methodology could provide new insight into 

the range of acceptable parameter combinations. This approach estimates a contour 

through parameter space showing all “good fit” parameter combinations in a given range. 

Some work is already progressing in customizing a sequential experimental design 

approach for calibration of CIMS. Dr. Pritam Ranjan, currently with the statistics 

department at Acadia University is developing code and generating a contour for the 

behavioural parameters in the residential heating node. These results will be compared to 

the results of this study, and further research on this alternative methodology could 

potentially be pursued as a result. 

5.3.2 Data limitations and revealed preferences 

A second issue stems from the limited historical market share data available. In many 

cases some assumptions were made in order to derive full historical time trends. For the 

vehicle node, for example, detailed model breakdowns from the year 2000 were 

extrapolated over more general time trends to determine historical market shares over the 

entire historical period. The quality of parameter posterior distributions is directly tied to 

the quality and quantity of the data to which they were calibrated.  
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Data also limited the CIMS nodes that could be calibrated. Calibrating a node in the 

industrial sector, in which purchase decisions were made by firms, rather than individuals 

and households, might have provided interesting contrasts in estimated parameters. Firms 

might be less heterogeneous and might have smaller discount rates. Unfortunately, no 

sufficiently detailed market share data for industrial equipment were available.  

In calibrating the behavioural parameters to match model outputs to historical data, the 

model is essentially calibrating consumer’s responsiveness to price signals. The historical 

period of 1990 – 2004, however, did not represent a period of extreme fluctuations in fuel 

price. While calibrating to a longer historical time period would provide substantial price 

variation, finding the detailed market share data required for calibration for periods prior 

to 1990 is even more challenging. The historical period is also very short. Capital stock 

inertia (i.e., the fact that consumers often do not purchase new equipment until their 

existing car, furnace, or refrigerator is ready to be retired) suggests that significant time 

might be required for purchase data to reflect the impact of price on consumer 

preferences. The limited period of calibration (15 years) may be too short to capture this 

effect. For these reasons, the calibration may not fully represent the impact of price on 

preferences, and the calibrated model may fail to represent a consumer response to more 

dramatic price changes in the future if, for example, a carbon tax were introduced. 

The issue of limited data emphasizes that calibration relies on a revealed preference 

approach. Policy analyses incorporating calibrated behavioural parameters can only 

accurately model consumer behaviour under similar economic conditions as existed in 

the historical calibration period. In this case, since energy prices did not vary 

substantially, the calibrated parameters do not necessarily represent consumers’ responses 

to the strong price signal associated with a carbon tax. Similarly, the calibrated model 

will not necessarily represent consumers’ choices when they are faced with new and 

emerging technologies (such as hybrid vehicles) that were not available in the historical 

calibration period.  

One solution to this problem may be to extend the calibration to multiple geographic 

regions with multiple price regimes, and assume similar purchasing preferences over 
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these regions. The additional empirical data from multiple regions involved in this 

approach would add additional constraints to the calibration, potentially allowing for 

better assessment of the impact of price signal on consumer preferences. Further, 

consumers’ actual responses to carbon taxes could be evaluated from data from regions 

such as Norway, Finland, or the Netherlands, which enacted carbon taxes in the 1990s.  

Added data may also better constrain the problem and reduce the need for informative 

priors.30 

5.3.3 Structural uncertainty and issues in extrapolation 

An inability to reproduce historical data for the refrigeration and vehicle node highlights 

a third potential issue for calibration. The model’s lack of the required dynamics under 

any possible parameter combination suggests the structure of the model is not an 

adequate representation of the mechanisms of consumer behaviour. In itself, this fact is 

not surprising; all models require assumptions and simplifications. And indeed, the 

failure of the model to replicate dynamics for refrigerator and vehicle choices allowed for 

an assessment of possible drivers for failure (such as the effects of difficult-to-model 

policies, dynamic intangible costs, or changing non-energy characteristics) and thus a 

qualitative assessment of model structure.  

