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ABSTRACT 

Overall, previous wind speed studies in the Pacific Northwest (PNW) present 

conflicting results for wind speed trends (both increasing and decreasing) in relation to 

climate drivers.  This study fills a gap in the understanding of PNW wind behaviour by: 

determining if relationships exist between wind speed distributions, ocean/atmospheric 

climate indices, and monitoring station-specific attributes; assessing the robustness of 

relationships for forecasting wind speeds within the study area; and presenting adaptation 

strategies to wind damage.  Analyzing the quantiles of the strongly skewed (non-normal) 

wind speed distributions reveals different behaviours for average and extreme wind 

speeds and significantly stronger winds at coastal locations compared with sites further 

inland.  Coast locations appear to follow a nine-year cyclic pattern, while mainland sites 

have a downward wind speed trend.  This finding has important implications for wind 

research and infrastructure or ecosystem planning in areas such as wind energy feasibility 

studies and timing management activities. 

 
Keywords:  Wind speed; Pacific Northwest; Quantiles; Linear mixed-effects model; 

Variability; Adaptation; Climate change 
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1: INTRODUCTION 

In December 2006, an intense storm struck southwest BC, blowing down over 

10,000 trees in Stanley Park and resulting in an estimated $9 million dollar restoration 

cost, as well as impacts to tourism and the local economy [Vancouver Board of Parks and 

Recreation, 2007; BC Hydro, 2007].  In December 2007, another severe storm hit the 

Pacific Northwest coast with wind gusts up to 220 km/h, bringing the first-ever hurricane 

warning from the U.S. National Weather Service for Washington, Oregon, and northern 

California [Crout et al., 2008].  Vulnerability to extreme weather events, such as these 

storms, increases when urbanization and infrastructure development do not consider 

changing weather patterns.  The resulting damages can reach into the millions of dollars, 

with costs being borne by society through government aid, taxes, or insurance fees.  Non-

monetary costs can be even greater with irreplaceable cultural or natural places damaged 

or lives lost [Costanza and Farley, 2007]. 

How does a changing climate affect the Pacific Northwest’s (PNW) regional 

weather patterns, and therefore the frequency and magnitude of extreme wind events?  A 

great deal of uncertainty still surrounds wind behaviour and its consequent impacts, such 

as storm surge, tree blow-down, and infrastructure damage.  Studies looking at the PNW, 

and the North American continent as a whole, show inconsistent results that seem to 

depend on the type of data used for analysis.  Further, few studies have yet tried to 

conduct a comprehensive investigation examining all available observed wind speed data 

for a particular area.  Nevertheless, despite the lack of understanding, scientists must 
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make forecasts that are as dependable as possible to inform future planning and 

development.  Society carries the costs of replacing or repairing damaged public goods, 

and therefore, public managers and policy makers have a duty to plan effectively for 

future wind conditions.  Researchers have the opportunity to translate scientific 

information into understandable and accessible language for policy makers and 

managers, who may not have extensive experience with climate science.  It is especially 

important that scientists and managers both play roles in forming adaptation policies that 

correctly assess physical system dynamics and are also politically and socially acceptable 

[Bray et al., 1997]. 

Historical wind data are limited for many areas and any resulting forecasts often 

have large uncertainties associated with them [National Research Council, 2006].  

However, this limitation is not a rationale to avoid forecasting wind speeds and storm 

behaviour.  Rather, it is a reason to better identify the most uncertain elements in order to 

focus future research.  In the short term, we must still make management decisions.  We 

should base those decisions on the best forecasts possible, with the inherent uncertainties 

explicitly stated, in an open and transparent process.  Methods like quantitative decision 

analysis are well suited to incorporate uncertain information into management action 

choices. 

My research examines the variability of historical wind speeds for the PNW and 

establishes relationships with several climate-related, Pacific Ocean indices of sea surface 

temperature and sea level pressure using a linear mixed-effects (LME) model.  LME 

models use available meteorological data better than standard linear regression when 

determining regional patterns [Zuur et al., 2007; Zuur et al., 2009].  Meteorological 
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station data often include short and intermittent time-series records with different 

variance across observations and possibly correlated measurements.  Linear regression 

cannot adequately handle these complications, while LME models offer much more 

flexibility to incorporate lower quality data using adaptable variance and correlation 

structures.  Throughout this analysis, I use a range of quantiles (50th to 95th) for wind 

speed data, rather than the usual mean or max/min values, to explore the highly skewed 

and non-normal distribution of wind speeds.  Also, quantiles help smooth the inherently 

spiky nature of wind speed data (i.e., sudden large changes in wind speed) to elicit more 

meaningful results than traditional summary measures [Cade and Noon, 2003; Koenker, 

2005]. 

1.1 Study Objectives 

My research aims to explore the variability and trends of historical wind 

behaviour in coastal areas of the Pacific Northwest and improve future policy decisions 

regarding adaptation to severe windstorms.  Accordingly, three specific research 

objectives guide the course of this study: 

1. Determine if relationships exist between wind speed distributions (i.e., quantiles), 

ocean/atmospheric climate indices, and monitoring station-specific attributes 

(e.g., elevation, geographic location, data source); 

2. Assess the robustness of relationships for forecasting wind speeds within the 

study area; and 

3. Convey forecast results and potential adaptation actions in a manner easily 

understandable by a wide (potentially non-technical) audience. 
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1.2 Background 

1.2.1 Disaster Planning 

Scientists’ inability to forecast extreme wind speeds reliably has consequences for 

resource and urban management along coastlines.  As coastal communities urbanize and 

develop resources, they may expose themselves to increasing risks from extreme weather 

events (e.g., damage from severe winds or storm surge).  For instance, Hurricane 

Katrina’s impact on New Orleans, USA, a well-developed coastal city, showed that 

infrastructure is often poorly located in risk-prone areas and impairs the functioning of 

natural capital (e.g., building in floodplains and removing wetlands that might mitigate 

storm surge).  These natural defences could otherwise provide adequate protection and 

mitigate physical and financial losses [Costanza and Farley, 2007].  Planning and risk 

analysis for future infrastructure decisions will necessarily require accurate forecasts of 

weather conditions.  To this end, Natural Resources Canada produced a report 

documenting changes in vulnerability with changing frequencies and magnitudes of 

natural hazards [Walker and Sydneysmith, 2008].  They note that possible wind impacts 

include storm surge damage (potentially combined with sea level rise), tree wind-throw, 

and infrastructure impairment.  While the authors do not provide a future scenario of 

wind conditions and the possibly changing consequences, the report does highlight that 

management decisions in the future must incorporate changing risks from extreme 

weather events.  Incorporating risks will be especially important for coastal urban areas 

with aging infrastructure that was developed based on the assumption of stable average 

and extreme conditions. 
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1.2.2 Influential Climate Behaviour in the Pacific Northwest 

Our atmosphere and weather patterns are largely governed by air pressure and 

temperature.  These variables are in turn, driven by solar and terrestrial/ocean radiation.  

Differences in pressure and temperature create vertical air currents that cause rising and 

falling of air masses in the troposphere (the portion of the atmosphere we experience).  

Unequal heating and cooling of water and different areas of land create horizontal air 

flows.  For example, air in a city grows hotter during the day compared to surrounding 

areas due to heat absorbed and emitted from concrete and roads, becomes less dense (due 

to thermal expansion), and rises in an updraft.  Cooler, denser air over the countryside or 

ocean flows into the city in the form of surface wind to fill the low-pressure area.  As the 

cooler incoming air heats up, it also rises and continues to create a low-pressure area over 

the city.  This cycle is reversed at night as the city cools faster than the surrounding areas.  

Local surface responses of wind, like the city example above, may differ from regional 

weather regimes that are predominantly dictated by upper air currents [Reynolds, 2005]. 

Observational evidence suggests surface expressions of weather regimes (e.g., 

wind, temperature, and precipitation) are driven by regional and global climate 

oscillations [Reynolds, 2005; Mantua and Hare, 2002; Ropelewski and Halpert, 1986; 

Schwing et al., 2002].  Oceanic and atmospheric circulation patterns occur at various 

temporal scales, lasting years to decades.  Many patterns are centred on either the Pacific 

or Atlantic Oceans [Abeysirigunawardena et al., 2009].   

Indices of climate circulation patterns are often generated using anomalies 

(residuals) of averages of sea-level pressure (SLP) or sea-surface temperature (SST).  

Climate variability indices based on anomalies of observed or calculated variables are 
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independent of normal seasonal cyclic patterns and therefore do not exhibit seasonality.  

Most indices are also de-trended to remove any pattern associated with secular (i.e., 

anthropogenic) influences.  The climate-related, Pacific Ocean indices used in this study 

are detailed below and summarized in Table 3 (see Appendix A for index time series 

plots).  These indices represent the major, currently theorized, climate oscillations that 

are likely to influence Pacific Northwest (PNW) wind speeds. 

Pacific Decadal Oscillation 

The Pacific Decadal Oscillation (PDO) has been described as a long-lived 

(decadal-scale rather than yearly-scale) Pacific Ocean version of the better-known El-

Niño climate variability pattern [Ropelewski and Halpert, 1986].  Phases of the PDO 

occur at the scale of 15-25 years and include varying strength “warm” and “cool” phases.  

Typical characteristics of the warm (cool) phase for the PNW include increased 

(decreased) ocean and surface temperatures and decreased (increased) precipitation and 

wind speeds (Figure 1).  Warm phases of the PDO (positive index values) are not 

uniformly warm across the Pacific Ocean, but rather follow the spatial pattern shown in 

Figure 1, with cool phases (negative index values) following the reverse pattern. 
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Figure 1: PDO Warm Phase Characteristics 

Anomalous climate conditions associated with warm phases of the Pacific Decadal 
Oscillation (PDO) (top), and November–March average values of the PDO index 
(bottom).  Values shown are °C for sea surface temperature (SST), millibars for sea 
level pressure (SLP) and direction and intensity of surface wind stress.  The longest 
wind vectors represent a pseudostress of 10 m2/s2.  Actual anomaly values for a given 
year at a given location are obtained by multiplying the climate anomaly by the 
associated index value.  Adapted from [Mantua and Hare, 2002]. 

The PDO is calculated as the leading principal component of an empirical 

orthogonal function (EOF) of monthly SST residuals relative to long-term averages 

(1900-1993).  Residuals are defined as the difference between observed North Pacific 

(poleward of 20 N) SST anomalies and the monthly mean global-average SST anomaly 

[Mantua and Hare, 2002].   

El Niño-Southern Oscillation 

The Global-SST El Niño-Southern Oscillation index (ENSO) has been directly 

linked to average and extreme directional wind regime variations in the Pacific 
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[Abeysirigunawardena et al., 2009].  This ENSO index captures the low-frequency part 

of the phenomenon, which is associated with both tropical Pacific SST and SLP.  In the 

PNW, warm (positive or El Niño), phases of ENSO are related to above-average 

temperature winters with below-average precipitation and stronger mid-latitude 

westerlies (for the PNW, winds originating from the Pacific Ocean).  Cool (negative or 

La Niña), phases result in the opposite atmospheric expression of below-average 

temperature and above-average precipitation winters [Ropelewski and Halpert, 1986; 

Ware and McFarlane, 1989].  ENSO is a considerably shorter-lived phenomenon 

compared to climate oscillations like the PDO, with phases typically lasting for 1-3 years 

before changing sign.  ENSO is calculated as the average SST anomaly equatorward of 

20N & 20S latitude minus the average SST poleward of 20N & 20S [Rasmusson and 

Wallace, 1983].  Anomalies are determined with respect to the period 1950-1979. 

Arctic Oscillation 

The Arctic Oscillation (AO) represents the dominant pattern of non-seasonal sea-

level pressure variations poleward of 20N, with anomalies of opposite sign to that in the 

Arctic centred at about 37-45N (adjacent to the study area latitude).  During the positive 

(warm) phase of the AO, this pattern describes below normal Arctic SLP, strong westerly 

winds, and warmer than average winter temperatures over the PNW.  The negative (cool) 

phase has above average Arctic SLP, with weak westerly winds allowing colder than 

normal PNW winter conditions.  Phases of the Arctic Oscillation typically persist for 

periods of 1-2 years.  The AO index is calculated as the variable (from an EOF) 

describing the most variability of monthly atmospheric pressure anomalies relative to 

long-term means (1979-2000), poleward of 20N [Thompson and Wallace, 1998]. 
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Northern Oscillation Index 

The Northern Oscillation Index (NOI) relates variability in atmospheric forcing of 

climate regimes in the mid-latitudes of the northern hemisphere.  By measuring the NOI 

as the SLP anomaly difference between the North Pacific High (NPH) (35N, 135W) and 

Darwin, Australia (10S, 130E), this index introduces a proxy for the atmospheric 

circulation link between the tropics and northeast Pacific Ocean.  While the NOI is 

roughly the north Pacific equivalent of the Southern Oscillation Index (SOI), it seems to 

provide a more direct indication of how global-scale climate events affect the north 

Pacific and North America, and describes environmental and atmospheric changes in the 

PNW better than SOI [Schwing et al., 2002].   

The Northern Oscillation appears to follow a cycle of positive and negative 

phases lasting approximately 14 years.  Positive phases of the NOI are associated with 

high SLP and SSTs in the northeast Pacific Ocean and anti-cyclonic surface wind stress 

(i.e., north-westerly winds in PNW).  The negative phase of the NOI provides a strong 

reversal of the pattern with low SLP and SSTs and southerly winds over the PNW.  Wind 

speeds change prevailing direction, but do not appear to change magnitude significantly. 
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Figure 2: Anomalies of SLP and Surface Wind Associated with NOI 

Anomalies of SLP (colours) and surface wind (arrows) over the Pacific during (a) 1970–
1976, a period of predominantly positive NOI values, and (b) 1991–1997, a period of 
predominantly negative NOI values.  Yellow–red (blue) shades denote positive 
(negative) SLP anomalies.  Contour interval is 0.2 mb; scaling arrow shown in lower 
left.  White circles mark the climatological annual mean positions of the NPH (35N, 
130W) and Darwin, Australia (10S, 130E).  Adapted from [Schwing et al., 2002]. 

Pacific/North American Pattern 

One of the most prominent modes of low-frequency climate variability in the 

northern hemisphere extratropics is the Pacific/North American Pattern (PNA).  The PNA 
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pattern is a natural internal mode of climate variability, but the El Niño/ Southern 

Oscillation (ENSO) phenomenon also strongly influences it.  The positive phase of the 

PNA pattern tends to be associated with Pacific Ocean warm SST episodes (as in El 

Niño), and the negative phase tends to be associated with cold SST episodes (as in La 

Niña) [NCEP, 2006].  For surface conditions, positive phases of the PNA are associated 

with above-average temperatures over western Canada and U.S. and below-average 

temperatures over the southern portion of North America.  The positive phase is also 

associated with above-average precipitation over the PNW.  Phases typically persist for 

1-5 years before changing sign.  The PNA index is calculated as the variable (from an 

EOF) describing the most variability of monthly atmospheric pressure anomalies relative 

to long-term means (1950-2000), for the region 20N-90N [Wallace and Gutzler, 1981].   

1.2.3 Models of Wind Behaviour in Pacific Northwest 

Several studies assess the trends and variability of wind speeds, including time 

series and extremes analyses, for areas along the Pacific coast of North America 

[Abeysirigunawardena et al., 2009; Enloe et al., 2004; Gower, 2002; Pryor et al., 2009; 

Tuller, 2004].  However, wind speed trend and covariate findings are inconsistent.  The 

limited number of locations, differing scales of the analyses, and the variability of 

statistical methods used constrain interpretation of these results. 

In particular, only two studies specifically address developed urban areas 

[Abeysirigunawardena et al., 2009; Tuller, 2004].  Abeysirigunawardena et al. [2009] 

construct return periods for wind speeds  (interval time between extreme wind events) at 

three monitoring stations near Delta, BC.  They fit Generalized Pareto Distributions 

(GPD) to extreme wind speed distributions using climate-related, Pacific Ocean indices 
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as covariates for equation parameters and estimate wind speed return periods.  Only the 

most extreme events observed form the basis for statistical distributions of this nature, 

and the required assumption of independence between events further limits the number of 

measurements that can be included for analysis.  Small or incomplete data sets, which are 

often encountered in environmental modelling, can therefore bias results when using this 

type of method [Mcinnes et al., 2003].  The researchers find significantly different 

extreme wind speed responses to warm and cold ENSO modes, with higher extreme wind 

events occurring in Delta, BC during cold (i.e., La Niña) phases.   

Alternatively, Tuller [2004] correlates mean annual and seasonal wind speeds 

with climate indices (PNA and PDO).  He uses data from four atmospheric monitoring 

stations with long, relatively complete wind speed records representing southern BC 

(Vancouver Int. Airport, Victoria Int. Airport, Comox Airport, and Cape St James, Haida 

Gwaii).  This straightforward method provides easy-to-interpret correlation values 

between surface wind speeds, air pressure gradient triangles, and PNA and PDO indices.  

Overall, he finds a general declining trend, but notes that temporal periods have very 

different trends (both negative and positive).  He also finds moderate negative correlation 

values between wind speeds and PDO and, to a lesser extent, PNA.  However, mean 

annual and winter wind speeds for Comox Airport deviate significantly from the 

decreasing trends and correlations determined for the other three stations.  Tuller [2004] 

cannot explain the difference in wind behaviour without additional time series data.  

While he is unable to determine if this station is an anomaly or following a separate 

pattern, he suggests differences may be due to changes in surrounding surface roughness. 
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A further study examining wind behaviour over the contiguous United States 

shows that wind speeds determined from direct observations, re-analysis1 data from 

several organizations, and Regional Climate Models (RCMs) exhibit very different trends 

[Pryor et al., 2009].  Observational data sets exhibit consistent negative temporal trends, 

for the 50th and 90th quantiles and annual mean wind speeds, across the entire U.S.  

Another study of continental U.S. wind speeds supports a declining max/min trend found 

in observation data [Klink, 1999].  Pryor et al. [2009] point out though, that time series of 

in-situ wind speed measurements are typically highly fractured and exhibit large 

heterogeneities, which makes analysis difficult.  Other data sources (such as, NARR, 

ERA-40, & RSM) demonstrate a converse trend and do not agree with the observational 

data sets.  These discrepancies imply that wind speed analysis should use several data 

sets and methods and that some of the assumptions currently applied to re-analysis data 

products and RCMs may need to be re-evaluated in future modelling efforts.  Further 

research should pursue the inter-annual variability in wind speeds and reconcile the 

discrepancies between in-situ measurements, re-analysis products, and forecast models 

[Pryor et al., 2009]. 

Enloe et al. [2004] compare peak wind gusts over the contiguous United States 

and phases of the El Niño-Southern Oscillation (ENSO) using a non-parametric 

Kolmogorov-Smirnov (K-S) test.  They classify years as ENSO warm, neutral, or cold-

phase and generate monthly peak wind gust distributions for all monitoring stations 

across each phase.  A K-S test compares monthly distributions for extreme ENSO phases 

                                                 
 
1 Various techniques exist to generate multiple climate variables (re-analysis data) from observed data, 

which are interpolated onto regular geographical grid formats.  A forecasting model is initialized and 
continually tuned with observed data to produce simulated output of unobserved climate variables. 
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(warm and cold) with the neutral phase to determine if changes in peak wind gust 

distributions are significant.  The researchers find a dominant ENSO cold phase signal.  