This identifiable structural inadequacy, however, emphasizes possible implications for 

more subtle effects of structural uncertainty. Oreskes (2003) argues that in calibration, 

even a structurally flawed model’s parameters could potentially be tuned such that a 

model’s forecasts successfully match historical observations. Because this calibration 

process deals only with parametric uncertainty, uncertainties in the structure of the 

model, or even in the data used for calibration, are ignored. Calibrating a model by 

adjusting parameter values forces the calibrated parameters to account for all uncertainty, 

                                                 
30 I did in fact experiment with this approach by modeling residential furnaces in both Quebec and Ontario 

simultaneously. This calibration failed to generate meaningful results, however, as no parameter 
combinations existed that could match historical trends in both regions: combinations that resulted in a 
good fit for some technologies in one region resulted in a poor fits for other technologies in the other 
region. The calibration became over-determined. Formal spatial modeling techniques could be explored 
in future studies. More dramatic differences in price regimes (using for example, Canadian and European 
data) might produce more meaningful results, though differences in preferences due to culture might 
prove to be a barrier in this case.  
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not just parametric uncertainty. As such, it can be dangerous to interpret the calibrated 

parameter values as estimates of true values (Kennedy and O’Hagan, 2001).  

Caution must therefore be applied in extrapolating these posterior distributions to a 

forecast over a future time period. For example, Section 3.4 describes how a linearly 

declining intangible cost on light trucks can help the model match historical trends, even 

though the linear structure is arbitrary and not based on a clear real-world mechanism. 

This structural uncertainty inhibits calibrating to “true” parameter distributions for the 

vehicle node. Over a future forecast period, the linear intangible structure might not be 

appropriate (indeed; it cannot be appropriate in the long term as the intangible would 

continue to decline forever; instead, some kind of asymptotic behaviour is more likely).  

Future research might attempt to better assess the issues of structural uncertainty 

regarding intangible cost dynamics by running a calibration under several alternative 

“structures”. For example, the dynamic intangible could also be modelled as an inverse 

exponential function rather than a linear function to parallel previous research on the 

“neighbour effect” (Mau, 2005). This approach would involve calibrating additional 

parameters and creating additional model complexity. The tradeoffs between additional 

complexity (i.e., additional model structure) and improving the model’s ability to recreate 

historical data could be assessed using a Bayesian Information Criterion (BIC). The BIC 

provides a quantitative metric for comparing alternative structures given historical data.  

On a related note, this study’s assessment of structural uncertainty is qualitative only. In 

the cases of less successful calibrations, I have explored potential effects not included in 

the model as possible explanations for an insufficient representation of changing 

consumer preferences. In the refrigeration analysis, for example, I suggested that 

demand-side management policies targeted at manufacturers might have explained the 

shift toward more efficient fridges. While this might indeed be the case, the evidence 

presented here in the context of CIMS inability to reproduce this historical shift is 

circumstantial. As demonstrated in the refrigerator analysis, part of the problem in 

evaluating preference dynamics from historical data is that distinguishing the rate of 

autonomous energy efficiency from explanatory factors, such as policies and prices, is 
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difficult. As energy is an input to the economy with a positive cost, over time a 

competitive market will experience energy productivity gains through natural increases in 

efficiency.  

Additional analysis would be required to confirm the efficacy of the “golden carrot” 

policy relative to the impacts of changing consumer preferences, or the significance of 

the CAFE regulations on the growth of SUVs relative to the significance of perceptions 

of size and safety. Formal multivariable econometric regression analysis, or evaluating 

rates of energy efficiency increases in earlier historical periods might provide further 

insight as to the most important historical causal effects. 

5.3.4 No autocorrelation in parametric uncertainty 

A fourth potential limitation in this study arises from the application of probability 

distributions in a stochastic policy forecast. The calibration algorithm estimates only a 

single probability distribution for the behavioural parameters. In including this 

uncertainty in a forecast, the same distribution is applied at each time interval in the 

forecasting simulation. However, if preferences are dynamic (as the results of this study 

seem to indicate is often the case), uncertainty should actually increase the farther the 

model projects into the future. Uncertainty about behaviour in 2040 should be much 

greater than uncertainty in 2010 given that the probability distributions were estimated 

from a historical period 1990 – 2005. In the stochastic forecast, this effect is not included, 

and the impacts of behavioural parametric uncertainty might therefore be under-

represented. 

An alternative approach that might handle this issue would be to calibrate parameters 

while assuming non-stationarity in the intangible costs. This approach would involve 

allowing the intangible costs to change slightly from their previous values in each 

simulated time-period using a constrained random walk formulation. The random walk 

would ensure that each new intangible value was a function of the previous value, 

ensuring autocorrelation in dynamic intangibles and allowing uncertainty to propagate 
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through the forecasted time trends. Parameters for the stochastic random walk function 

could also be calibrated from historical data.  

5.4 Assessment of historical calibration for technology explicit models 

Calibration in general has provided reasonable estimates for parameter values for the 

residential furnace and gasoline vehicle nodes. Nevertheless, issues such as insufficient 

price variation in historical data, an absence of revealed preference data for emerging 

technologies, and uncertainty in model structure are challenges for using calibration to 

inform consumer behaviour in policy forecasts. Behavioural realism is clearly important 

to the credibility of energy-economy models. Yet given the challenges, is historical 

calibration a useful way for modellers to establish an empirical basis for consumer 

behaviour in a technologically explicit model?    

Since it relies on historical data, calibration through backcast faces all of the advantages 

and all of the disadvantages of a revealed preference approach. It is constrained to 

historical context and thus is based on real-world, unbiased data. Calibration is limited, 

however, in how much it can inform a model about future consumer choices, in which 

energy prices or available technology options may be very different. This issue was 

apparent in Chapter 4: I was able to apply only the residential furnace joint posterior 

probability distribution directly to a meaningful forecast, and even in this best case, 

issues of uncertain consumer responses to prices and pragmatic simplifications in model 

structure resulted in suspect forecasts and policy analyses. Stated preference approaches, 

on the other hand, rely on hypothetical survey responses subject to well-documented 

biases. The stated preference approach, however, is flexible and can explore consumer 

responses in various possible future scenarios. This flexibility would allow for much 

easier integration of estimated parameters into a meaningful policy forecast.  

Revealed and stated preferences thus have complementary advantages and disadvantages. 

As suggested by Axsen (2006), empirical estimates of behavioural parameters are 

perhaps most credible when supported by both approaches. In the case of this study, the 

estimated parameters, particularly v and r, are consistent with other studies relying on 
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stated or combined approaches. Together, the correspondence between the results of this 

study and those from previous ones improves the credibility of the parameter values used 

in CIMS. Given the importance of representing real-world behaviour in energy economy 

models, a revealed preference approach to parameter estimation does therefore provide 

valuable – though not definitive – insight to modellers. 

The specific methodology used in this study also has both advantages and disadvantages. 

I selected the MCMC approach to parameter estimation because it seemed to have two 

key advantages over other approaches. First, it took a Bayesian approach that allowed me 

to integrate prior knowledge regarding parameter values to supplement calibration with 

results from expert judgement and previous stated preference research. As I have 

suggested above, using both stated and revealed preference approaches improves the 

usefulness of empirical parameter estimation for forecasting. Second, the MCMC 

approach allowed me to generate posterior probability distributions for parameters and 

then to explicitly incorporate this parametric uncertainty into a policy analysis. The 

benefits of attempting to explicitly include parametric uncertainty in forecasts, however, 

may be outweighed by the costs. Though calibration generated a joint probability over all 

uncertain behavioural parameters, explicitly including correlation between parameters, 

the distribution is very difficult to apply to a forecast if any differences exist in the 