During the winter months from November to March in cold phase years, the Pacific 

Northwest, Southwest, Great Plains, and the region extending from the Great Lakes 

through the Ohio River valley experience an overall increase in the gustiness of winds, as 

compared to neutral phase years.  The Pacific Northwest experiences decreased gustiness 

during winter months in warm phase years.  Fewer stations exhibit significant changes 

during warm phase years than in the cold phase and the changes are smaller in 

magnitude.  Forecasts of climate variability patterns, like ENSO and PDO, have some 

reliability on multi-year time scales [National Research Council, 2006; Mantua and Hare, 

2002][National Research Council, 2006; Mantua and Hare, 2002], and Enloe et al. 

[2004]note that further improvements in forecasting ability of climate indices can only 

improve predictions using this type of method. 

Finally, a study of the northeast Pacific Ocean demonstrated that wind speeds 

recorded from most of 25 ocean buoys experience an apparent increasing trend [Gower, 

2002].  However, some buoys also indicate negative trends.  Of the buoys with longer 

than 20-year records, three show positive and three indicate negative trends, though the 

positive trends are larger and more are statistically significant. 

These studies illustrate the difficulty in obtaining consistent results for wind speed 

trends and variability in the Pacific Northwest (Table 1).  For example, Pryor et al. [2009] 

suggest a declining trend for observed wind speeds, while Gower [2002] indicates both 

increasing and decreasing wind speeds measured at ocean buoys.  Due to the diverse 
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study locations, climate indicators, and markedly different methods used it is difficult to 

compare the results and generalize.
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Table 1: Summary of Wind Behaviour Studies with Spatial Coverage of the Pacific Northwest 

Study Location Number of Sites Time Period Resolution Result 

Abeysirigunawardena 
et al., 2009 Delta, B.C. 3 Monitoring stations 1953-2006 Hourly wind speed 

Significantly different extreme wind responses 
to warm and cold ENSO modes; higher winds 

occur during cold (i.e., La Niña) phases 

Enloe et al., 2004 Continental 
USA 

169 Monitoring 
stations 1948-1998 Daily peak gust 

Overall increase wind gustiness during winter 
months (in cold phase years; for some areas) 
A lesser signal is associated with decreased 

gustiness for PNW in warm phase ENSO years 
during winter months 

Gower, 2002 
Northeast 

Pacific 
Ocean 

26 Ocean buoys 1972-1999 Monthly mean wind 
speed 

Wind speed trends from most buoys show an 
apparent increasing trend; however, some 

buoys also indicate negative trends 

Klink, 1999 Continental 
USA 

187 Monitoring 
stations 1961-1990 Mean monthly 

max/min wind speed 

General decreasing (increasing) pattern for 
minimum (maximum) wind speeds averaged 
across U.S.  PNW shows decreases for both 

max/min. 

Pryor et al., 2009 Continental 
USA 

336 & 193 Monitoring 
stations (2 data sets) 

4 Re-analysis products 
2 RCMs 

1948-2006 
(shorter record 

lengths are 
included within 
this time period) 

Daily wind Speed 
(0000 UTC & 1200 

UTC only) 

Observational data sets, MM5, & NCEP-2 
indicate declining wind speed trends 

NARR, ERA-40, & RSM indicate increasing 
(lesser magnitude), or absent, trends 

Tuller, 2004 Southern 
B.C. 4 Monitoring stations 1947-1995 

Hourly Wind Speed 
(annual and seasonal 

means) 

Decreasing mean annual and winter wind speed 
trends (three of four stations) 
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1.2.4 General Circulation Models and Transfer Functions as a Means of 
Forecasting Wind Speeds 

While most recent research on forecasting wind speeds addresses empirically 

based techniques (i.e., using observed or re-analysis data), a growing alternative field is 

dynamic or process-based techniques.  These methods use General Circulation Models 

(GCMs) to generate forecasts of climate variables (temperature, precipitation, pressure).  

GCMs by themselves are often inadequate for local forecasting because of large grid cells 

(usually ~300 km per side) with subsequently poor resolution of predicted variables 

[Environment Canada, 2007a].  Downscaling methods, which can include dynamic, 

statistical, and stochastic approaches, provide a solution. 

Regional Climate Models (RCMs) are the process-based means to provide 

increased resolution for dynamic GCM models.  A particular region of interest is covered 

by both the high-resolution RCM and lower-resolution GCM.  Downscaling uses the 

output from a few large grid cells of the global model as driving conditions for the many 

smaller cells of the regional model.  RCMs trade off increased resolution of the local 

atmospheric processes at the expense of additional computational time and large 

increases in data needs.  These models are evolving quickly, but are still unwieldy for 

routine forecasting [Environment Canada, 2010]. 

While process-based techniques, with their ability to include changing future 

conditions, are likely to be central downscaling methods in future, empirical techniques 

are available now.  Empirical techniques use statistical methods to generate relationships 

between local- or regional-scale climate variables and larger-scale atmospheric forcing 

mechanisms.  The relationships, often termed transfer functions, can translate large-scale 
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GCM output into locally meaningful information.  Transfer functions offer a quickly 

available and less computation-intensive method than RCMs for scientists to downscale 

GCM data [Hewitson and Crane, 1996].  One caveat, though, is empirical downscaling 

bases results only on observational data.  Past relationships are therefore assumed to hold 

into the future [Environment Canada, 2007a].  This assumption may not remain valid if 

atmospheric processes change due to natural or anthropogenic forcing.  Despite that, 

GCMs themselves do not simulate surface winds very well and RCMs may not be 

available for all regions.  Managers need to plan in some way for future wind conditions 

to help preserve built-infrastructure, and development of transfer functions offers a 

legitimate comprise for current planning needs.   

This study investigates the relationship between climate-related, Pacific Ocean 

indices and wind speeds, and begins to define a potential method for statistical 

downscaling in the PNW.  While I do not apply the relationships determined in this 

research as a transfer function for downscaling, future studies could attempt to do so. 
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2: METHODS 

In this study of regional wind patterns, I collected available historical 

meteorological data from Environment Canada and the U.S. National Climatic Data 

Center (Dr. Gerhard Boenisch, Max Planck Institute for Biogeochemistry provided data 

from NCDC's Integrated Surface Hourly Database).  Because of different data standards 

and conventions for each of these organizations, extensive data processing was necessary 

to convert information to a common and useable format.  I used the statistical software 

package “R” to manipulate and analyse data throughout the analyses [R Development 

Core Team, 2009]. 

The study area encompasses the Pacific Northwest of North America (45-52° N, 

129-122° W).  Initially, no controls were placed on which stations were included in the 

analyses (unless clear discrepancies were detected through visual inspection of station 

measurements) and all available data were incorporated for the years 1950 to 1999.  

Many monitoring stations did not have detailed secondary data, such as specific location 

relative to other structures, local topographic features, or height above ground.  Including 

many stations in the study helped compensate for any anomalous records, which I could 

not adjust without secondary data.  To reduce sampling bias, at each monitoring station a 

day, month, or year was only included in the study if it met the following completeness 

criteria: 

1. Day – at least 90% of 3-hourly measurement frequency (i.e., 7.2 measurements 

per day); 
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2. Month – at least 90% of days in month (e.g., January – 27.9 measurements); and 

3. Year – at least 3 years with valid months and days. 

 

Using these criteria, I reduced the initial 186 stations down to 146 locations 

considered valid for the study.  Additional standardizing was necessary due to varying 

monitoring frequencies (e.g., 1-hourly vs. 3-hourly) over time, within and across stations.  

Consequently, for each day of valid data, I retained only the maximum daily wind speed. 

Data deseasonalizing required a minimum number of data points in each time 

series when generating monthly averages for missing values (see Section 2.2 below).  

This further reduced the study sample to 114 valid stations (Figure 3).  Collectively, the 

criteria listed above reduced the number of data points to a manageable level for available 

computer processing capabilities2, while still including a large number of monitoring 

stations across time and space. 

                                                 
 
2 Even with the reduced number of stations, the long length of many of the data records meant LME models 

took hours to process.  To evaluate complicated fixed and random structures in the LME model required 
lower resolution response data (i.e., max daily wind speeds rather than hourly measurements). 
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Figure 3: Study Area and Sample Location Selection Process 

Applying completeness and validation criteria to data records reduced an initial 186 
monitoring station sample (red, orange, blue) to 146 locations (red, orange) considered 
valid for the study.  Further sample reduction occurred to ensure a sufficient minimum 
number of data points in each time series for deseasonalizing data records.  This left a 
final sample of 114 wind speed monitoring locations (red). 

2.1 Quantiles 

Focusing solely on mean values may underestimate, overestimate, or fail to 

distinguish real nonzero changes in response-explanatory relationships [Cade and Noon, 

2003].  This is especially true for distributions, such as those typical of wind speeds, 

which display strong skew or exhibit unequal variance across the magnitudes of 

observations (Figure 4).  Frequently, measures other than the mean (or 
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maximum/minimum), such as skewness, boxplots, or histograms are used to gain further 

insight into non-normal distributions.  Summary quantiles (equivalent to percentiles in 

this study) can succinctly state these types of information and provide a much more 

robust statistical starting point than a single value such as the mean [Koenker, 2005]. 

 
Figure 4: Typical PNW Wind Speeds and Idealized Normal Distribution 

Wind speed distribution (bars) generated from 50 years of observation data for 
Portland International Airport (726980) and is representative of wind speeds in the 
PNW.  The idealized normal distribution (line) has the same mean and variance as the 
original data.  However, because the wind speed data is strongly skewed, the true 
median (50th quantile = 6.2 m/s) does not line up with the idealized median (peak of the 
idealized normal = 6.7 m/s). 

Strong skew (non-normal distribution) or heterogeneous variance can create 

problems for many statistical methods, which assume that input data have normally 
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distributed observations with homogeneous variance.  Regression models are particularly 

problematic to fit for processes with heterogeneous variance, such as wind speeds, as the 

response-explanatory relationship may change across the range of observed values.  To 

investigate processes more fully, several quantiles may provide a better alternative to a 

single mean for regression of responses. 

Koenker [2005] and Cade and Noon [2003] discuss quantile regression to 

determine relationships between explanatory and response variables when data are non-

normally distributed.  Quantile regression is a relatively recent development in statistical 

applications and as such, methods other than linear regression are still emerging or may 

not yet be developed (e.g., linear mixed-effects models).  However, the notion of 

exploring various parts of a probability distribution separately is still extremely valuable 

and I have accordingly used several quantiles throughout this study.  To explore the 

responses of average and extreme wind speeds, I calculated the 50th, 75th, and 95th 

monthly quantile values from the maximum daily wind speeds (Table 2).  
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Table 2: Typical Wind Speeds Observed in the PNW with Beaufort Wind Scale 

The range of wind speed values typically observed in the Pacific Northwest (values from data used in this study) is shown with 
corresponding categories of the Beaufort Wind Scale (often used by government agencies with jurisdiction in coastal areas for 
characterizing wind speeds).  Adapted from [Environment Canada, 2007b]. 

Wind Speeds Typically 
Observed in PNW Beaufort Wind Scale 

Quantiles Limits of Wind Speed 
50th 75th 95th 

Value 
Knots m/s km/h 

Description Effects Observed on Land 

0 <1 0-0.2 <1 Calm Smoke rises vertically 

   
1 1-3 0.3-1.5 1-5 Light Air Smoke drift 

   
2 4-6 1.6-3.3 6-11 Light Breeze Leaves rustle 

   
3 7-10 3.4-5.4 12-19 Gentle Breeze Leaves and small twigs move constantly 

   
4 11-16 5.5-7.9 20-28 Moderate Breeze Small branches move 

   
5 17-21 8.0-10.7 29-38 Fresh Breeze Small trees in leaf sway 

   
6 22-27 10.8-13.8 39-49 Strong Breeze Large branches move 

   
7 28-33 13.9-17.1 50-61 Near Gale Whole trees move 

   
8 34-40 17.2-20.7 62-74 Gale Twigs broken off trees 

   
9 41-47 20.8-24.4 75-88 Strong Gale Slight structural damage (e.g., roof shingles) 

   
10 48-55 24.5-28.4 89-102 Storm Trees uprooted; Considerable structural damage 

   
11 56-63 28.5-32.6 103-117 Violent Storm Widespread damage 

   
12 64+ 32.7+ 118+ Hurricane Rare 
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These quantiles cover the portions of wind speed distributions most meaningful 

for resource managers.  The 50th quantile (median values) represents typical wind speeds 

(i.e., close to average values) and can be expected to occur relatively frequently.  

Stronger wind speeds, represented by the 75th and 95th quantiles, will be less frequent but 

may have much more important impacts for managers (e.g., cause damage to 

infrastructure or ecosystem features).  Using various parts of the wind speed distribution 

for analysis may allow the observation of trends for extreme values that are not apparent 

for the mean. 

2.2 Deseasonalizing 

For this study, I removed the seasonal component from the monitoring station 

time series to investigate changes in the variability and trends of wind speeds.  Seasonal 

data may induce spurious correlations across stations due to regional seasonality rather 

than climate patterns.  I used the R function stl, Seasonal Decomposition of Time Series 

by Loess, to deseasonalize quantile data [R Development Core Team, 2009].  This 

algorithm iteratively used loess (locally weighted scatterplot smoothing) to identify the 

seasonal pattern, long-term trend, and residuals of a time series (Figure 5), but needed a 

complete time series with no missing values.  Consequently, monthly averages filled any 

missing quantile values (e.g., the average across all March values for a monitoring station 

time series filled any missing March values for the respective station).  To ensure data 

points were present in each month for generating averages, a station record could not 

contain more than 90% missing values over the study period (1950 to 1999).  Following 

deseasonalizing, the added-in monthly average values were removed, leaving the missing 

values as they were in the original time series.  Most analyses, except hierarchical 
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clustering, used the time series data with the seasonal component removed (i.e., only 

trend plus residuals).  Hierarchical clustering could not correctly compare sample data if 

values were missing. 

This data-augmentation method imparted as little extraneous information as 

possible to the non-seasonal components of the data while still accomplishing the 

deseasonalizing, though I could not test the extent to which the added monthly average 

values altered the outcome of the deseasonalizing algorithm.  However, because the 

sections of the time series that were filled-in show information mostly in the seasonal 

component and very little in the trend or residual components (e.g., months between 

January, 1965 and December, 1972 in Figure 5), I feel confident that the algorithm is 

interpreting the additional data as seasonal-only information. 
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Figure 5: Wind Speed Data with Deseasonalized Components 

Typical wind speed observations (shown: Portland International Airport – 726980), 
including (a) original data and (b) filled-in monthly average values, for January 1965 to 
December 1972 (shaded area).  The stl algorithm decomposed data into (c) seasonal 
component, (d) trend, and (e) residuals (unexplained information).  Flat sections in 
trend and residual components are a result of the added-in monthly average values 
reflecting predominantly seasonality.  Further analyses used the trend plus residual 
components. 
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Allowing the seasonal component of the stl algorithm to vary over time accounted 

for yearly changes in seasonal wind speed patterns.  If I did not include this liberty and 

constrained the seasonal pattern to be the same across all years (an unrealistic 

assumption), some variability may have been inappropriately shifted to the long-term 

trend and residual components.  In some stations, the maximum seasonal amplitude (for a 

given month) in Figure 5 can be more than twice as large as the minimum seasonal 

amplitude (of the same month). 

2.3 Hierarchical Clustering 

Hierarchical clustering looks for commonalities among time series and groups 

them according to the shared features.  Features common to many time series create the 

upper branches of the dendrogram (tree diagram, Figure 6), whereas features specific to 

only a few series create the lower branches [R Development Core Team, 2009].  But, 

while hierarchical clustering is a useful exploratory tool for identifying stations with co-

varying patterns, it does not provide explanations for any of the identified groupings.  

Researchers must determine physical process explanations of commonalities.   

I used the R function hclust to perform the hierarchical clustering of the 114 

stations with sufficient valid data.  Because this analysis does not allow missing values, I 

used the deseasonalized time series with missing values filled by monthly averages. 
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Figure 6: Typical Dendrogram (Tree) Diagram 

 

2.4 Linear Mixed-Effects Models 

Correctly representing physical processes with statistical models is a complicated 

and time-consuming process.  Available data and the research questions asked should 

dictate model selection, not a favoured or common modelling procedure.  Investigations 

should always use the simplest statistical technique that adequately represents the data.  

Unfortunately, standard linear regression often fails to be appropriate for physical 

processes because they violate many of the underlying assumptions, such as normality, 

homogeneity, and independence, and therefore more complicated methods should be used 

[Zuur et al., 2007; Zuur et al., 2009]. 

This study looks at multiple monitoring stations across a large region, with each 

station repeatedly measuring the local wind speed.  Phenomena such as the PDO may 
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have an overall effect (population level) on wind speed, but the relationship between 

these phenomena (e.g., PDO) and wind speed may differ at individual stations.  Linear 

mixed-effects (LME) models are ideally suited to investigate this type of repeated-

measures data due to their use of both fixed (population) and random (individual) effects 

[Pinheiro and Bates, 2000].  In addition to this, LMEs can accommodate heterogeneous 

variance such as that observed in the frequency distribution of wind speeds, and they can 

deal with correlated residuals, as in time series data, where a measurement in one period 

is related to the value in a previous period.  Finally, mixed-effects models can incorporate 

multiple levels of data grouping, which may exist when sampling locations are 

“clumped”; meaning locations within a group are more related to each other than to 

locations in other groups.  Linear regression cannot offer these types of flexibility [Zuur 

et al., 2009; Pinheiro and Bates, 2000].  

2.4.1 Model Assumptions 

Wind speed data violates the assumptions of standard linear regression, namely 

normality, homogeneity, and independence of regression residuals.  These violations do 

not occur with LMEs because the assumption of normality and homogeneity apply to the 

residuals within groups and the assumption of independence applies to the residuals 

between groups.  Each of these conditions in relation to the wind speed data available for 

the Pacific Northwest is discussed below. 

LMEs assume normality of residuals after model fitting, for any given individual 

or within a group.  Zuur et al. [2009] suggest looking for normality of the pooled 

residuals after model fitting.  Though not a rigorous check, it does provide some 

reassurance.  For this study, residuals represent the information that is unexplained by the 



 

 31

influence of the explanatory variables.  I checked pooled values with a Quantile-Quantile 

plot and performed a visual inspection (Appendix C).  For example, in a typical QQ-Plot 

for wind speeds, the reader can see violation of normality by the deviation of residuals 

from the reference line (Figure 7), due to the strongly skewed distribution of wind speed 

values (Figure 4).  Some authors argue that violation of normality is not a serious 

problem with large enough sample sizes [Zuur et al., 2009]. 

 
Figure 7: Quantile-Quantile Plot for Wind Speeds 

Typical residuals for wind speeds show violation of normality by strongly non-linear 
pattern (i.e., deviation from x = y line). 

Violation of the homogeneous variance assumption (often referred to as variance 

heterogeneity or heteroscedasticy) occurs when the variance is not the same at each fitted 

(wind speed) value.  I assessed the validity of the homogeneous variance assumption 

using a visual check of the residuals plotted against fitted values (Figure 7).   
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Figure 8: Standardized Residuals Plot for Wind Speeds 

Typical residuals pattern shows violation of homogeneous variance assumption 
(changing spread of residuals as fitted values increase). 

An increasing (or decreasing) spread of residuals as the fitted values (wind 

speeds) increase demonstrates a violation of the homogeneity assumption.  Zuur et al. 

[2009] note that a visual inspection method is often more appropriate than a statistical test 

because of the test’s assumption of normality (which may or may not hold).  When 

variance appeared to be heterogeneous, I explored a range of structures that allow 

variance to change with fitted value (e.g., the variance at each wind speed is equal to that 

particular wind speed raised to a common power). 

Independence of model residuals is an important assumption for the LMEs.  This 

assumption is violated when the residual of Yi,t (in this case, wind speed at time, t) is 

correlated with the residual of Yi,t-1 (that is, wind speed at some prior time, t-1).  Some 
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physical processes or data types (e.g., time series) inherently contravene the 

independence assumption.  Auto-correlation of wind speed residuals can exist due to 

seasonality (removed in this case) or other driving variables (e.g., PNA or long-term 

trends).  If the auto-correlation function indicates the independence assumption is invalid 

(Figure 9), tests such as the F-test and t-test cannot be used to determine the significance 

of the independent variables [Zuur et al., 2009].  LMEs can incorporate temporal 

correlation structures so that the significance of independent variables can be properly 

assessed despite the presence of correlated residuals (Figures 9 & 10).  The y-axes of the 

figures show auto-correlation as a function of lag in the residuals.  A greater Auto-

Correlation Function (ACF) value indicates greater correlation between residuals at 

different lags. 
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Figure 9: High Auto-Correlation of Residuals 

A typical auto-correlation function for wind speeds, calculated for the normalized 
residuals before incorporating a correlation structure.  Spikes at early time lags (1 to 3 
months) indicate that residuals for a particular month relate to measurements in 
previous periods (the height of the spike shows the degree of correlation).  Auto-
correlation variables of less than ~0.2 are generally considered uncorrelated.   
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Figure 10: Low Auto-Correlation of Residuals 

A typical auto-correlation function for wind speeds, calculated for the normalized 
residuals after incorporating an AR(1) structure.  Including an auto-regressive 
structure into the LME model reduces unexplained correlation between residuals to 
acceptable levels. 

2.4.2 Model Structure 

A linear mixed-effects model contains two components for explanatory variables: 

fixed and random variables.  Equation 1 shows the notation for a general version of the 

LME model.  Each of the variables included in the LME equation represents a matrix of 

values. 
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  Equation 1 

Where: 

Yt,i = observations of response variable (wind speeds) 

Xt,i = fixed term explanatory variables 

βt = fixed term coefficients 

Zt,i = random term explanatory variables 

bt,i = random term coefficients 

εt,i = errors 

 

The fixed term components ( ) provided the population level effects, such 

as the regional influence of PDO or Elevation.  Random term components ( ) gave 

the individual effects, like the unique station-specific responses to PNA.  In this model, 

each individual (monitoring station) was allowed to have a different relationship with the 

explanatory variable (included in ) and coefficients for these variables were included in 

 (the subscripts denote that each individual “i” had a separate relationship).  The 

explanatory variables included in the fixed term  describe the overall pattern across 

individuals (note the lack of subscript for the fixed effects coefficients matrix ).  The 

coefficients  and errors  were assumed normally distributed and independent 

(excepting the caveats listed above in Section 2.4.1). 

I assumed the monitoring stations sampled were representative of the entire 

population of potential monitoring stations within the study region.  Treating some 

explanatory effects as fixed implied that those relationships (between response and fixed 
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explanatory variables) hold for all individuals, not just those sampled.  In other words, I 

am observing the weather at several monitoring locations (where observations may be 

similar, but unique) and then extrapolating to a common regional weather description.  

Including both population and individual effects allows great flexibility in LME models.  

This method recognizes that individual stations may differ, but still contribute 

information to finding regional or population level relationships.  Explanatory variables 

(such as, Year, Elevation, PDO, or PNA) may appear as both fixed and random terms in 

the LME model (i.e., while the overarching population relationship affects all individuals, 

they each exhibit unique responses as well) allowing further flexibility when modelling.  

For example, all monitoring locations at the same elevation should respond similarly to 

pressure patterns.  However, despite being at the same elevation, due to unique 

topographic features each station will have somewhat different responses to the regional 

pressure patterns.  Including fixed and random effects in the LME model derives a more 

valid relationship between the explanatory variables and regional physical processes than 

if all observations were treated as fixed (as in linear regression).  Forecasting generally 

uses the regional relationship, rather than each individual relationship.  Therefore, the 

fixed term should include as many relevant variables as can be accommodated by 

computing capacity, as this relationship is most pertinent to understanding regional wind 

speed dynamics.  LME models can also include interactions between explanatory 

variables to represent modifying behaviour of one variable on another.  For example, the 

effect of PDO may change with elevation and affect low and high elevation sites 

differently. 
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In this study, I fit LME models using various quantiles of the wind speed 

distributions for the study area.  The response variables included the 50th, 75th, and 95th 

monthly quantile wind speeds for each station to represent the prevailing conditions and 

extreme wind speeds.  For resource managers, the 50th quantile wind speeds are most 

likely to characterize wind speeds encountered on average, or “normal” conditions.  The 

75th and 95th quantile wind speeds are those most likely to cause damage. 

Many variables, ranging from elevation to climate behaviour, are likely to 

influence wind speeds in the PNW (Table 3).  I used the variables listed as potential 

explanatory variables (included in the LME model) to determine relationships between 

these variables and observed wind speeds.  This list of influencing variables was not 

exhaustive, in part due to data constraints.  For instance, SSTs in the north Pacific Ocean 

may influence PNW wind speeds, but were not included in the study because I could not 

obtain SST observation data for relevant locations. 

Proposed fixed effect variables included PDO, PNA, Global-SST ENSO, NOI, 

AO, Year, Elevation, Coast/Mainland, and Data Source.  Coefficients for the 

Coast/Mainland and Data Source variables were relative to a reference state (Mainland 

sites and NOAA data, respectively).  I allowed interactions between all variables except 

Data Source.  The LME models included Data Source to determine if a bias was present 

between the Environment Canada and NOAA data, not to test its effects with other 

variables.  Interactions between Data Source and other variables were therefore not 

appropriate.  I imposed a limit of two-way interactions on fixed effect variables to help 

with interpretation.  Interactions between more than two variables (i.e., three-way or 
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greater) could be difficult to understand, especially if those variables were involved in 

other sets of interactions.   

Potential random effects included Year, Elevation, Coast/Mainland, and Data 

Source.  Random effects did not include Pacific Ocean climate indices because of 

computing limitations.  For each random effect that I included, the LME model had to fit 

an additional 114 variables (i.e., number of monitoring stations), which could quickly 

make the time needed to fit each model iteration overly cumbersome. 

I placed little restriction on the atmospheric indices included in the LME model 

other than the requirement that an index was theorized to explain some climate variability 

in the Pacific Ocean (see Section 1.2.2).  I selected these particular indices in an attempt 

to cover the observed teleconnections (causal link between weather patterns in different 

locations) between climate drivers (i.e., sea surface temperatures and sea level pressure) 

and atmospheric response (wind speed). 

While, some of the indices listed correlated with each other (up to a coefficient of 

0.6), none of them did so exceptionally.  Accordingly, all indices were initially included 

in the fixed effect term of the LME model to elicit the explanatory power of even the 

small, uncorrelated portions. 
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Table 3: Explanatory Variables Included in Wind Speed LME Model 

Variable Data 
Source Definition 

Pacific Decadal 
Oscillation (PDO) JISAO Long-lived cyclical pattern of Pacific climate variability based 

on sea surface temperatures (SST) [JISAO, 2008] 

Arctic Oscillation (AO) NCEP 
Dominant pattern of non-seasonal sea-level pressure (SLP) 

variations north of 20N, with anomalies of opposite sign to that 
in the Arctic centred about 37-45N [NCEP, 2006] 

Pacific/North American 
Pattern (PNA) NCEP One of the most prominent modes of low-frequency variability 

in the northern hemisphere extratropics [NCEP, 2006] 

Global-SST El Niño-
Southern Oscillation 

(ENSO) 
JISAO 

Low frequency portion of ENSO phenomenon measured as the 
average SST anomaly equatorward of 20N & S, minus the 

average SST poleward of 20N & S [JISAO, 2008] 

Northern Oscillation 
Index (NOI) PFEL 

Based on SLP differences between the pressure high in the 
northeast Pacific Ocean and the pressure low near Darwin, 

Australia.  Provides an indication of how global-scale climate 
events affect the north Pacific Ocean [PFEL] 

Year N/a Each year of data is modelled separately to allow long-term 
trends to be identified 

Coast/Mainland (CM) N/a Highest level of grouping from the hierarchical clustering; 
potential differences in coastal versus inland behaviour 

Elevation EnvCan & 
NOAA 

Potential differences in valley/coastal versus higher elevation 
sites 

Data Source EnvCan & 
NOAA 

Environment Canada/National Oceanic and Atmospheric 
Administration; detect systematic bias in data source 

 

I considered fitted values raised to a power or exponentiated as variance structures 

for the LME model.  When evaluating if changing variance allowed a better model fit, I 

also considered grouping fitted values by Coast/Mainland and Data Source.  For example, 

if the variance was equal to the fitted values raised to a power term and grouped by 
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Coast/Mainland, a separate power coefficient was calculated for each of the Coast and 

Mainland groups. 

Finally, an auto-regressive order one (AR(1)) correlation structure was 

considered.  This structure assumed that a wind speed residual in a given month related to 

the residual of the previous month.  The LME model determined one coefficient value 

(between zero and one) to best fit the AR(1) process for the total wind speed data. 

2.4.3 Fitting Procedure 

Various authors suggest different methods for fitting LME models, mostly 

relating to the order for adjusting fixed and random effects [Zuur et al., 2007; Pinheiro 

and Bates, 2000; Venables and Ripley, 2002][Zuur et al., 2007; Pinheiro and Bates, 2000; 

Venables and Ripley, 2002].  I have chosen to generally follow the procedure outlined in 

Zuur et al. [2009] and use the R function lme, from the nlme library [Pinheiro et al., 

2009], to fit linear mixed-effects models.  The steps involved in this method for fitting a 

LME model are as follows: 

1. Find the optimal Random Structure 

The initial step to fit a LME model involved determining the random 

(individual) variables , within-group variation, and correlation structure.  

Each of these components relates to the basic model assumptions (Section 

2.4.1).   

a. Use Restricted Maximum Likelihood (REML) when fitting the initial LME 

models 

Mixed-effects models were fit using maximum likelihood (ML), rather 
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than ordinary least squares (OLS).  However, ML gives biased variance 

estimates compared with OLS.  To correct for this bias, standard model 

fitting procedure uses REML.  I followed this method when comparing the 

random structure of competing models and fitting the final full model. 

b. Include all proposed fixed variables 

To allocate as much explanatory power as possible to the fixed 

(population) component  and not to the random (individual) 

component ( , all potential variables and interactions were included as 

fixed effects at this stage.  The “beyond optimal” model contained more 

fixed variables than would likely be in the final model [Zuur et al., 2009]. 

c. Test alternative random variables 

In order to select which random variables (e.g., Year or Elevation) best 

explained the observed wind speeds, given the presence of all of the fixed-

effect variables, each model fit was compared using the Akaike 

Information Criterion (AIC) and p-value of the likelihood ratio test.  I used 

AIC because of its wide application in modelling, its ability to measure 

goodness of fit and model complexity, its use in comparing non-nested 

models, and R’s automatic tools for evaluating it for large models.  AIC 

rewards competing models (lower AIC value) for higher likelihood values, 

but penalizes them (higher AIC value) for including additional parameters.  

It is a measure of the relative fit between competing models – the absolute 

AIC value in itself is meaningless.  This method recognizes that additional 

model parameters will always increase the goodness of fit, but discourages 
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over-fitting and tries to find the optimal and most parsimonious model 

structure.  However, AIC is conservative when evaluating competing 

models so the likelihood ratio test p-value was also used when comparing 

models.  I compared alternative random variables using homogeneous 

within-group variation and no within-group correlation, as is standard 

modelling practice [Pinheiro and Bates, 2000]. 

d. Determine the optimal variance structure  

If heterogeneity (i.e., changing variance of residuals by fitted values) was 

present, then I compared alternative error structures using AIC and p-

values as was done when testing various random variables (1c).  Examples 

of variance structures available in R include fixed variance, changing with 

the power or exponential of a covariate (random or fixed variable, fitted 

value), or changing variance patterns by group. 

e. Assess the correlation structure 

Potential correlation structures were considered in the same manner as 

alternative descriptions of variance (1d).  To assess the presence of auto-

correlation, the R function acf plotted the correlation of model residuals at 

various time lags.  I only considered an auto-regressive order one (AR1) 

correlation structure due to computing limitations. 

Once the individual variables and variance and correlation structures were 

determined, the next step was to find the optimal fixed structure relating the population 

level variables (e.g., Elevation, PDO, or PNA) and wind speeds.
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2. Find the optimal Fixed Structure 

a. Use Maximum Likelihood (ML) as fitting method 

REML is inappropriate for comparing models with nested fixed structures 

(i.e., the fixed variables of the nested model were a subset of the fixed 

variables of the competing model) because of its treatment of regression 

coefficients when correcting for bias in variance estimates.  Standard 

model fitting practice uses ML for comparing the fixed effects of 

alternative models [Pinheiro and Bates, 2000]. 

b. Use the same random structure for all competing fixed structure models 

Each of the alternative models compared had to use the random structure 

established in Step 1 to ensure that only the effect of changes to the fixed 

structure was evaluated. 

c. Fit fixed variables 

The fixed variables of potential models were nested so that the AIC and 

likelihood ratio test could compare marginal differences.  Model building 

was conducted both forward and backward.  Forward model building 

begins with only an intercept and iteratively adds variables to the fixed 

structure (recommended by Pinheiro and Bates [2000]).  Backward model 

building starts with the largest fixed structure considered (i.e., that used in 

Step 1) and iteratively removes variables (recommended by Zuur et al. 

[2009]).  Forward and backward building do not always arrive at the same 

final model structure, especially for complicated fixed structures.  I used 
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both methods in this study to compare final structures and determine the 

set of optimal fixed variables.  The final model (forward or backward) 

with the lowest AIC value was selected as the optimal model.  In each 

case, this criterion chose the backward model. 

3. Fit the final LME model 

A final model was fit to check that violation of the underlying model 

assumptions (i.e., homogeneity and independence) had not occurred.  The 

model was fit using Restricted Maximum Likelihood (REML) to estimate 

unbiased variance terms.  Visual inspection of the diagnostic plots (see 

Section 2.4.1) ensured agreement with the assumptions. 

Sensitivity analyses assessed the robustness of the LME model to changes in 

structure and parameter values. 

2.4.4 Forecasting 

Users should always test the forecasting accuracy of a final LME model.  The 

proper way to test a model’s forecasting ability is to apply it to a new set of data that was 

not used to generate that model.  The validating wind speed and explanatory variable 

dataset for this study included measurements from 2000 to 2008.  Correlations between 

the forecast and observed values indicated the forecasting ability.  For example, if the 

95th quantile wind speeds were highly correlated with model forecasts, then my model 

would likely provide accurate predictions, at least in the short to medium-term (one to 

several years).  The farther into the future the model forecasts, the lower the probability 

that established wind speed-explanatory relationships will continue to be valid [National 
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Research Council, 2006].  In future, the LME model can be re-fit with increasing 

numbers of observations to refine response-explanatory relationships and increase 

forecasting ability. 

2.5 Adaptation Actions 

Forecasts of wind speeds for the Pacific Northwest should help decision makers 

and resource managers plan more effectively for future conditions.  When considering 

future wind conditions, many managers may be aware that they should take some kind of 

action to prevent negative outcomes, but they may not have a clear idea of what type of 

action to initiate or even of the range of actions possible.  Forecasts for decision makers 

may be much more informative if accompanied by potential actions to help adapt to the 

predicted conditions. 

I chose three interview respondents from the disaster response, large electric 

utility, and environmental management fields.  These fields are often more prone to wind 

damage than other sectors and may be at increasing risk in the future from changing wind 

hazards.  The goal of these informal interviews was to elicit a range of potential actions 

to adapt to changing wind conditions in the future.  A series of questions (included in 

Appendix D) guided the conversations with decision makers and academics about the 

types of information needed for forecasts, lead-times, and representativeness for a given 

area.  In this study, I aggregated responses to interview questions and did not include any 

attribution of answers or quotes. 
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3: RESULTS 

In this chapter, I present the major results of my Pacific Northwest wind speed 

study.  I begin by looking at the patterns observed during data exploration (hierarchical 

clustering and data visualization).  Next, I detail the final statistical models that I 

generated to relate the 50th, 75th, and 95th quantile wind speeds to various explanatory 

variables and the subsequent forecasts.  Finally, I consider potential adaptation actions 

suggested during the informal interviews with decision makers and academics. 

3.1 Exploration of Wind Speeds 

Early investigation steps in the wind speed study included variable analysis, 

hierarchical clustering, frequency plots, and data visualization.  Each of these methods 

helped explore the nature of wind speeds in the PNW.  Only hierarchical clustering and 

data visualization produced results that were significant and distinct. 

3.1.1 Hierarchical Clustering 

Grouping monitoring stations together by similarities in wind speed observations 

provides a way to look for previously unidentified associations.  Hierarchical clustering 

of the 95th quantile wind speeds produced the groupings shown in Figure 11.  The 

broadest level of grouping (i.e., furthest from the branch tips) separates the coast 

monitoring locations (lower cluster) from the mainland locations (upper cluster).  The 

physical interpretation of this grouping level was inferred by plotting the locations of the 

monitoring stations by groups (i.e., Coast and Mainland) and by elevation (Figure 12).  
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With few exceptions (e.g., Lytton and Holberg), the Coast monitoring sites are near to the 

ocean and at relatively low elevation, usually less than 30 m.  The coast/mainland groups 

are included in the LME model as potential fixed and random variables. 

Hierarchical clustering was also performed for the 50th and 75th quantile wind 

speeds.  The grouping observed for these quantiles is similar to that for the 95th quantile, 

but not as pronounced.  Generally, the analysis sorted monitoring stations into coast and 

mainland locations for the lower quantiles as well, but not at the broadest grouping level; 

for this reason I am unable to identify the physical meaning of the grouping levels for the 

50th and 75th quantile wind speeds.  However, because the coast/mainland grouping is 

generally present for the 50th and 75th quantiles, although not well defined, I use the 

station grouping from the 95th quantile wind speeds for the LME models of lower 

quantiles. 
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Figure 11: Hierarchical Clustering for the 95th Quantile Wind Speeds 

Mainland group contains 69 locations and Coast group has 60 locations.  Note that 
every station within the study area, from both the validation dataset and the fitting 
data, was included in the cluster analysis to characterize all locations in anticipation of 
forecasting (coast/mainland designation is required for the LME model).  

Mainland 

Coast 
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Figure 12: Coast and Mainland Monitoring Station Locations 

Monitoring locations are scaled (size of circle) with elevation.  With few exceptions (e.g., 
Lytton and Holberg), Coast monitoring sites are near to the ocean and at relatively low 
elevation, usually less than 30 m.  Mainland sites are generally further inland and many 
are at higher elevations. 