availability of technologies. Since backcasts inevitability do not include emerging 

technologies, this will almost always be the case. Further, the uncertainty analysis was 

only for a single node. Performing a similar analysis for the full CIMS model, or even a 

larger sub-component of the model, would require calibration of many parameters and a 

computationally and time-intensive sampling approach. Finally, CIMS is a tremendously 

complex model with many other uncertain parameters and many other types of 

uncertainty that might be more significant than the uncertainty in the behavioural 

parameters. Indeed, this analysis suggested the parametric uncertainty, bounded by 

calibration, did not substantially affect forecasted greenhouse gas emission. Given these 

facts, widespread explicit uncertainty analysis in CIMS seems neither practical nor 

useful. Analysts would be better served exploring parametric uncertainty through 

sensitivity analysis focused on identifying critical parameters and evaluating the ranges 
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of values of these parameters to which the model is robust. While this approach would 

not account for correlation between parameters, it is relatively simple to implement.  

Because all model forecasts are wrong, especially ones based on human behaviour, no 

approach to forecasting future consumer behaviour is perfect. Historical calibration of 

technologically explicit models would be particularly useful (and most directly applicable 

to forecasting) if historical data are available for long time series with extensive price 

variation for technology options similar to those available in future periods. Overall, 

however, historical calibration is a useful tool for energy-economy modellers even if only 

limited data are available. Applying calibration in combination or in support of stated 

preference approaches, whether by comparing parameter estimates separately or 

integrating them in Bayesian approach, can help overcome the limitations of both a pure 

revealed preference approach and a pure stated preference approach. 

Dowlatabadi and Oravetz (2006, p. 3251) raise the fundamental issue in historical 

calibration of whether the “past is a guide to the future.” Past behaviour is not necessarily 

consistent with future behaviour of consumers. Yet CIMS can still be a useful tool for 

policy makers without trying to anticipate every potential shift in consumer preferences. 

Shifts in preferences are inevitably exogenous to the model, and entirely uncertain. 

Future preference shifts might be toward low-emission technologies as a “green,” 

environmental ethos establishes itself. Alternatively, however, growing wealth might 

further increase consumptive values and societal greenhouse gas emissions. A useful 

model therefore must forecast in terms of a baseline; forecasts should provide a 

reasonable estimate of future behaviour. Given the lack of other available empirical data, 

generating “reasonable” forecasts means generating forecasts for the future that are 

consistent with the past and with the real-world revealed preferences of consumers. As 

such, this calibration takes a small step toward making CIMS forecasts more 

“reasonable,” more credible, and more useful to policy makers.  
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Appendix A: The Bayesian framework in limited mathematical detail  

Bayes’ Rule 

Applying Bayes’ rule (Equation 6) we can generate a posterior probability distributions, 

p(θ|y), by combining a prior probability distribution, p(θ), with a likelihood function 

p(y|θ) for the historical data.  

 

)(
)()|()|(
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pyLyp θθθ =  Equation 6 

 
Where, in the discrete case: 

∑
Θ∈

=
θ

θθ )|(*)()( yPpyp  Equation 7 

 

Or, in the continuous case: 

∫
Θ∈

=
θ

θθ )|(*)()( yPpyp  
Equation 8 

Such that: 

θ  = 

a vector of the behavioural parameters, [v, i, r] where each of v, i, r is a 

sub-vector consisting of specific parameters for individual technology 

competitions. 

 y = 
historical data; i.e. historical market shares of all technologies in a given 

node of CIMS 

)|( yp θ = the posterior probability distribution for θ given the data y 

)(θp = the prior probability distribution for parameter values θ  
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Θ = the parameter space of all possible θ  

)|( θyL  = 
the likelihood function (unscaled probabilities) of parameter values θ  (the 

likelihood of data given parameters; a function of θ ). 

 

Prior probability distributions 

Prior probability distributions (priors) are a priori representations of the probability of the 

‘correctness’ of values of the behavioural parameters. That is, the prior expresses 

probability density as a function of parameter values. 