3.1.2 Data Trends 

Plotting the average 50th, 75th, and 95th quantile wind speeds across each of the 

Coast and Mainland groups further explored the PNW wind speed data.  Each of the 

quantiles show generally higher speeds and increased variability for coast relative to 
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mainland sites (Figure 13).  While mainland monitoring locations appear to have a 

downward wind speed trend (approximately -0.03 m/s/year for the 50th quantile to -0.04 

m/s/year for the 95th quantile) , it is unclear if the coast sites have an upward trend or are 

essentially stationary around a fixed mean.  Coast locations appear to follow a cyclic 

pattern with an approximate period of nine years (most apparent in the 95th quantile with 

up to a ~3 m/s difference between cycle peaks and troughs).  The periodogram (not 

included) of the 95th quantile coast time series supports an approximate nine-year cycle 

with a peak at ~9.3 years.  I evaluate potential time trends in PNW wind speeds using the 

Year fixed and random effect terms in the LME models. 
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Figure 13: Variability of Coast and Mainland Monitoring Stations (1950-1999) 

Time series represent wind speed quantiles averaged across all stations within the 
respective group.  Average (dashed lines) and one standard deviation (dotted lines) 
shown for each time series.  Mainland monitoring locations appear to have a downward 
trend, while coast locations follow a roughly cyclic pattern with a frequency of ~9 years. 

3.2 Linear Mixed-Effects Models 

LME models fit for each of the 50th, 75th, and 95th quantile wind speeds are not 

restricted to the same fixed and random effects or variance and correlation structures.  As 
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this study used a very large sample size (~23,000 data points), slight violations of the 

normality assumption were allowed without adjustment. 

Tables 4, 5, and 6 below, present the details of the final models.  All of the fixed 

and random variables included in each model are presented in the tables. 

3.2.1 50th Quantile 

The final LME model for the 50th quantile of PNW wind speeds includes all of the 

proposed fixed effects, along with most of the available fixed effect interaction terms 

(Table 4).  Notable among the interaction terms is that the effect of all fixed variables 

changes over time (i.e., Year is involved in interaction terms with all other fixed 

variables).  The effect of time on other variables is possibly due to the downward sloping 

trend in the Mainland group (Figure 13). 

Based on parameter coefficients, fixed effect terms with constant (i.e., 

Coast/Mainland) or slowly varying (i.e., Year) variables have larger effects on fitted wind 

speeds than monthly varying variables (e.g., PDO), and much larger than interaction 

terms.  Interpretation of coefficients depends on the scale of the associated variable.  

Each of the coefficients is multiplied by the value of the respective fixed effect term (e.g., 

the effect of Year in 1980 is equal to -0.00865 * 1980 = -17.127).  Similar contributions 

come from PDO, PNA, ENSO, AO, and NOI.  The best fitting random effects term 

groups each station by Coast/Mainland. 

For the case of PNW wind speeds, including a variance structure that changed by 

fitted (wind speed) value and a correlation structure was important because wind speeds 

have larger variance for higher values (heteroscedasticy) and were auto-correlated 
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through time.  Variance equal to the fitted (wind speed) values raised to a power term 

best fits the LME by allowing a separate variance power term for Coast and Mainland 

groups of 0.6186 and 0.4256, respectively.  The correlation structure takes the form of an 

auto-regressive order one function (AR(1)), with a phi value of 0.4330.  Including power 

variance and auto-regressive order one structures greatly improves the fit for the 50th 

quantile (and the 75th and 95th) wind speed LME models, as measured by the AIC model 

building criterion. 

This LME model appears to have a strong correlation between observed and fitted 

values with a squared correlation value of 0.71.  However, most of this correlation is 

based on slower wind speeds within the quantile, and not the extreme speeds I am most 

interested in (Figure 14).  Observed wind speeds are generally underestimated by the 

LME model, particularly above ~12 m/s. 
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Table 4: 50th Quantile Wind Speeds Linear Mixed-Effects Model 

Fixed Effects3 

Q50 ~  Year + Elevation + Coast/Mainland + Data Source +  
 PDO + PNA + NOI + ENSO + AO +  
 Year : (Elev + C/M + PDO + PNA + NOI + ENSO + AO) + 
 Elevation : (C/M + PDO + PNA + AO) +  
 C/M : (PNA + NOI + AO) +  
 PDO : (PNA + NOI + ENSO + AO) +  
 PNA : (NOI + AO)  +  ENSO : (NOI + AO) 

Fixed Effect Coefficients4 
 Value Std. Error   Value Std. Error 

(Intercept) 22.18497 2.808576  Year:AO -0.00329 0.000555 
Year -0.00865 0.001410  Elev:C/M 0.00704 0.003372 
Elevation -0.07152 0.029366  Elev:PDO 0.00016 0.000079 
Coast/Mainland -32.46480 6.118964  Elev:PNA -0.00014 0.000058 
Data Source 0.35138 0.254088  Elev:AO 0.00011 0.000060 
PDO -3.46906 1.508112  C/M:PNA 0.04342 0.017168 
PNA 8.99593 1.111255  C/M:NOI 0.02625 0.006541 
NOI 2.58666 0.385861  C/M:AO 0.03341 0.018290 
ENSO 0.31550 0.080807  PDO:PNA 0.02765 0.005429 
AO 6.51667 1.099007  PDO:NOI 0.02029 0.002837 
Year:Elev 0.00003 0.000015  PDO:ENSO 0.00073 0.000359 
Year:C/M 0.01787 0.003070  PDO:AO -0.02180 0.007748 
Year:PDO 0.00171 0.000761  PNA:NOI -0.04187 0.002586 
Year:PNA -0.00460 0.000561  PNA:AO 0.03221 0.006440 
Year:NOI -0.00129 0.000195  ENSO:NOI -0.00013 0.000110 
Year:ENSO -0.00016 0.000041  ENSO:AO 0.00068 0.000350 

Random Effects 
Q50 ~  Coast/Mainland | Station 

Variance Structure 
Variance ~  (Fitted Wind Speed Value)Power | Coast/Mainland 

Power =  0.6186 (Coast)   0.4256 (Mainland) 

Correlation Structure  
AR(1) ~  1 | Station  φ  =  0.4330 

Observed v. Fitted Values Squared Correlation 
Corr2 = 0.71 

 
                                                 
 
3 : indicates “interacts with” 

| indicates “grouped by” 
φ is the degree of correlation parameter 

4 All single-term fixed effect variables are included in the LME model.  Two-way interactions included are 
detailed, while interactions not included in the model are not present in the table. 
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3.2.2 75th Quantile 

The final LME model for the 75th quantile wind speeds includes all of the 

proposed fixed effects, along with most of the fixed effects interaction terms (Table 5).  

The fixed effect terms for the 75th quantile are similar to the 50th quantile LME model 

terms, with the terms having the same relative dominance.  Fewer interactions are 

included in the 75th quantile model. 

Based on parameter coefficients, fixed effect terms with constant (i.e., 

Coast/Mainland) or slowly varying (i.e., Year) variables have larger effects on fitted wind 

speeds than monthly varying variables (e.g., PDO), and much larger than interaction 

terms.  Smaller contributions come from Elevation, PDO, PNA, ENSO, AO, and NOI.  

The best fitting random effects term groups each station by Coast/Mainland. 

Variance equals the fitted wind speed values raised to a power term.  Again, this 

is best fit by allowing a separate variance power term for Coast and Mainland groups of 

0.6210 and 0.4886, respectively.  The correlation structure takes the form of an AR(1) 

function, with a phi value of 0.4311.  The 50th and 75th quantile LME models are very 

similar in structure and the values of the coefficient terms.  The 75th quantile model 

appears to have a good fit with an observed and fitted value squared correlation of 0.75. 
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Table 5: 75th Quantile Wind Speeds Linear Mixed-Effects Model 

The “:” symbol indicates, “interacts with” and the “|” symbol indicates, “grouped by”. 

Fixed Effects 

Q75 ~  Year + Elevation + Coast/Mainland + Data Source +  
 PDO + PNA + NOI + ENSO + AO +  
 Year : (Elevation + C/M + PDO + PNA + NOI + ENSO + AO) + 
 Elevation : (C/M + PDO + AO) +  
 C/M : (PNA + NOI) +  
 PDO : (PNA + NOI + ENSO) +  
 PNA : (NOI + ENSO + AO) 

Fixed Effect Coefficients 
 Value Std. Error   Value Std. Error 

(Intercept) 31.57011 3.302047  Year:NOI -0.00147 0.000226 
Year -0.01268 0.001658  Year:ENSO -0.00014 0.000048 
Elevation -0.11441 0.034158  Year:AO -0.00380 0.000612 
Coast/Mainland -33.49665 6.986238  Elev:C/M 0.00861 0.004023 
Data Source 0.46584 0.289280  Elev:PDO 0.00026 0.000090 
PDO -2.62999 1.738874  Elev:AO 0.00014 0.000068 
PNA 8.14015 1.312215  C/M:PNA 0.06961 0.019282 
NOI 2.96115 0.448637  C/M:NOI 0.02835 0.007380 
ENSO 0.27065 0.094188  PDO:PNA 0.02945 0.007419 
AO 7.53193 1.212078  PDO:NOI 0.01958 0.002837 
Year:Elev 0.00006 0.000017  PDO:ENSO 0.00134 0.000426 
Year:C/M 0.01899 0.003505  PNA:NOI -0.04790 0.003079 
Year:PDO 0.00129 0.000877  PNA:ENSO -0.00070 0.000428 
Year:PNA -0.00418 0.000662  PNA:AO 0.02567 0.006571 

Random Effects 
Q75 ~  Coast/Mainland | Station 

Variance Structure 
Variance ~  (Fitted Wind Speed Value)Power | Coast/Mainland 

Power =  0.6210 (Coast)  0.4886 (Mainland) 

Correlation Structure  
AR(1) ~  1 | Station  φ  =  0.4311 

Observed v. Fitted Values Squared Correlation  
Corr2 = 0.75 
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3.2.3 95th Quantile 

The final LME model for the 95th quantile wind speeds includes all of the 

proposed fixed effects, along with many of the fixed effects interaction terms, but fewer 

than both the 50th and 75th quantile models (Table 6). 

Based on parameter coefficients, fixed effect terms with constant (i.e., 

Coast/Mainland) or slowly varying (i.e., Year) variables have larger effects on fitted wind 

speeds than monthly varying variables (e.g., PDO), and much larger than interaction 

terms.  However, smaller contributions are only given by Elevation, PNA, ENSO, NOI, 

and AO (PDO no longer contributes significantly).  The best fitting random effects term 

groups each station by Coast/Mainland. 

Variance equals the fitted wind speed values raised to a power term.  The variance 

structure may again be best fit by allowing a separate power term for the Coast and 

Mainland groups.  However, during the model building process, a solution could not be 

found for this model without raising the convergence tolerance level (i.e., the computer 

could not come to a singular solution).  While raising the tolerance level to fit one model 

during the building process is acceptable, doing so early in the process causes the 

convergence problem to propagate onwards (i.e., the tolerance level for most subsequent 

models must be raised too).  A higher tolerance level may cause the LME algorithm to 

arrive at an incorrect solution for variable coefficients.  Therefore, I reject grouping the 

variance terms by Coast and Mainland and include only one variance power term of 

0.7819. 
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Table 6: 95th Quantile Wind Speeds Linear Mixed-Effects Model 

The “:” symbol indicates, “interacts with” and the “|” symbol indicates, “grouped by”. 

Fixed Effects 

Q95 ~  Year + Elevation + Coast/Mainland + Data Source +  
 PDO + PNA + NOI + ENSO + AO +  
 Year : (Elevation + C/M + PNA + NOI + ENSO + AO) + 
 Elevation : (C/M + PDO + ENSO) +  
 C/M : (PNA + NOI) +  
 PDO : (ENSO + AO) +  
 PNA : (NOI + ENSO) +  
 NOI : ENSO 

Fixed Effect Coefficients 
 Value Std. Error   Value Std. Error 

(Intercept) 46.73389 4.159065  Year:NOI -0.00218 0.000326 
Year -0.01919 0.002089  Year:ENSO -0.00021 0.000058 
Elevation -0.16803 0.040815  Year:AO -0.00569 0.000930 
Coast/Mainland -31.95206 7.693313  Elev:C/M 0.01092 0.004794 
Data Source 0.60290 0.340208  Elev:PDO 0.00018 0.000128 
PDO -0.09249 0.018980  Elev:ENSO 0.00001 0.000006 
PNA 10.35312 1.823909  C/M:PNA 0.06046 0.025286 
NOI 4.36135 0.646747  C/M:NOI 0.02216 0.009408 
ENSO 0.40808 0.115407  PDO:ENSO 0.00200 0.000568 
AO 11.30787 1.842655  PDO:AO 0.04913 0.010127 
Year:Elev 0.00008 0.000021  PNA:NOI -0.04073 0.004067 
Year:C/M 0.01898 0.003859  PNA:ENSO -0.00070 0.000500 
Year:PNA -0.00529 0.000921  NOI:ENSO 0.00060 0.000100 

Random Effects 
Q95 ~  Coast/Mainland | Station 

Variance Structure 
Variance ~  (Fitted Wind Speed Value)Power 

Power =  0.7819 

Correlation Structure  
AR(1) ~  1 | Station  φ  =  0.3436 

Observed v. Fitted Values Squared Correlation  
Corr2 = 0.75 

 
 

The correlation structure takes the form of an AR(1) function, with a phi value of 

0.3436.  The 95th quantile LME model appears more distinct from the 50th and 75th 
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quantile models than the lower wind speed models are from each other.  Potentially, 

higher wind speeds are more independent from each other and following a different 

governing process. 

Again, the observed versus fitted squared correlation value is quite high at 0.75.  

All of the LME models’ squared correlation values appear to be largely based on slower 

wind speeds within each quantile.  High wind speeds are consistently fit poorly and 

specifically, they tend to be underestimated. 

Review of the diagnostic plots for each of the final LME models does not show 

violation of the underlying assumptions (Appendix C).  To assess the variation explained 

by a linear regression an R2 statistic would normally be calculated.  However, because 

LME models are fit using maximum likelihood (ML) instead of ordinary least squares 

(OLS), an R2 value cannot be easily calculated.  While I use the squared correlations for 

observed versus fitted values reported above as a substitute for the R2 value, wind speed 

quantiles are dominated by many low values and the single squared correlation value 

does not give an adequate impression of the fit of a given model.  Therefore, I also plot 

the observed versus fitted values for each quantile for visual inspection (Figure 14). 
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Figure 14: Fitted v. Observed Values for LME Models 

Red line shows  (i.e., ideal correlation of fitted and observed values). 

Each of the LME models fits the majority of the observed data relatively well.  

The spread of data points appear to be symmetrically distributed around the line.  

The extreme values (very low and very high) in each quantile are fit poorly.  Observed 

low/high values are over/under-estimated, with very high observed values being fit the 

worst. 
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3.3 Forecasts 

To assess the accuracy of the fitted LME relationships when forecasting future 

wind speeds, I make comparisons between observations and model output for years 2000 

through 2008.  LME models are based on data from 1950 to 1999.  The forecast 

validation data set contains wind speed quantile values (50th, 75th, and 95th) for 105 

monitoring stations and the Pacific Ocean climate index values from 2000 to 2008.  This 

information generates forecasts at each of the monitoring stations (i.e., using the station’s 

particular elevation, coast/mainland, year, and data source values along with the indices) 

and compares with the observed wind speed.  Plots of the 95th quantile wind speed 

observed data (black dots) and three categories of forecasted wind speeds (representative 

monitoring stations used as examples) over the validation period (upper panel in Figure 

15).  Categories of forecasts include within (pink), above (blue), and below (grey) one 

standard deviation of the observation mean.  Forecasts made for monitoring locations that 

were not included in the LME model fitting process (15 stations) are distributed relatively 

evenly within, above, and below one standard deviation of the observations (lower left 

panel).  However, if the LME model has included the monitoring location during fitting 

(90 stations), even if only a few years, forecasts are dramatically improved (lower right 

panel).  The expected value of forecasts within one standard deviation of observations 

improves from 33% to 87% by including data in the fitting stage.  Bias in forecasting 

ability does not seem to exist for stations with very few years in the fitting dataset.  This 

indicates that if enough data is present to include a station in the fitting data, given the 

validation criteria (Section 2), then a relatively reliable forecast of expected value can be 

made. 
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Spatial or temporal patterns are not apparent in the plots of forecast category and 

observation locations.  The number of locations in each category and geographic 

distribution are similar for the 50th and 75th quantile forecasts. 

 

 

 
Figure 15: Representative 95th Quantile Wind Speed Forecasts (2000-2008) 

Forecast locations separated into three broad categories: within (pink), above (blue), 
and below (grey) one standard deviation of the observation mean (a).  Representative 
stations shown for the 95th quantile forecasts (1022795, 717750, and 1114739).  The 
spatial distribution of each category is reasonably even across the study area if 
monitoring location is not included in the LME model fitting data (b).  Forecasting 
ability is greatly improved by including the location in the fitting dataset (c).  The 
number of locations in each category and geographic distribution are similar for the 
50th and 75th quantile forecasts. 
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Despite predicting expected value well, forecasted wind speeds do not correlate 

well with the observed values (Figure 16).  Correlation values are approximately 

normally distributed (skewed towards negative correlations for the 95th quantile) around 

very low correlation values and are relatively low.  To have high forecasting ability, 

correlation values should be positive and as high as possible.  Low correlation values are 

due to LME model forecasts not capturing enough of the observed wind speed variability 

(upper panel in Figure 15). 

 

Figure 16: Summary of Correlations between Forecast and Observed Wind Speeds (2000 - 2008) 

Boxplots based on the distribution of correlations between observation time series and 
their respective forecasts for stations only in validation dataset (a) and stations included 
in both fitting and validation datasets (b).  Validation-only boxplots based on 15 
stations.  Validation-and-fitting-boxplots based on 90 stations.  Including random effect 
terms for forecasts (b) does not significantly improve the correlation between forecast 
and observations. 

3.4 Adaptation Actions 

Semi-structured interviews revealed the attitudes of decision makers and 

academics towards wind speeds and the consequent impact mechanisms (e.g., tree blow-



 

 65

down, storm surge, and infrastructure damage).  Responses have been aggregated so that 

generalizations can be made.  Responses are unattributed and remain anonymous. 

All of the organizations questioned are aware of damage mechanisms related to 

wind.  Respondents place focus on damages though, and not on the causal mechanism of 

wind itself.  For example, one respondent indicated that ecosystem values, such as bird 

nesting sites or riparian areas, are the focus of conservation and preservation actions.  

Guidelines, policies, or regulations are in place to maintain these values, but often do not 

explicitly address wind damage.  They indicated that adaptation, which occurs related to 

wind damage is generally incidental, and that often, liability concerns regarding public 

spaces prompt mitigation or adaptation activities.  One exception to the general disregard 

for wind is the B.C. Provincial Emergency Program, which mandates Extreme Weather 

Response Plans for B.C. communities.  This program details many aspects of severe 

weather, including windstorms, and how to prepare for it.  It does not strongly address 

any future changes in frequency or severity of storms, though. 

Respondents thought that strong winds do impart positive outcomes in some 

settings.  Coastal areas with windy sections, and the associated large waves, create 

tourism revenue for many areas like Tofino, B.C where people come to surf or recreate.  

Tree blow-down can result in coarse woody debris, an important component of some 

properly functioning ecosystems.  They also noted, however, each of these positive 

results of wind might be tempered by increased public hazards (e.g., risky access during 

surfing season or added fuel for future wild fires, which strong winds may exacerbate). 

Few studies have been conducted by these organizations to quantify the extent of 

damage suffered due to wind.  Respondents generally agreed that most of the knowledge 
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related to wind damage is derived from experience gained through the organizations’ 

institutional memories (i.e., the collective memory of employees and recorded 

information).  However, as was suggested by respondents, people generally remember 

only 10-15 years of experiences at any given time and probably can only recall 

particularly severe or well-publicized weather events. 

Respondents felt a more variable wind regime would increase organizations’ 

difficulty when planning future management activities.  For example, contractor costs 

may be increased if they are required to be on-call more often.  If parks or roads were 

closed more frequently due to public harm concerns, this would reduce the inherent value 

of those services.   

A tool for estimating future wind conditions would be useful to most of the 

respondents and their organizations.  If probabilistic forecasting can provide a reasonable 

level of accuracy, it would help them to plan upcoming management actions, identify 

areas vulnerable to wind damage, and set infrastructure standards.  Examples of 

management planning include when and where to schedule ecosystem restoration 

activities (such as rip-rapping shorelines), mapping areas with danger-trees at risk of 

blow-down, planning fire season activities, preparing contractors for building or 

ecosystem management, or budgeting revenues from park attendance.  To illustrate, 

knowing that coming winter winds were forecast to be above average, managers might 

decide to invest in proactive ecosystem restoration.  Taking action now may create a 

higher value in terms of protecting habitat and the public, than if the cost was delayed, 

but would later protect a degraded environment. 
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4: DISCUSSION 

Wind speed behaviour in the Pacific Northwest appears to differ strongly by 

proximity to the coast.  Hierarchical clustering identified a cyclic pattern for coastal areas 

and slowly declining trend for locations further inland.  My linear mixed-effects model 

supports this conclusion with large coefficient values for the Coast/Mainland parameters 

in each quantile model (and therefore large importance in the model and subsequent 

forecasts).  This relationship between wind and geographic location reconciles apparently 

conflicting results from previous wind studies in the PNW and continental U.S.  Several 

studies have found declining trends for wind speeds over mainland areas [Pryor et al., 

2009; Klink, 1999; Klink, 2002], while others appear to see contradictory declining and 

increasing patterns near coastlines [Gower, 2002; Tuller, 2004].  By separating wind 

regimes into coast-cyclic (both increasing and decreasing periods) and mainland-

declining, discrepancies between studies can be resolved.  Section 4.1 discusses this 

behaviour in more detail. 

Despite finding a significant pattern in wind behaviour, my LME model forecasts 

under-represent wind variability in the PNW.  LMEs offer great advantages for modeling 

physical systems because of their flexibility to incorporate phenomena measured 

repeatedly over time, grouped monitoring locations, and heterogeneous or correlated data 

residuals (Section 4.2).  Therefore, improving the variability captured by model forecasts 

is an important goal if this model is to be used as a decision tool for managers; especially 

given the small number of years that a station must observe wind to correctly predict the 
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expected value of future wind speeds.  Sections 4.3 and 4.4 consider potential methods 

for improving forecasts and incorporating long-term trends (e.g., potential climate change 

effects). 

Finally, I discuss the limitations I faced attempting to model a physical system.  I 

also make recommendations for wind study directions in the future and how my results 

may be applied to the challenges faced by resource managers (Section 4.5). 

4.1 Changing Wind Speed Trends and Variability 

Observed trends and variability behaviour (Figure 13) differ significantly between 

coast and mainland locations, as well as between the 50th, 75th, and 95th quantiles.  Coast 

locations are much more variable than mainland sites across all of the quantiles explored.  

They also appear to be relatively stationary around some fixed mean for each quantile 

(although stationary trends are unclear from Figure 13).  The very small coefficients for 

Year and Year:Coast/Mainland lend support for stationary time series in each quantile 

(Tables 4, 5, and 6).  When the coefficients are multiplied by their respective variable 

values, the coast time series in each quantile is essentially non-trending.  Mainland 

locations are downward trending and less variable for all quantiles.  Again, coefficient 

values for relevant variables support this idea. 

Coast wind speeds, especially for the 95th quantile, appear to follow a roughly 

decadal (~ 9-year period) cyclic pattern.  Peaks in average wind speed across sites can be 

seen in Figure 13 at roughly 1969, 1977, 1986, and 1995, with troughs visible between 

each peak.  A similar, but less distinct, pattern is apparent in the lower wind speed 

quantiles as well.  This cyclic pattern is not well represented by any of the Pacific Ocean 
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climate indices that are included in this study.  However, these indices (PDO, PNA, 

ENSO, NOI, and AO) represent the major, currently hypothesized proxies for climate 

drivers in the Pacific Ocean.  The cyclic pattern in observed wind speeds in the PNW 

may be the result of an unidentified climate oscillation or an interaction (modifying 

behaviour) between current indices, that was not included in this study (e.g., three-way 

interaction). 

The apparently conflicting results from previous wind studies looking at the 

PNW, and the continental U.S., can be resolved by the differing patterns for coast and 

mainland locations.  Pryor et al. [2009] and Klink [1999] identified predominantly 

declining trends of 0.5-1.0% per year for the PNW.  These results appear confined to 

mainland monitoring locations (it is unclear if coastal stations are represented).  My result 

of a declining mainland trend of 0.4-0.6% per year agrees well with their findings.  A 

slowly declining trend also corresponds with results focusing specifically on the PNW 

[Tuller, 2004].  Interestingly, my results appear to reconcile a problem from Tuller 

[2004].  In his study, Vancouver and Victoria International Airports (mainland locations 

in my study) exhibit declining trends, while Comox Airport (a coast site) seems to follow 

both increasing and declining trends.  A cyclic pattern for Comox Airport could explain 

that monitoring location’s deviating behaviour.  Gower [2002] reports a similar pattern of 

contradictory trends for observation buoys off the Washington, U.S. coast.  Again, my 

study would consider these stations as coast sites that follow a cyclic pattern. 

Parameter values from the LME model indicate that geographic location (i.e., 

coast or mainland) and time have strong influences on wind.  Regional climate drivers 

also play significant roles in determining wind speeds.  The coefficients in the LME 
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models have the signs I would expect from previous studies (Section 1.2.2).  My positive 

relationship between wind and ENSO differs from the negative one (i.e., a correlation 

between La Niña (cold/negative phase) and increased wind speed or gustiness) found in 

Abeysirigunawardena et al. [2009] and Enloe et al. [2004].  However, all of the parameter 

values in my LME model are conditional on the other included variables.  Alternative 

LME models with similar climate variable specifications to those in the other studies 

would be necessary to determine if this apparent disagreement actually exists.  Of the 

Pacific Ocean climate indices, the Arctic Oscillation (AO) and Pacific/North American 

Pattern (PNA) influence winds the most.  These indices are calculated using pressure 

differences near, or over, the Pacific Ocean, while PDO and ENSO are determined using 

SSTs and NOI uses pressure differences over a much larger region.  Because pressure 

differences create winds, they may be a better predictor than temperature, which creates 

pressure (and indirectly creates wind). 

All of the variations in wind speed distributions: decreasing trend for mainland 

locations and greater variability and cyclic pattern for coast sites, make planning 

ecosystem, infrastructure, and emergency response activities more difficult.  I examine 

several examples briefly to highlight some of these challenges.   

In urban settings, managers must provide minimum distances for set-backs around 

ecosystem features that wind damage may harm (e.g., wind throw, downed power lines, 

or direct impact).  If cities, like Vancouver, Victoria, or Seattle, are situated near 

coastlines, they may have difficulty imposing set-back limits.  During times of higher 

variability (peaks of cyclic pattern), set-backs may be inadequate because of stronger 

wind events.  When variability is lower (troughs of cyclic pattern) and less severe wind 
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events occur, managers may face pressure to reduce the limits because they are seen as 

unduly strict.  Forestry areas near to the coast might encounter similar problems with 

requirements for trees to be left standing for ecosystem values.   

Studies relating air quality measurements to wind trends may need to re-evaluate 

the monitoring locations used to represent regions because of differing patterns for Coast 

(cyclic) and Mainland (declining trend) sites.  Vancouver and the Fraser Valley are an 

example of an urban/rural area where light winds can lead to build up of ground-level 

ozone.  Future land use and public health decisions will need to consider weaker winds, 

and airborne pollutant studies should be careful when choosing representative locations 

for air quality studies [Vingarzan and Thomson, 2004]. 

Fluctuations in electricity generation and demand for emergency response 

services will impact power utilities.  Wind power generation is increasing throughout the 

PNW with projects proposed for both coast and mainland areas.  Each of these areas may 

face problems.  Coast wind power projects will have greater variability in the range of 

wind speeds observed with an oscillating average over time.  The cyclic pattern is most 

apparent in the 95th quantile wind speeds, however strong winds are what generate the 

most power.  Electricity generated by wind turbines is proportional to the cube of wind 

speed.  If power providers conduct feasibility studies during peak times of the decadal 

cycle, the amount of power generated over the lifetime of a project may not meet the 

expectations of owners or utilities requiring electricity.  For example, a 3 m/s decrease in 

the 95th quantile wind speed for coast stations (the change from peak to trough of the 

cyclic cycle) would result in a ~49% decrease in power produced from strong winds.  A 

decrease of 0.9 m/s (mainland declining trend multiplied by 30 years) in the 75th quantile 
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wind speed for mainland stations would result in ~15% less power produced by a turbine 

at the end of its 30 year lifespan.   

Damages from emergencies (e.g., power outages) can result in large losses to 

productivity and necessary restoration costs when power is not available to the society 

dependent on it (see Section 3.4).  Emergency planners face similar problems to resource 

managers when trying to allocate scarce resources (in this case, monetary budgets and 

person-hours) to adapt or cope with inherently variable conditions like those observed at 

coast locations. 

Whether the observed cyclic pattern or the current scale of trends and variability 

will continue into the future is unknown.  Anthropogenic climate change is likely to alter 

existing weather patterns by reducing the gradient in average temperature and pressure 

between the poles and tropics [Reynolds, 2005].  A reduced gradient may decrease wind 

speeds in the Pacific basin and those observed in the PNW because of warmer SSTs and 

lower pressure differences.  Changes to future weather patterns dictated by climate 

change are still very uncertain though.  Regardless of changes to climate patterns, 

resource managers must try to adapt to future wind conditions when making planning 

decisions.  Future conditions may be similar to those experienced in the past or may 

present new uncertain challenges.  Quantitative decision analysis offers an excellent tool 

to incorporate future uncertainties (from the unknown atmospheric conditions or the 

probabilistic output from the LME model) when making important decisions with long-

term consequences, such as infrastructure choices or ecosystem alterations [National 

Research Council, 2006]. 
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4.2 Application of Linear Mixed-Effects Model 

Using LME models to relate wind speed quantiles to Pacific Ocean climate 

indices and local variables represents only one of many possible applications of mixed-

effects modelling for physical systems.  LME models were developed, and have been 

primarily used, for econometric problems and until recently have not been widely 

considered for use in other disciplines [Zuur et al., 2007; Cade and Noon, 2003]. 

The great flexibility of LME models makes them excellent candidates for 

representing relationships in physical systems.  Often, studies for these types of systems 

rely on historical data collected over many years.  Data may be discontinuous or have 

varying measurement errors associated with them.  However, LME models can 

successfully help with interpretation of system dynamics by intentionally or retroactively 

considering sampling programs to be repeatedly measured at stationary monitoring 

locations.  Including individual (random) and population (fixed) effects in LME models 

allows for a more realistic representation of sampling programs than linear regression.  

Linear regression attributes all observations to the population level regardless of how 

inappropriate this might be.  Despite potential violations of independence or homogeneity 

of residuals, linear regression is often used due to its ease of application and 

interpretation of results.  These results should be highly suspect though, because of the 

assumption violations [Zuur et al., 2009].  While LME is more complicated to apply than 

linear regression, it is not as involved as many other methods such as dynamic systems 

modelling.  It offers a good balance between appropriate treatment of data and the ability 

to abide by method assumptions and straightforward results and interpretability. 
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I have chosen to combine a LME model with quantiles of wind speed data for a 

more comprehensive depiction of the available data.  Physical data are often normally 

distributed, but many forms may violate this common assumption.  Wind speeds, 

precipitation, and exceedances measurements are all types of data that are zero-bounded.  

These data may be represented by non-normal distributions such as the Poisson or 

Weibull and may have properties like strong skew or heteroscedasticy.  Quantiles present 

a more robust method to look at these distributions and extract meaningful information 

(or alternatively not miss important information) than the often standard mean or 

max/min [Koenker, 2005]. 

4.3 Model Forecasting Ability 

This study began by hypothesizing that surface wind speeds in the PNW relate to 

regional climate drivers, such as sea-surface temperature and sea-level pressure.  These 

variables have previously been shown to influence precipitation and surface temperature 

in the PNW [Reynolds, 2005; Mantua and Hare, 2002; Ropelewski and Halpert, 1986].  

The LME model includes Pacific Ocean climate drivers through indices based on SST 

and SLP anomalies.  Some variables related to local effects, such as elevation and 

coast/mainland, are also included.  Using both regional and local variables allows a 

comparison of their relative influence on wind speeds.  The coefficients from the final 

LME models (Tables 4, 5, and 6) weight their respective variables and determine regional 

and local importance. 

Based on parameter coefficients, fixed effect terms with constant (i.e., 

Coast/Mainland) or slowly varying (i.e., Year) variables have larger effects on fitted wind 

speeds than monthly varying variables (e.g., PDO), and much larger than interaction 
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terms.  While the expected value of future wind speeds is predicted fairly well (when 

including random effects), forecasts have relatively small variations around some fixed 

mean compared to the observations (Figure 15).  Forecasts consequently have low 

correlations with the much more variable observed wind speed data (Figure 16).   

A possible reason for the low correlation values is that one or more variables are 

missing from the LME model specifications.  The current explanatory variables are 

generating forecasts that are within the range of observed values (Figure 15), but are not 

able to capture all of the wind variability.  Pacific Ocean climate indices have been 

shown to describe other surface phenomena in the PNW with some accuracy, such as 

temperature, precipitation, snowfall, and fish stock and plankton productivity [Mantua 

and Hare, 2002; Schwing et al., 2002; Rasmusson and Wallace, 1983].  Given this 

descriptive ability, it follows that climate indices could summarize the regional driving 

forces for winds.  However, the indices may not do so accurately enough because of the 

processing needed to calculate them (Section 1.2.2).  Including SST and SLP directly as 

monthly-fluctuating variables, instead of as the basis for the climate indices, may offer 

better forecasts of surface wind speeds.  Including either the climate indices or the 

temperature and pressure variables as random effects would also help capture more 

variability.  I did not do this during my study due to computing restraints, but a reduction 

in the number of wind speed time series could accommodate these random effects. 

Further complication in forecasting may be added because the PNW is located in 

a transition zone between ocean domains (Figure 17).  The transition zone divides two 

coherent ocean circulation patterns, the north-flowing Alaska Current and the south-

flowing California Current [Ware and McFarlane, 1989].  The formation of these currents 
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is not abrupt.  It occurs, due to a divergence in the prevailing wind pattern, in a 

disorganized manner between 45-50°N, and 130-150°W, in close proximity to the study 

area.  An upwelling zone exists off coastal California during summer when northwesterly 

winds dominate.  During winter, southerly winds take over and downwelling occurs over 

the region.  The opposite phenomenon is largely present throughout the year for the area 

covered by the Alaska Current.  This transition zone also creates very different responses 

in other climate variables, such as snow pack, precipitation, and fisheries productivity, in 

response to regional climate shifts such as the PDO.  For example, warm PDO phases 

favour enhanced ocean biological productivity in Alaskan waters and inhibited 

productivity off the west coast of the continental U.S.  The opposite north-south pattern 

exists during cold phases [Mantua and Hare, 2002]. 

The location of the transition zone, and associated wind currents, moves 

throughout the year with seasonal cycles and with atmospheric circulation patterns like 

ENSO or PDO.  Though the major drivers of the transition zone location have been 

accounted for in my model (seasonality removed and circulation patterns as explanatory 

variables), small variations due to other climatic influences may not be included.  

Because of the PNW’s close proximity to the transition zone, including the zone’s 

location over time may explain some of the unidentified variation in the LME model.  

Alternatively, wind speeds from Alaska and California may indicate if the LME method 

can achieve more accurate results for locations distanced from the transition zone. 
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Figure 17: Prevailing Current Directions in the Northeast Pacific Ocean 

Approximate ocean domains listed in the bottom of the figure and located by number.  
The location of the transition zone moves throughout the year and is coincident with 
the PNW study location.  Adapted from [Ware and McFarlane, 1989]. 

Other information sources that could provide an informative link between 

regional climate drivers and surface wind include upper air wind speed measurements, 

and SST and SLP re-analysis data.  These sources are in-between the regional indices 

calculated for the entire Pacific basin and local measurements near each location of 

interest.  Re-analysis data can be calculated close to the study area and will not have 

missing values as with observational data.  If I could relate winds to re-analysis data and 

use that relationship as a downscaling transfer function, it could make forecasting wind 
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speed changes easier because GCMs can predict temperature and pressure relatively well.  

Re-analysis measurements of SST and SLP from the Salish Sea and Juan de Fuca Strait 

or Pacific Ocean adjacent to the PNW coast may provide useful data for this study area.   

Calculated re-analysis values offer the added benefit of assessing secular trends 

(long-term non-periodic variation) associated with Pacific Ocean climate patterns.  These 

data are valuable to assess the effects of anthropogenic climate change on wind speed 

distributions.  All of the indices used in this study have trends connected with secular 

warming removed as part of their calculation.  Temporal trends are currently captured 

with the Year variable in the LME models, but this is mostly a catch-all variable.  It 

would be more appropriate to have trend information captured directly by the relevant 

variables. 

I am most interested in the behaviour of extreme wind speeds (i.e., the upper tail 

of the wind speed distribution).  Though the bulk of observations for each of the quantiles 

explored is fit fairly well, extreme high values are generally poorly represented by the 

LMEs (Figure 14).  Poor extreme value fitting is partly due to far fewer high observations 

for the LME model to use when attempting to find a relationship between wind speed 

responses and explanatory variables.  Lack of data often creates large difficulties 

determining general relationships for extreme values [Abeysirigunawardena et al., 2009].  

Using quantiles of the wind speed distribution and finding separate relationships for each 

level (50th, 75th, and 95th) has helped when trying to understand the behaviour of average 

and extreme wind speeds, but extreme values by their nature are rare occurrences and 

longer time series of observations will help future modelling efforts [Crout et al., 2008]. 



 

 79

4.4 Sensitivity Analyses 

Statistical models should always be checked for the robustness of their parameter 

values and fit.  Accordingly, I performed two sensitivity tests to evaluate alternative 

formulations of the relationship between PNW wind speed quantiles and explanatory 

variables.   

Each of the final LME models was checked to see if taking the natural logarithm 

of wind speed quantiles was more appropriate to relate to the explanatory variables.  

Logarithms may be more appropriate given the highly skewed, non-normal distribution 

for wind speeds (Figure 4).  Based on diagnostic plots (Appendix C), the log-transformed 

data do not offer a significantly better fit.   