),,()( rivfp =θ   Equation 9 

For this study, normal distributions (within transformed parameter space, Θ) were used 

for priors, )( ip θ . The means of these distributions were set to the values currently used in 

CIMS, as determined through expert opinion and previous stated and revealed preference 

studies. Table 7 describes these values. Standard deviations for the priors were set such 

that the magnitude of the log-prior was small relative to the magnitude of the log-

likelihood so as to ensure the priors were only mildly informative and did not dominate 

the posterior distribution. 

Table 7: Previous parameter values used in CIMS 

Previous parameter values used CIMS for calibrated nodes 
Node 

v i r 
Refrigerators 10 0 0.6 

i(oil furnaces) = $200 
i(natural gas) = $0 Residential 

Furnaces 10 
i(heat pump) = $0 

0.3 

i(low. eff. vehicle) = -$3420 Gasoline 
Vehicles 10 

i(high eff. vehicle) = $6555 
0.22 
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Likelihood functions 

The likelihood function, p(y|θ), for a given combination of behavioural parameters, θi can 

be determined from a historical run for the given parameter combination. Equation 10 

represents one example of a common likelihood function, obtained by assuming normal 

distributions. 

⎟
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⎞
⎜
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⎝
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−

=
2

2

2

2
1)|( σ

πσ
θ

td

jt eyp  Equation 10 

Such that:  

2
td = The squared deviation between the historical market share and the model-

forecast market share at time t. 

=σ  The standard deviation of the market share data as  

jθ = Given values for v, i, r 

 

As described in the text and shown in Equation 4, however, a modified expression for the 

posterior was developed that was not a function of the nuisance parameter, σ 
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Appendix B: Model results of forecast analysis 

Table 8 and Table 9 illustrate the results of the models forecasts under the three 

modelling scenarios in greater detail. Table 8 reports forecasted market shares for the 

specific technology types at the beginning of the forecast (2005) under each scenario. 

Table 9 reports forecasted market shares for the final year of the forecast (2050) under 

both the business as usual (BAU) and carbon tax policy (POL) conditions. The two tables 

provide a sense of how the different parameters affect the forecasts as well as the trends 

of the forecasts from 2005 to 2050. Note that for scenario 3, the mean market share from 

the stochastic simulation is reported. 

Table 8: Forecasted technology new market shares in 2005 under each of three modelling scenarios 

New market shares for each modelling scenario in 2005 
(%) 

Technology 
1) uncalibrated 2) calibrated; 

deterministic 
3) calibrated; 

stochastic 
Low efficiency oil 0.0 0.0 0.0 
Med efficiency oil 13.5 7.4 7.2 
High efficiency oil 0.0 0.0 0.0 
Low efficiency natural gas 0.0 0.0 0.0 
Medium efficiency natural gas 54.5 30.4 30.4 
High efficiency natural gas 32.0 51.1 51.5 
Heat pump 0.0 11.1 10.9 

Table 9: Forecasted technology new market shares in 2050 under each of three modelling scenarios 

  
New market shares for each modelling scenario in 2050 

(%) 
Technology 1) uncalibrated 2) calibrated; 

deterministic 
3) calibrated; 

stochastic 
  BAU POL BAU POL BAU POL 
Low efficiency oil 0.0 0.0 0.0 0.0 0.0 0.0 
Med efficiency oil 46.2 13.2 19.2 2.7 19.1 2.7 
High efficiency oil 29.6 17.5 14.8 3.2 14.7 3.2 
Low efficiency natural gas 0.0 0.0 0.0 0.0 0.0 0.0 
Medium efficiency natural gas 13.0 28.4 14.9 6.0 15.0 6.1 
High efficiency natural gas 11.1 39.5 27.2 12.1 27.5 12.3 
Heat pump 0.0 1.4 23.8 75.9 23.6 75.7 
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