Alternative groupings derived from the hierarchical clustering may be appropriate 

given the more varied clustering at the broadest level seen in the 50th and 75th quantile 

dendrograms compared to the 95th quantile.  The most prominent grouping that I could 

include in the sensitivity analysis, and that has an identified physical meaning, is the 

small group of Sartine and Solander Islands (Figure 11).  This cluster branches high on 

the dendrogram and could be considered a separate and distinct group.  Sartine and 

Solander Islands experience wind speeds that are well above those observed at other 

monitoring stations.  Setting the hierarchical clustering factor to coast/mainland/islands 

does not significantly improve the LMEs based on diagnostic plots.  However, AIC 

values for models including an extra group are slightly lower, and therefore preferred, 

compared to the original models.  Future work should include the Islands group and 

could make efforts to identify physical meanings for other groups from the hierarchical 

clustering. 
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4.5 Analysis Limitations and Recommendations for Future Research 

Several key limitations in the analysis presented challenges for constructing a 

LME model relating wind speeds and regional and local explanatory variables.  The 

limitations, detailed below, represent opportunities for future research and I present 

possible solutions. 

First, the abundance of data points posed computing problems.  The large number 

of observations used in the study (~23,000) ensured no concerns with data normality, 

degrees of freedom, and compensated for erroneous measurements.  But, the many 

observations also had to be fitted by the LME model for each model run.  That is, any 

time a change was made to the model specification, a new round of fitting had to be 

completed.  As each run could take up to an hour to complete and several hundred runs 

were necessary to fit each LME model for each quantile (50th, 75th, and 95th), computing 

quickly became very time consuming.  In retrospect, I feel that a better balance between 

sufficient data records and a parsimonious number of sampling locations could have been 

reached.  During the study though, I did not know what impact reducing monitoring 

locations would have.  Nor did I know how long LME models would take to fit.  Now 

that data files exist in a common format, future research could invest more effort into 

eliminating time series records that are short or include many missing values to reduce 

the number of variables the LME model must fit coefficients for and therefore reduce 

computing time. 

Second, explanatory variables that likely influence surface wind speeds, were not 

included in the LME model because I could not obtain satisfactory data (SST, SLP, upper 

air wind speed and pressure) or including the variables in the model was too cumbersome 
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during model design (topography surrounding monitoring stations).  These data could 

have helped define regions with similar wind behaviour or described more of the 

unexplained variability in observations. 

Finally, many of the monitoring stations used in this study have limited or no 

secondary data (e.g., height of anemometer above ground, type of anemometer, or 

surrounding surface features).  Without this type of information, wind speed observations 

cannot be corrected to a standard height (the World Meteorological Organization has set 

the standard height at 10 m above ground).  No attempt was made in this study to correct 

wind speed observations due to the large number of monitoring locations and 

observations used.  I relied on the large aggregation of data to compensate for any 

erroneous records.  Future research could improve on standardizing observations, 

however, Pryor et al. [2009] note that the correction of differing measurement heights is 

likely relatively small for most monitoring stations. 

In future work, re-analysis data could provide “observed” measurements from 

locations close to the study area that are otherwise unavailable.  Values, such as SST, 

SLP, and upper air measurements, which would not normally be observable at the desired 

locations, can be calculated by re-analysis and substituted for actual observations.  These 

data may define spatial regions with similar behaviour and could further refine 

monitoring station groupings.  However, as Pryor et al. [2009] point out, values can vary 

significantly between re-analysis products.  If future wind speed studies use this type of 

data, several sources should be compared and evaluated. 

Local topography and surface roughness surrounding monitoring stations could 

likely be included without much difficulty if sources can be found.  However, these data 



 

 82

may only be available for significant monitoring locations, such as airports or 

lighthouses.  Incorporating only stations with detailed information and histories was 

applied in other studies [Abeysirigunawardena et al., 2009; Tuller, 2004] and resulted in 

far fewer sampling locations than are included in this study.  In light of my results of 

significant behaviour differences between coast and mainland sites, few sampling 

locations may create bias in study results. 

Geographic Information System (GIS) maps may offer a method to include some 

level of local topography, while still maintaining a large sample of monitoring stations.  

GIS elements that might be used as explanatory variables include monitoring station 

aspect (direction facing), valley/exposed location, or upwind surface roughness.  If a 

reliable source of GIS information could be found, possibly in conjunction with the re-

analysis data discussed above, the LME model relationships could become better 

candidates for downscaling transfer functions. 

Representing skewed distributions with LME modelling and quantiles offers 

many other possible directions for wind speed investigation.  In this study, the LME 

model fit for each quantile appears to be mostly determined by lower wind speeds and 

not by the extreme values that I am most interested in.  One option to reduce the 

dependence on lower values is to use a minimum threshold for acceptable values to 

include when determining response-explanatory relationships.  A meaningful threshold 

(such as a relevant value from the Beaufort Scale; Table 2) could be applied before or 

after calculating quantiles.  Applying the cut-off value before determining quantiles 

would reduce the number of observations used in calculations, but would still allow most 

months to have a value.  These values may not be very representative if few observations 



 

 83

end up being included.  Applying the threshold after calculating quantiles would ensure 

more observations are included in each month, but will remove many months altogether.  

I feel a threshold, if used, should be applied to individual data before calculating 

quantiles, rather than aggregate measures, but the cut-off criteria described earlier 

(Section 2) may need to be re-visited to ensure sampling bias is not introduced. 

A final opportunity for future research would utilize quantitative decision 

analysis.  This method presents a valuable tool for implementing study results even if 

large uncertainties still exist in forecasts or relationships.  A decision analysis focusing on 

one of the management problems raised during the adaptation interviews (Section 3.4) 

would help establish a minimum level of forecasting accuracy needed from the LME 

model. 
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5: CONCLUSIONS 

In this study of PNW wind speeds, I explored the relationship between wind 

behaviour and several proposed climate drivers, local variables, and data sources.  To this 

end, I created a linear mixed-effects model and used it to make wind speed forecasts.  

This effort represents the first time a study has explored wind behaviour in the PNW 

using a spatially and temporally comprehensive data set. 

My research focused on three objectives: determining if relationships exist 

between wind speed distributions, ocean/atmospheric climate indices, and monitoring 

station-specific attributes (e.g., elevation, geographic location, data source); assessing the 

robustness of relationships for forecasting wind speeds within the study area; and 

conveying forecast results and potential adaptation actions in a manner easily 

understandable by a wide (potentially non-technical) audience.  To meet the first 

objective, I explored wind speeds and potential explanatory variables using quantiles, 

hierarchical clustering, and a LME model.  These tools provided a valuable method for 

wind speed analysis because of their flexibility to incorporate non-normally distributed 

data.  I addressed the second objective by comparing LME forecasts to a data set 

covering the period 2000-2008.  Finally, I attempted to convey the results from data 

exploration and model forecasts largely using figures and maps.  Wide audiences often 

understand graphical representations of data more easily than tables or descriptions, and 

figures can impart large amounts of information succinctly [National Research Council, 
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2006].  I conducted informal interviews related to wind damage adaptation actions to help 

contextualize this study, and how it might be used in future. 

Two main findings from my research are reviewed below, the difference in coast 

and mainland wind patterns and the extent to which this previously unidentified 

behaviour will affect wind damage adaptation efforts. 

5.1 Difference in Coast and Mainland Behaviour 

Wind speeds are significantly stronger at coast monitoring locations compared 

with sites further inland.  While this result may seem intuitive to many readers, my 

research has quantitatively confirmed that stronger winds occur near the ocean and 

estimated this difference for the PNW.  However, a related, but more pertinent, finding is 

the difference in how coast and mainland wind behaves.   

Coast winds appear to follow a roughly decadal (~9-year cycle) pattern in the 

magnitude of speeds.  The pattern is most evident in the 95th quantile of the wind 

distribution, with up to a ~3 m/s difference between cycle peaks and troughs, but appears 

in the median wind speeds as well.  Management of coastal areas is already difficult due 

to stronger and more variable wind speeds compared with inland sites.  As an example of 

the impact fluctuating coast winds might have, consider the future of wind power 

generation in the PNW.  Energy developers are increasingly considering wind farms as a 

viable economic option given the demand for electricity forms that do not emit carbon 

dioxide.  However, if feasibility studies for wind farms are conducted during peak times 

in the decadal cycle, future generated power and revenues may not meet expectations 

because of falling wind speeds.  Many wind turbines have a life span of only two to three 
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decades, in which they must pay for themselves and generate a profit.  Impacts to other 

sectors include increased difficulty planning and budgeting for emergency services and 

timing of ecosystem restoration activities. 

Alternatively, wind speeds in mainland areas appear to follow a downward trend 

of approximately -0.04 m/s/year (95th quantile) to -0.03 m/s/year (50th quantile).  

Mainland sites do not seem to experience the cyclic pattern of coast sites, or else only 

very weakly.  This may impact urban/rural areas near coastlines, like Vancouver and the 

Fraser Valley, if decreasing winds exacerbate build up of ground-level ozone and degrade 

air quality.  Future land use and public health decisions will need to consider geographic 

differences in wind behaviour when choosing locations for air quality studies, to ensure 

representative winds are used [Vingarzan and Thomson, 2004]. 

My research and the finding of distinct behaviour for coast and mainland areas fill 

a gap in the understanding of surface winds.  A cyclic pattern for coast areas and 

declining wind speeds for the mainland help explain disparities between previous studies 

(e.g., Pryor et al. [2009] suggest a declining trend for observed wind speeds in areas of 

the continental U.S., while Gower [2002] indicates both increasing and decreasing wind 

speeds measured at ocean buoys).  Future studies of wind speeds near coastal areas 

should include the relative locations of monitoring stations as an explanatory variable to 

help with interpretation of possibly conflicting results. 

5.2 Future Adaptation Capacity 

The abilities of organizations managing resources to adapt to future wind patterns 

may be constrained by their lack of institutional programs acknowledging wind 
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behaviour.  Many organizations, in sectors such as environmental conservation, 

electricity generation, and disaster management, have policies and measures in place to 

deal with wind damage.  However, few, if any, recognize that the frequency of severe 

storm events may change in the future.  Interview respondents noted that institutional 

memories (i.e., the collective memory of employees and recorded information) often 

extend only 10-15 years into the past.  This implies that organizations affected by wind 

damage may create policies or plans based on incorrect information (e.g., assume wind 

speeds are stationary through time rather than cyclical or trending).   

My LME model needed only a few years of monitoring data to correctly forecast 

expected values of wind speeds for many locations.  A tool, like this LME model, that 

could forecast probabilities of wind speeds (with some minimum accuracy) would be 

valuable for all of the interview respondents.  Having a sense of the upcoming winter 

storm season, for instance, would allow managers to better budget limited resources for 

ecological restoration, public safety related to hazardous trees, or emergency 

communication procedures.  A forecasting tool would help organizations fit recent 

weather events (included in institutional memory) into future wind behaviour changes. 
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Appendix A: Pacific Ocean Climate Index Time Series 

 

Figure A-1: Arctic Oscillation Index Values 
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Figure A-2: Global-SST El-Niño Southern Oscillation Index Values 
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Figure A-3: Northern Oscillation Index Values 



 

 92

 

Figure A-4: Pacific Decadal Oscillation Index Values 
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Figure A-5: Pacific/North American Oscillation Index Values
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Appendix B: Data Details 

Data was provided electronically for research purposes by Environment Canada 

(from the National Archive of Canadian Climatological Data), National Oceanic and 

Atmospheric Administration (from the Integrated Surface Hourly Database).  Contact 

information is provided below, along with metadata for monitoring stations (Table B-1) 

and time series record lengths (Figure B-1). 

 

Environment Canada – Gerard Morin, Meteorological Service of Canada 

Climate.Atlantic@ec.gc.ca 

 

National Oceanic and Atmospheric Administration – Gerhard Boenisch, Max Planck 

  Institute for Biogeochemistry, Jena, Germany 

 boenisch@bgc-jena.mpg.de 
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Table B-1: Monitoring Station Metadata 

Station ID  Name  WMO  WBAN  Type  Source  Latitude  Longitude 
Elevation 

(m) 

1010720  BEAR CREEK  ‐  ‐  UNKNOWN  EC  48.500  ‐124.000  350.5 
1012055  LAKE COWICHAN  ‐  ‐  DAILY CLIMATE  EC  48.829  ‐124.052  171.0 
1012475  DISCOVERY ISLAND  71031  ‐  AU8  EC  48.424  ‐123.225  15.3 
1012562  DUNCAN BCHPA VIT  ‐  ‐  UNKNOWN  EC  48.833  ‐123.717  36.0 
1012710  ESQUIMALT HARBOUR  71798  ‐  AU8  EC  48.432  ‐123.439  3.0 
1013754  JORDAN RIVER DIVERSION  ‐  ‐  UNKNOWN  EC  48.500  ‐124.000  393.2 
1013755  JORDAN RIVER GENERATING  ‐  ‐  DAILY CLIMATE  EC  48.417  ‐124.050  4.6 
1013998  KELP REEFS  71036  ‐  AU8  EC  48.548  ‐123.236  0.0 
1014530  LANGFORD LAKE  ‐  ‐  UNKNOWN  EC  48.433  ‐123.533  75.0 
1014820  MALAHAT  71774  ‐  AU8  EC  48.575  ‐123.530  365.8 
1015628  NORTH COWICHAN  ‐  ‐  DAILY CLIMATE  EC  48.825  ‐123.720  45.7 
1015630  NORTH COWICHAN  71927  ‐  AU8  EC  48.824  ‐123.718  60.0 
1016335  PORT RENFREW  ‐  ‐  DAILY CLIMATE  EC  48.591  ‐124.326  10.0 
1016640  RACE ROCKS CS  71778  ‐  AU8  EC  48.298  ‐123.532  3.0 
1016941  SAANICH CAMOSUN COLLEGE  ‐  ‐  UNKNOWN  EC  48.500  ‐123.417  38.1 
1016942  SAANICH DENSMORE  ‐  ‐  UNKNOWN  EC  48.500  ‐123.400  59.0 
1017098  SATURNA CAPMON  ‐  ‐  DAILY CLIMATE  EC  48.772  ‐123.114  178.0 
1017099  SATURNA CAPMON CS  71914  ‐  AU8  EC  48.772  ‐123.114  178.0 
1017101  SATURNA ISLAND CS  71473  ‐  AU8  EC  48.784  ‐123.045  24.4 
1017254  SHERINGHAM POINT  71780  ‐  AU8  EC  48.377  ‐123.921  22.3 
1018238  TRIAL ISLAND  71034  ‐  AU8  EC  48.395  ‐123.305  23.0 
1018598  VICTORIA UNIVERSITY CS  71783  ‐  AU8  EC  48.457  ‐123.305  60.1 
1018610  VICTORIA GONZALES HTS  ‐  ‐  ‐  EC  48.413  ‐123.325  69.5 
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Station ID  Name  WMO  WBAN  Type  Source  Latitude  Longitude 
Elevation 

(m) 

1018615  VICTORIA HARBOUR A  71961  ‐  FSS  EC  48.423  ‐123.388  0.0 
1018620  VICTORIA INTL A  71799  ‐  CON  EC  48.647  ‐123.426  19.2 
1018642  VICTORIA MARINE  ‐  ‐  MTR  EC  48.367  ‐123.750  31.7 
1018FF6  VICTORIA U VIC  ‐  ‐  UNKNOWN  EC  48.467  ‐123.333  68.4 
1018FJ5  VICTORIA HARTLAND CS  71038  ‐  AU8  EC  48.534  ‐123.459  154.1 
101QF57  VICTORIA SHELBOURNE  ‐  ‐  UNKNOWN  EC  48.467  ‐123.333  49.0 
1020270  ALERT BAY  ‐  ‐  NONE  EC  50.583  ‐126.933  59.4 
1020590  BALLENAS ISLAND  71769  ‐  AU8  EC  49.350  ‐124.160  12.9 
1021052  NANAIMO HARBOUR  ‐  ‐  AU8  EC  49.167  ‐123.933  5.0 
1021261  CAMPBELL RIVER A  71205  ‐  ATI  EC  49.951  ‐125.271  105.5 
1021262  CAMPBELL RIVER BCFS  ‐  ‐  UNKNOWN  EC  50.067  ‐125.317  128.0 
1021263  CAMPBELL RIVER BCHPA GEN  ‐  ‐  UNKNOWN  EC  50.050  ‐125.317  30.5 
1021265  CAMPBELL RIVER STP  ‐  ‐  UNKNOWN  EC  50.017  ‐125.233  3.0 
1021330  CAPE MUDGE  ‐  ‐  MTL  EC  49.998  ‐125.195  4.6 
1021332  CAPE MUDGE CS  71993  ‐  AU8  EC  50.000  ‐125.200  4.0 
1021480  CHATHAM POINT  ‐  ‐  MTL  EC  50.333  ‐125.433  22.9 
1021616  CHROME ISLAND  71033  ‐  AU8  EC  49.467  ‐124.683  11.3 
1021830  COMOX A  71893  ‐  WOD  EC  49.717  ‐124.900  25.6 

1021990 
COURTENAY PUNTLEDGE 
BCHP  ‐  ‐  DAILY CLIMATE  EC  49.683  ‐125.033  24.4 

1022689  ENTRANCE ISLAND CS  71772  ‐  AU8  EC  49.217  ‐123.800  5.0 
1022795  FANNY ISLAND  71568  ‐  AU8  EC  50.453  ‐125.992  8.0 
1025230  MT WASHINGTON  71947  ‐  AU8  EC  49.747  ‐125.287  1473.5 
1025240  MUD BAY  ‐  ‐  DAILY CLIMATE  EC  49.471  ‐124.794  4.0 
1025370  NANAIMO A  71890  ‐  ATI  EC  49.052  ‐123.870  28.0 
1025371  NANAIMO WATER RESERVOIR  ‐  ‐  UNKNOWN  EC  49.150  ‐123.967  114.3 
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Station ID  Name  WMO  WBAN  Type  Source  Latitude  Longitude 
Elevation 

(m) 

10253G0  NANAIMO CITY YARD  ‐  ‐  DAILY CLIMATE  EC  49.199  ‐123.988  114.0 
1025977  PARKSVILLE SOUTH  ‐  ‐  UNKNOWN  EC  49.333  ‐124.300  0.9 
1025C70  NANAIMO DEPARTURE BAY  ‐  ‐  UNKNOWN  EC  49.217  ‐123.950  7.6 
1026170  PINE ISLAND  ‐  ‐  MTL  EC  50.976  ‐127.728  15.0 
1026270  PORT HARDY A  71109  ‐  FSS  EC  50.680  ‐127.366  21.6 
1026562  QUALICUM AIRPORT  71766  ‐  AU8  EC  49.337  ‐124.394  58.2 
1027114  SAYWARD 2  ‐  ‐  DAILY CLIMATE  EC  50.325  ‐125.930  16.0 
1027115  SAYWARD BIG TREE CREEK  ‐  ‐  UNKNOWN  EC  50.233  ‐125.767  57.0 
1027403  SISTERS ISLAND  71781  ‐  AU8  EC  49.487  ‐124.435  20.0 
1027775  STRATHCONA DAM  ‐  ‐  UNKNOWN  EC  50.000  ‐125.583  201.2 
1030185  ALBERNI CITY RESERVOIR  ‐  ‐  UNKNOWN  EC  49.267  ‐124.783  64.6 
1030426  AMPHITRITE POINT  71112  ‐  MTR  EC  48.921  ‐125.540  26.5 
1031110  BULL HARBOUR  ‐  ‐  UNKNOWN  EC  50.917  ‐127.950  13.7 
1031353  CAPE SCOTT  71111  ‐  MTL  EC  50.782  ‐128.427  71.6 
1031413  CARNATION CREEK CDF  ‐  ‐  UNKNOWN  EC  48.900  ‐125.000  61.0 
1032731  ESTEVAN POINT CS  71894  ‐  AU8  EC  49.383  ‐126.545  7.0 
1033232  GOLD RIVER TOWNSITE  ‐  ‐  DAILY CLIMATE  EC  49.783  ‐126.048  140.0 
1033480  HOLBERG  ‐  ‐  NONE  EC  50.650  ‐128.000  579.0 
1033481  HOLBERG CCR  71562  ‐  AU5  EC  50.633  ‐128.117  568.0 
1035614  NOOTKA LIGHTSTATION  ‐  ‐  MTL  EC  49.600  ‐126.617  15.8 
1035940  PACHENA POINT  ‐  ‐  MTL  EC  48.723  ‐125.097  37.0 
1036206  PORT ALBERNI A  ‐  ‐  ‐  EC  49.250  ‐124.833  2.4 
1036572  QUATSINO LIGHTSTATION  ‐  ‐  MTL  EC  50.441  ‐128.033  21.0 
1036907  RUMBLE BEACH  ‐  ‐  UNKNOWN  EC  50.433  ‐127.483  106.7 
1036B06  PORT ALBERNI (AUT)  71475  ‐  AU8  EC  49.317  ‐124.926  76.2 
1037090  SARTINE ISLAND (AUT)  71478  ‐  AU8  EC  50.821  ‐128.908  111.5 
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Station ID  Name  WMO  WBAN  Type  Source  Latitude  Longitude 
Elevation 

(m) 

1037553  SOLANDER ISLAND (AUT)  71479  ‐  AU8  EC  50.112  ‐127.940  98.7 
1037650  SPRING ISLAND  ‐  ‐  UNKNOWN  EC  50.000  ‐127.417  11.3 
1038205  TOFINO A  71106  ‐  CON  EC  49.082  ‐125.773  24.4 
1038331  UCLUELET BRYNNOR MINES  ‐  ‐  UNKNOWN  EC  49.050  ‐125.433  91.4 
103EFJ0  NITINAT LAKE (AUT)  ‐  ‐  ‐  EC  48.667  ‐124.833  36.4 
1040390  ALTA LAKE  ‐  ‐  UNKNOWN  EC  50.150  ‐122.950  667.5 
1041710  CLOWHOM FALLS  ‐  ‐  UNKNOWN  EC  49.717  ‐123.533  22.9 
1042255  DAISY LAKE DAM  ‐  ‐  UNKNOWN  EC  49.983  ‐123.133  381.0 
1043150  GIBSONS  ‐  ‐  DAILY CLIMATE  EC  49.397  ‐123.514  62.0 
1043304  GRIEF POINT  ‐  ‐  AU8  EC  49.805  ‐124.525  10.0 
1045100  MERRY ISLAND LIGHTSTATION  71204  ‐  MTL  EC  49.468  ‐123.913  6.1 
1045101  MERRY ISLAND  71210  ‐  AU8  EC  49.467  ‐123.917  20.0 
10459NN  HOWE SOUND ‐ PAM ROCKS  71211  ‐  AU8  EC  49.488  ‐123.299  4.9 
1046330  PORT MELLON  ‐  ‐  UNKNOWN  EC  49.517  ‐123.483  7.6 
1046332  PORT MELLON  71605  ‐  AU8  EC  49.517  ‐123.483  122.6 
1046391  POWELL RIVER A  71208  ‐  CON  EC  49.834  ‐124.500  129.5 
1046392  POWELL RIVER  71720  ‐  AU8  EC  49.833  ‐124.483  125.0 
1046410  POWELL RIVER WESTVIEW  ‐  ‐  UNKNOWN  EC  49.833  ‐124.517  54.9 
1047172  SECHELT  71638  ‐  AU8  EC  49.450  ‐123.700  86.0 
1047669  SQUAMISH ST DAVIDS  ‐  ‐  UNKNOWN  EC  49.750  ‐123.000  21.3 
1047670  SQUAMISH STP  ‐  ‐  DAILY CLIMATE  EC  49.733  ‐123.150  6.1 
10476F0  SQUAMISH  71207  ‐  AU8  EC  49.783  ‐123.161  52.1 
1048310  TUNNEL CAMP  ‐  ‐  UNKNOWN  EC  49.617  ‐123.133  670.6 
1048898  WHISTLER  71175  ‐  CON  EC  50.129  ‐122.955  657.8 
1060080  ADDENBROKE ISLAND  ‐  ‐  MTL  EC  51.604  ‐127.864  ‐ 
1062295  DAWSONS LANDING  ‐  ‐  UNKNOWN  EC  51.583  ‐127.583  ‐ 
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Station ID  Name  WMO  WBAN  Type  Source  Latitude  Longitude 
Elevation 

(m) 

1062646  EGG ISLAND  ‐  ‐  MTL  EC  51.247  ‐127.835  ‐ 
1063461  HERBERT ISLAND (AUT)  ‐  ‐  AU8  EC  50.945  ‐127.636  16.5 

1100001 
CALLAGHAN VALLEY (SKI 
JUMP TOP)  71001  ‐  AU8  EC  50.140  ‐123.102  936.0 

1100004  CYPRESS BOWL FREESTYLE  71004  ‐  AU8  EC  49.393  ‐123.202  958.0 
1100030  ABBOTSFORD A  71108  ‐  ATI  EC  49.025  ‐122.361  59.4 
1100120  AGASSIZ CDA  ‐  ‐  DAILY CLIMATE  EC  49.243  ‐121.760  15.0 
1100360  ALOUETTE LAKE  ‐  ‐  UNKNOWN  EC  49.283  ‐122.483  117.3 

1100875 
BLACKCOMB MOUNTAIN 
BASE  71687  ‐  AU8  EC  50.133  ‐122.950  659.0 

1100881 
BLACKCOMB BASE SLIDING 
CENTER  71756  ‐  AU8  EC  50.101  ‐122.936  937.0 

1100882 
BLACKCOMB BASE SLIDING 
CENTRE BOTTOM  71367  ‐  AU8  EC  50.106  ‐122.942  816.6 

1101140  BUNTZEN LAKE  ‐  ‐  UNKNOWN  EC  49.383  ‐122.867  10.0 
1101300  CALLAGHAN VALLEY  71688  ‐  AU8  EC  50.144  ‐123.109  884.0 

1101310 
CALLAGHAN 
VALLEY(BIATHALON)  71003  ‐  AU8  EC  50.149  ‐123.116  856.0 

1101313 
CALLAGHAN VALLEY 
BIATHLON HIGH LEVEL  71293  ‐  AU8  EC  50.009  ‐123.119  882.7 

1101316 
CALLAGHAN VALLEY CROSS 
COUNTRY HIGH LEVEL  71304  ‐  AU8  EC  50.009  ‐123.106  915.5 

1101318 
CALLAGHAN VALLEY LOW 
LEVEL  71366  ‐  AU8  EC  50.006  ‐123.117  843.6 

1101320 
CALLAGHAN VALLEY(SKI JUMP 
BOTTOM)  71002  ‐  AU8  EC  50.133  ‐123.116  860.0 
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Station ID  Name  WMO  WBAN  Type  Source  Latitude  Longitude 
Elevation 

(m) 

1101562  CHILLIWACK MICROWAVE  ‐  ‐  UNKNOWN  EC  49.117  ‐121.900  228.6 
1101890  COQUITLAM LAKE  ‐  ‐  UNKNOWN  EC  49.367  ‐122.800  160.9 
1102255  CYPRESS BOWL NORTH  71689  ‐  AU8  EC  49.402  ‐123.208  953.0 
1102256  CYPRESS BOWL SOUTH  71693  ‐  AU8  EC  49.379  ‐123.192  960.0 
1102416  DELTA LADNER EAST  ‐  ‐  UNKNOWN  EC  49.083  ‐123.067  1.5 
1103328  HANEY MICROWAVE  ‐  ‐  UNKNOWN  EC  49.200  ‐122.517  320.0 
1103332  HANEY UBC RF ADMIN  ‐  ‐  DAILY CLIMATE  EC  49.265  ‐122.573  147.0 

1103635 
HUNTINGDON METER 
STATION  ‐  ‐  UNKNOWN  EC  49.000  ‐122.217  7.6 

1103636  HUNTINGDON VYE ROAD  ‐  ‐  UNKNOWN  EC  49.033  ‐122.200  25.0 
1104470  LADNER  ‐  ‐  UNKNOWN  EC  49.083  ‐123.017  1.2 
1104473  LADNER BCHPA  ‐  ‐  UNKNOWN  EC  49.083  ‐123.050  1.5 
1104555  LANGLEY LOCHIEL  ‐  ‐  UNKNOWN  EC  49.050  ‐122.583  100.9 
1104560  LANGLEY PRAIRIE  ‐  ‐  UNKNOWN  EC  49.150  ‐122.650  86.9 
1104565  LANGLEY WELLS  ‐  ‐  UNKNOWN  EC  49.067  ‐122.667  45.7 
1105192  MISSION WEST ABBEY  ‐  ‐  DAILY CLIMATE  EC  49.153  ‐122.271  221.0 
1105660  N VANCOUVER LYNN CREEK  ‐  ‐  UNKNOWN  EC  49.367  ‐123.033  190.5 
1105663  N VANCOUVER MOSQUITO CR  ‐  ‐  UNKNOWN  EC  49.350  ‐123.083  344.4 
1106178  PITT MEADOWS CS  71775  ‐  AU8  EC  49.208  ‐122.690  5.0 
1106180  PITT POLDER  ‐  ‐  DAILY CLIMATE  EC  49.283  ‐122.617  5.0 
1106200  POINT ATKINSON  71037  ‐  AU8  EC  49.330  ‐123.264  35.0 
1106256  PORT COQUITLAM CITY YARD  ‐  ‐  UNKNOWN  EC  49.267  ‐122.783  6.7 
1106257  PRT COQUITLAM PRAIRIE RD  ‐  ‐  UNKNOWN  EC  49.267  ‐122.733  2.7 
1106CL2  PORT MOODY GLENAYRE  ‐  ‐  DAILY CLIMATE  EC  49.279  ‐122.881  129.5 
1106L3K  PORT MOODY MERIDIAN  ‐  ‐  UNKNOWN  EC  49.300  ‐122.800  325.5 
1107010  SANDHEADS CS  71209  ‐  AU8  EC  49.106  ‐123.303  0.0 
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Station ID  Name  WMO  WBAN  Type  Source  Latitude  Longitude 
Elevation 

(m) 

1107680  STAVE FALLS  ‐  ‐  DAILY CLIMATE  EC  49.233  ‐122.367  110.0 
1107873  SURREY KWANTLEN PARK  ‐  ‐  DAILY CLIMATE  EC  49.193  ‐122.860  78.0 
1107876  SURREY MUNICIPAL HALL  ‐  ‐  DAILY CLIMATE  EC  49.107  ‐122.828  76.0 
1108446  VANCOUVER HARBOUR CS  71201  ‐  AU8  EC  49.295  ‐123.122  2.5 
1108447  VANCOUVER INTL A  71892  ‐  ATI  EC  49.195  ‐123.182  4.3 
1108465  VANCOUVER PMO  ‐  ‐  UNKNOWN  EC  49.283  ‐123.117  59.4 
1108487  VANCOUVER UBC  ‐  ‐  DAILY CLIMATE  EC  49.250  ‐123.250  76.0 
1108824  WEST VANCOUVER AUT  71784  ‐  AU8  EC  49.347  ‐123.193  168.0 

1108910 
WHITE ROCK CAMPBELL 
SCIENTIFIC  71785  ‐  AU8  EC  49.018  ‐122.784  13.0 

1108914  WHITE ROCK STP  ‐  ‐  DAILY CLIMATE  EC  49.019  ‐122.784  13.0 

1108987 
WHISTLER MOUNTAIN HIGH 
LEVEL  71684  ‐  AU8  EC  50.077  ‐122.946  1640.0 

1108988 
WHISTLER MOUNTAIN LOW 
LEVEL  71686  ‐  AU8  EC  50.088  ‐122.976  933.1 

1108989 
WHISTLER MOUNTAIN HIGH 
LEVEL REMOTE WIND  71685  ‐  AU8  EC  50.074  ‐122.947  1643.0 

1108990 
WHISTLER MOUNTAIN MID‐
STATION  71921  ‐  AU8  EC  50.085  ‐122.964  1320.0 

110FAG9  PITT MEADOWS STP  ‐  ‐  ‐  EC  49.217  ‐122.683  4.9 
110JA54  BURNABY MTN BCHPA  ‐  ‐  UNKNOWN  EC  49.283  ‐122.917  464.8 
110N6FF  N VANC SONORA DR  ‐  ‐  DAILY CLIMATE  EC  49.363  ‐123.098  182.9 
1113420  HELLS GATE  ‐  ‐  UNKNOWN  EC  49.783  ‐121.450  121.9 
1113540  HOPE A  ‐  ‐  ‐  EC  49.368  ‐121.498  39.0 
1113541  HOPE (AUT)  71114  ‐  AU5  EC  49.370  ‐121.494  39.0 
1114627  LILLOOET SETON BCHPA  ‐  ‐  DAILY CLIMATE  EC  50.673  ‐121.924  198.1 
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Station ID  Name  WMO  WBAN  Type  Source  Latitude  Longitude 
Elevation 

(m) 

1114739  LYTTON  71891  ‐  AU5  EC  50.224  ‐121.582  225.0 
1117215  SHALALTH  ‐  ‐  ‐  EC  50.728  ‐122.241  243.8 
1118135  TERZAGHI DAM  ‐  ‐  UNKNOWN  EC  50.783  ‐122.233  652.3 
690230  WHIDBEY ISLAND NAS  ‐  24255  ‐  ISH  48.350  ‐122.667  1.0 
690240  PACIFIC BEACH  ‐  ‐  ‐  ISH  47.217  ‐124.200  18.0 
710010  CALLAGHAN VALLEY SK  ‐  ‐  ‐  ISH  50.130  ‐123.100  936.0 
710030  CALLAGHAN VALLEY (B  ‐  ‐  ‐  ISH  50.150  ‐123.110  856.0 
710040  CYPRESS BOWL FREEST  ‐  ‐  ‐  ISH  49.400  ‐123.200  958.0 
710280  TATLAYOKO LAKE  ‐  ‐  ‐  ISH  51.660  ‐124.400  875.0 
710310  DISCOVERY ISLAND  ‐  ‐  ‐  ISH  48.410  ‐123.230  15.0 
710324  WHISTLER  ‐  ‐  ‐  ISH  50.130  ‐122.950  658.0 
710360  KELP REEFS  ‐  ‐  ‐  ISH  48.550  ‐123.230  0.0 
710370  POINT ATKINSON  ‐  ‐  ‐  ISH  49.330  ‐123.260  35.0 
710380  VICTORIA HARTLAND C  ‐  ‐  ‐  ISH  48.530  ‐123.430  154.0 
710400  WHITE ROCK  ‐  ‐  ‐  ISH  49.020  ‐122.780  15.0 
711050  PINE ISLAND (MAPS)  ‐  ‐  ‐  ISH  50.980  ‐127.730  9.0 
711054  SPRING ISLAND  ‐  ‐  ‐  ISH  50.000  ‐127.417  9.0 
711060  TOFINO  ‐  ‐  ‐  ISH  49.080  ‐125.770  24.1 
711080  ABBOTSFORD AIRPORT  ‐  ‐  ‐  ISH  49.030  ‐122.370  58.0 
711090  PORT HARDY AIRPORT  ‐  ‐  ‐  ISH  50.680  ‐127.370  22.0 
711100  ALERT BAY  ‐  ‐  ‐  ISH  50.580  ‐126.930  50.0 
711110  CAPE SCOTT LIGHT  ‐  ‐  ‐  ISH  50.783  ‐128.433  70.0 
711120  AMPHITRITE POINT  ‐  ‐  ‐  ISH  48.920  ‐125.550  27.0 
711131  WHISTLER ALTA LAKE&  ‐  ‐  ‐  ISH  50.133  ‐122.950  658.0 
711750  WHISTLER  ‐  ‐  ‐  ISH  50.110  ‐122.950  658.0 
712000  VICTORIA (AUTO8)  ‐  ‐  ‐  ISH  48.420  ‐123.320  70.0 
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Station ID  Name  WMO  WBAN  Type  Source  Latitude  Longitude 
Elevation 

(m) 

712003  VICTORIA (AUTO8)  ‐  ‐  ‐  ISH  48.417  ‐123.317  67.0 
712010  VANCOUVER (AUTO8)  ‐  ‐  ‐  ISH  49.300  ‐123.120  2.0 
712020  VICTORIA MARINE  ‐  ‐  ‐  ISH  48.367  ‐123.750  32.0 
712027  VIC. HARTLAND AUTO8  ‐  ‐  ‐  ISH  48.530  ‐123.470  49.0 
712050  CAMPBELL RIVER ARPT  ‐  ‐  ‐  ISH  49.950  ‐125.270  106.0 
712070  SQUAMISH (AUTO8)  ‐  ‐  ‐  ISH  49.780  ‐123.170  60.0 
712080  POWELL RIVER ARPT  ‐  ‐  ‐  ISH  49.830  ‐124.500  130.0 
712090  SAND HEAD (LS)  ‐  ‐  ‐  ISH  49.100  ‐123.300  1.5 
712110  PAM ROCKS  ‐  ‐  ‐  ISH  49.480  ‐123.300  10.0 
713325  GRIEF POINT  ‐  ‐  ‐  ISH  49.800  ‐124.510  10.0 
714730  SATURNA ISL (MAPS)  ‐  ‐  ‐  ISH  48.780  ‐123.050  24.0 
714735  VICTORIA HARBOUR  ‐  ‐  ‐  ISH  48.420  ‐123.330  5.0 
714750  PORT ALBERNI (MARS)  ‐  ‐  ‐  ISH  49.250  ‐124.830  2.0 
714755  BALLENAS IL AUTO8 &  ‐  ‐  ‐  ISH  49.250  ‐124.830  1.0 
714780  SARTINE ISL (MAPS)  ‐  ‐  ‐  ISH  50.820  ‐128.900  112.0 
714790  SOLANDER ISL (MAPS)  ‐  ‐  ‐  ISH  50.120  ‐127.930  99.0 
714810  HELMCKEN ISL (MAPS)  ‐  ‐  ‐  ISH  50.400  ‐125.870  19.0 
714830  NITINAT LAKE (MAPS)  ‐  ‐  ‐  ISH  48.670  ‐124.830  41.0 
714850  HERBERT ISL (MAPS)  ‐  ‐  ‐  ISH  50.930  ‐127.630  17.0 
715680  FANNY ISLAND  ‐  ‐  ‐  ISH  50.450  ‐125.980  8.0 
716840  WHISTLER MT HIGH LV  ‐  ‐  ‐  ISH  50.060  ‐122.930  1628.0 
716850  WHISTLER MTN HIGH L  ‐  ‐  ‐  ISH  50.060  ‐122.950  1643.0 
716860  WHISTLER MT LOW LVL  ‐  ‐  ‐  ISH  50.080  ‐122.960  903.0 
716870  BLACKCOMBE MTN BASE  ‐  ‐  ‐  ISH  50.110  ‐122.950  659.0 
716880  CALLAGHAN VALLEY  ‐  ‐  ‐  ISH  50.110  ‐123.100  869.0 
716890  CYPRESS BOWL NORTH  ‐  ‐  ‐  ISH  49.400  ‐123.200  953.0 
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Station ID  Name  WMO  WBAN  Type  Source  Latitude  Longitude 
Elevation 

(m) 

716930  CYPRESS BOWL SOUTH  ‐  ‐  ‐  ISH  49.360  ‐123.180  960.0 
717600  BIG CREEK  ‐  ‐  ‐  ISH  51.250  ‐123.080  1670.0 
717690  BALLENAS IL AUTO8  ‐  ‐  ‐  ISH  49.350  ‐124.170  5.0 
717720  ENTRANCE IL AUTO8  ‐  ‐  ‐  ISH  49.220  ‐123.800  5.0 
717740  MALAHAT (AUTO8)  ‐  ‐  ‐  ISH  48.580  ‐123.580  366.0 
717750  P. MEADOWS CS AUTO8  ‐  ‐  ‐  ISH  49.200  ‐122.680  5.0 
717770  PEMBERTON (AUTO8)  ‐  ‐  ‐  ISH  50.300  ‐122.730  204.0 
717780  RACE ROCKS AUTO8  ‐  ‐  ‐  ISH  48.300  ‐123.530  5.0 
717800  SHERINGHAM AUTO8  ‐  ‐  ‐  ISH  48.380  ‐123.920  21.0 
717810  SISTERS IL AUTO8  ‐  ‐  ‐  ISH  49.480  ‐124.430  5.0 
717830  VICTORIA UNIV  ‐  ‐  ‐  ISH  48.450  ‐123.300  60.0 
717840  W VANCOUVER AUTO8  ‐  ‐  ‐  ISH  49.350  ‐123.180  178.0 
717850  WHITE ROCK AUTO8  ‐  ‐  ‐  ISH  49.020  ‐122.780  15.0 
717980  ESQUIMALT MARITIME  ‐  ‐  ‐  ISH  48.430  ‐123.430  3.0 
717990  VICTORIA INTL ARPT  ‐  ‐  ‐  ISH  48.650  ‐123.430  19.0 
717995  VICTORIA MARINE RAD  ‐  ‐  ‐  ISH  48.367  ‐123.750  31.0 
718900  NANAIMO AIRPORT  ‐  ‐  ‐  ISH  49.050  ‐123.870  28.0 
718905  BALLENAS IL AUTO8 &  ‐  ‐  ‐  ISH  49.350  ‐124.170  0.0 
718916  CAPE MUDGE (LGT‐H)  ‐  ‐  ‐  ISH  50.000  ‐125.200  4.0 
718920  VANCOUVER INTL ARPT  ‐  ‐  ‐  ISH  49.180  ‐123.170  2.0 
718930  COMOX (CAN‐MIL)  ‐  ‐  ‐  ISH  49.720  ‐124.900  24.0 
718936  CAMPBELL RIVER ARPT  ‐  ‐  ‐  ISH  49.950  ‐125.270  106.0 
718937  CHATHAM POINT (LH)  ‐  ‐  ‐  ISH  50.330  ‐125.430  23.0 
718940  ESTEVAN PT. (MARS)  ‐  ‐  ‐  ISH  49.380  ‐126.550  7.0 
718944  ESTEVAN POINT (MAN)  ‐  ‐  ‐  ISH  49.383  ‐126.533  5.0 
718950  HOLBERG  ‐  ‐  ‐  ISH  50.650  ‐128.050  579.0 
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Station ID  Name  WMO  WBAN  Type  Source  Latitude  Longitude 
Elevation 

(m) 

718955  HOLBERG  ‐  25237  ‐  ISH  50.650  ‐128.050  579.0 
720202  TILAMOOK(AWS)  ‐  ‐  ‐  ISH  45.410  ‐123.810  11.0 
720254  CHEHALIS‐CENTRALIA  ‐  ‐  ‐  ISH  46.680  ‐122.980  53.0 
720272  SKAGIT RGNL ARPT  ‐  ‐  ‐  ISH  48.460  ‐122.410  44.0 
720388  PUYALLUP THUN FIELD  ‐  ‐  ‐  ISH  48.000  ‐122.280  164.0 
722208  EASTSOUND  ‐  ‐  ‐  ISH  48.710  ‐122.910  8.0 
726836  SCAPPOOSE INDUSTRIA  ‐  ‐  ‐  ISH  45.767  ‐122.850  1.6 
726881  MCMINNVILLE MUNI  ‐  ‐  ‐  ISH  45.200  ‐123.130  159.0 
726959  AURORA STATE  ‐  ‐  ‐  ISH  45.250  ‐122.770  60.0 
726963  TILLAMOOK  ‐  ‐  ‐  ISH  45.420  ‐123.820  11.0 
726980  PORTLAND INTERNATIONAL A  ‐  24229  ‐  ISH  45.600  ‐122.620  5.8 
726985  PORTLAND/TROUTDALE  ‐  ‐  ‐  ISH  45.550  ‐122.400  11.0 
726986  PORTLAND/HILLSBORO  ‐  ‐  ‐  ISH  45.530  ‐122.950  62.0 
726989  TILLAMOOK BAY (CGS)  ‐  ‐  ‐  ISH  45.567  ‐123.917  15.0 
727885  PORT ANGELES INTL  ‐  ‐  ‐  ISH  48.120  ‐123.500  88.0 
727910  ASTORIA REGIONAL AIRPORT  ‐  94224  ‐  ISH  46.150  ‐123.880  2.7 
727915  CAPE DISAPPOINTMENT  ‐  ‐  ‐  ISH  46.283  ‐124.050  55.0 
727916  GRAYS HARBOR (CGS)  ‐  ‐  ‐  ISH  46.917  ‐124.100  6.0 
727917  PACIFIC BEACH NF  ‐  ‐  ‐  ISH  47.217  ‐124.200  18.0 
727918  PEARSON FLD  ‐  ‐  ‐  ISH  45.620  ‐122.650  8.0 
727920  OLYMPIA AIRPORT  ‐  24227  ‐  ISH  46.970  ‐122.900  62.8 
727923  HOQUIAM AP  ‐  94225  ‐  ISH  46.980  ‐123.930  3.7 
727924  KELSO WB AP  ‐  24223  ‐  ISH  46.130  ‐122.900  4.9 
727925  SHELTON/SANDERSON  ‐  94227  ‐  ISH  47.230  ‐123.150  85.0 
727926  TOLEDO‐WINLOCK MEM  ‐  24241  ‐  ISH  46.480  ‐122.800  113.0 
727928  BREMERTON NTNL AWOS  ‐  ‐  ‐  ISH  47.500  ‐122.750  147.0 
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Station ID  Name  WMO  WBAN  Type  Source  Latitude  Longitude 
Elevation 

(m) 

727929  WILLAPA HARBOR  ‐  ‐  ‐  ISH  46.700  ‐123.817  5.0 
727930  SEATTLE SEATTLE‐TACOMA I  ‐  24233  ‐  ISH  47.470  ‐122.320  121.9 
727934  RENTON MUNICIPAL  ‐  ‐  ‐  ISH  47.500  ‐122.220  9.0 
727935  SEATTLE BOEING FIELD  ‐  24234  ‐  ISH  47.530  ‐122.300  6.1 
727937  EVERETT/PAINE FIELD  ‐  ‐  ‐  ISH  47.900  ‐122.280  185.0 
727938  TACOMA NARROWS  ‐  ‐  ‐  ISH  47.270  ‐122.580  89.0 
727939  ALKI POINT (CGLS)  ‐  ‐  ‐  ISH  47.517  ‐122.417  1.0 
727945  ARLINGTON MUNI  ‐  ‐  ‐  ISH  48.170  ‐122.170  42.0 
727964  OAK HARBOR AIRPARK  ‐  ‐  ‐  ISH  48.250  ‐122.670  58.0 
727965  ARLINGTON (AWOS)  ‐  ‐  ‐  ISH  48.167  ‐122.150  42.0 
727970  QUILLAYUTE STATE AIRPORT  ‐  94240  ‐  ISH  47.930  ‐124.570  54.6 
727973  BANGOR CGS  ‐  ‐  ‐  ISH  47.733  ‐122.717  0.0 
727974  DESTRUCTION ISLAND  ‐  ‐  ‐  ISH  47.667  ‐124.483  24.0 
727976  BELLINGHAM INTL AP  ‐  24217  ‐  ISH  48.800  ‐122.530  45.4 
727977  QUILLAYUTE RIV CGLS  ‐  ‐  ‐  ISH  47.900  ‐124.633  1.0 
727978  TATOOSH ISLAND  ‐  24240  ‐  ISH  48.383  ‐124.733  35.1 
727979  POINT WILSON  ‐  ‐  ‐  ISH  48.150  ‐122.750  14.9 
727984  NEAH BAY  ‐  ‐  ‐  ISH  48.370  ‐124.600  3.0 
727985  FRIDAY HARBOR  ‐  ‐  ‐  ISH  48.520  ‐123.020  33.0 
727996  NEW DUNGENESS (CGS)  ‐  ‐  ‐  ISH  48.167  ‐123.100  12.0 
728950  BULL HARBOUR (DEAD)  ‐  ‐  ‐  ISH  50.917  ‐127.950  4.0 
742004  BURROWS ISLAND  ‐  ‐  ‐  ISH  48.083  ‐122.100  18.0 
742005  PATOS ISLAND ANACORT  ‐  ‐  ‐  ISH  48.733  ‐122.967  0.9 
742006  BURLINGTON/MT VERN  ‐  ‐  ‐  ISH  48.470  ‐122.420  43.0 
742010  PORT ANGELES WB AP  ‐  24228  ‐  ISH  48.133  ‐123.400  6.1 
742015  SMITH ISLAND (CGLS)  ‐  ‐  ‐  ISH  48.317  ‐122.850  1.0 
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Station ID  Name  WMO  WBAN  Type  Source  Latitude  Longitude 
Elevation 

(m) 

742060  TACOMA MCCHORD AFB  ‐  24207  ‐  ISH  47.150  ‐122.480  88.1 
742065  POINT NO POINT USCG LIGH  ‐  ‐  ‐  ISH  47.920  ‐122.530  3.7 
742070  GRAY AAF  ‐  24201  ‐  ISH  47.080  ‐122.580  89.9 
742071  GRAY AAF  ‐  ‐  ‐  ISH  47.080  ‐122.580  92.0 
742075  POINT ROBINSON USCG LIGH  ‐  ‐  ‐  ISH  47.380  ‐122.370  3.0 
742076  WEST POINT (CGLS)  ‐  ‐  ‐  ISH  47.667  ‐122.433  4.0 
992060  ENVIRONM BUOY 46041  ‐  ‐  ‐  ISH  47.400  ‐124.500  3.0 
992370  ENVIRONM BUOY 46029  ‐  ‐  ‐  ISH  46.330  ‐124.330  3.0 
992460  ENVIRONM BUOY 46010  ‐  ‐  ‐  ISH  46.180  ‐124.180  3.0 
992750  ENVIRONM BUOY 46043  ‐  ‐  ‐  ISH  46.900  ‐124.200  3.0 
992970  ENVIRONM BOUY 46039  ‐  ‐  ‐  ISH  48.200  ‐123.400  3.0 
994011  ASTORIA  ‐  ‐  ‐  ISH  46.200  ‐123.760  2.0 
994013  CHEERY POINT  ‐  ‐  ‐  ISH  48.860  ‐122.750  5.0 
994014  SEATTLE  ‐  ‐  ‐  ISH  47.600  ‐122.330  2.0 
994015  FRIDAY HARBOR  ‐  ‐  ‐  ISH  48.550  ‐123.010  2.0 
994021  NEAH BAY  ‐  ‐  ‐  ISH  48.360  ‐124.610  5.0 
994024  PORT ANGELES  ‐  ‐  ‐  ISH  48.130  ‐123.430  5.0 
994025  PORT TOWNSEND  ‐  ‐  ‐  ISH  48.110  ‐122.750  5.0 
994029  TOKE POINT  ‐  ‐  ‐  ISH  46.700  ‐123.960  5.0 
994048  TACOMA  ‐  ‐  ‐  ISH  47.260  ‐122.410  5.0 
994070  DESTRUCTION ISLAND  ‐  ‐  ‐  ISH  47.670  ‐124.480  16.0 
994180  SMITH ISLAND  ‐  ‐  ‐  ISH  48.320  ‐122.830  15.0 
994300  TATOOSH ISLAND  ‐  ‐  ‐  ISH  48.380  ‐124.730  31.0 
994350  WEST POINT (LS)  ‐  ‐  ‐  ISH  47.670  ‐122.430  3.0 
994980  ENVIRONM BUOY 46041  ‐  ‐  ‐  ISH  47.330  ‐124.750  0.0 
996310  ENVIRONM BUOY 46046  ‐  ‐  ‐  ISH  46.300  ‐124.200  0.0 
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Station ID  Name  WMO  WBAN  Type  Source  Latitude  Longitude 
Elevation 

(m) 

996500  ENVIRONM BUOY 46206  ‐  ‐  ‐  ISH  48.800  ‐125.900  0.0 
996540  ENVIRONM BUOY 46204  ‐  ‐  ‐  ISH  51.300  ‐128.699  0.0 
996870  ENVIRONM BUOY 46146  ‐  ‐  ‐  ISH  49.333  ‐123.717  0.0 
996930  ENVIRONM BUOY 46131  ‐  ‐  ‐  ISH  49.900  ‐124.900  0.0 
996960  ENVIRONM BUOY 46132  ‐  ‐  ‐  ISH  49.733  ‐127.917  0.0 
997207  MOORED BUOY 46088  ‐  ‐  ‐  ISH  48.330  ‐123.160  0.0 
997243  MOORED BUOY #46087  ‐  ‐  ‐  ISH  48.500  ‐124.700  0.0 
997256  DESDEMONA SANDS  ‐  ‐  ‐  ISH  46.210  ‐123.950  7.0 
997263  MARSH ISLAND  ‐  ‐  ‐  ISH  46.210  ‐123.610  7.0 
997316  MOORED BUOY 46211  ‐  ‐  ‐  ISH  46.850  ‐124.230  0.0 
997374  MOORED BUOY 46089  ‐  ‐  ‐  ISH  45.880  ‐125.760  4.0 
997696  LA PUSH  ‐  ‐  ‐  ISH  47.910  ‐124.630  3.0 
997706  GARIBALDI TILLAMOOK  ‐  ‐  ‐  ISH  45.550  ‐123.900  3.0 
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Figure B-1: Temporal Coverage of Wind Speed Monitoring Stations
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Appendix C: LME Model Diagnostic Plots 

 
Figure C-1: Standardized Residuals Figure C-2: Quantile-Quantile Figure C-3: Auto-Correlation Function 
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Figure C-4: Standardized Residuals Figure C-5: Quantile-Quantile Figure C-6: Auto-Correlation Function 
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Figure C-7: Standardized Residuals Figure C-8: Quantile-Quantile Figure C-9: Auto-Correlation Function 
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Appendix D: Wind Damage Adaptation Interview Questions 

1. How does your organization view severe windstorms presently?  For example, as 

a threat, beneficial, or not acknowledged. 

2. Do you suffer damages from severe windstorms?  To what extent? 

3. What options are currently available to you to respond to damages caused by 

extreme wind speeds or severe wind storms? 

a. Technical responses? 

b. Policy responses? 

c. Institutional responses? 

4. What options are not currently available, but could be implemented in the future? 

5. What conditions would be necessary for these options to be implemented? 

6. Given the following situation: 

7. Annual storms (experienced over the past 50 years) with maximum wind speeds 

in the range of 80-100 km/h change to maximum wind speeds in the range of 

60-125 km/h in the future (i.e. get more variable). 

a. What would be the likely damages or benefits, from the 

current baseline? 

b. What actions would you take to respond? 

c. How effective do you think these actions would be? 

8. Explore Q6 for various levels of change (i.e., future scenarios). 

9. Would a planning tool that helps to forecast probabilities of wind speed regimes, 

for a time horizon of 1-2 years, be helpful to your organization? 

10. What improvements or changes would make this type of tool more helpful for 

your organization? 



 

 114

REFERENCE LIST 

Abeysirigunawardena, D., E. Gilleland, D. Bronaugh, and P. Wong (2009), Extreme 
Wind Regime Responses to Climate Variability and Change in the Inner South 
Coast of British Columbia, Canada, Atmosphere-Ocean, 47(1), 41-61.  

BC Hydro (2007), Winter Storm Report: October 2006 - January 2007.  

Bray, M., J. Hooke, and D. Carter (1997), Planning for Sea-Level Rise on the South 
Coast of England: Advising the Decision-Makers, Transactions of the Institute of 
British Geographers, 22(1), 13-30.  

Cade, B. S., and B. R. Noon (2003), A gentle introduction to quantile regression for 
ecologists, Frontiers in Ecology and the Environment, 1(8), 412-420.  

Costanza, R., and J. Farley (2007), Ecological economics of coastal disasters: 
Introduction to the special issue, Ecol.Econ., 63(2-3), 249-253, doi: DOI: 
10.1016/j.ecolecon.2007.03.002.  

Crout, R. L., I. T. Sears, and L. K. Locke (2008), The great coastal gale of 2007 from 
coastal storms program buoy 46089, OCEANS 2008, , 15-18 Sept. 2008.  

Enloe, J., J. J. O'Brien, and S. R. Smith (2004), ENSO Impacts on Peak Wind Gusts in 
the United States, J.Clim., 17(8), 1728-1737.  

Environment Canada (2007a), Canadian Climate Change Scenarios Network - GCM 
Criteria, 2010(01/25).  

Environment Canada (2007b), Marine Weather Services: Beaufort Wind Scale Table, 
2010(02/03).  

Environment Canada (2010), Canadian Centre for Climate Modelling and Analysis - The 
Canadian Regional Climate Model (CRCM), 2010(01/25).  

Gower, J. F. R. (2002), Temperature, Wind and Wave Climatologies, and Trends from 
Marine Meteorological Buoys in the Northeast Pacific, J.Clim., 15(24), 3709.  

Hewitson, B. C., and R. G. Crane (1996), Climate downscaling: techniques and 
application, Clim.Res., 07(2), 85-95.  

JISAO (2008), Climate Data Archive, Joint Institute for the Study of the Atmosphere and 
Ocean, University of Washington, 2010(01/25).  

Klink, K. (1999), Trends in mean monthly maximum and minimum surface wind speeds 
in the coterminous United States, 1961 to 1990, Clim.Res., 13(3), 193-205.  



 

 115

Klink, K. (2002), Trends and Interannual Variability of Wind Speed Distributions in 
Minnesota, J.Clim., 15(22), 3311.  

Koenker, R. (2005), Quantile Regression, 349 pp., Cambridge University Press, New 
York, NY.  

Mantua, N. J., and S. R. Hare (2002), The Pacific Decadal Oscillation, Journal of 
Oceanography, 58(1), 35-35-44, doi: 10.1023/A:1015820616384.  

McInnes, K. L., K. J. E. Walsh, G. D. Hubbert, and T. Beer (2003), Impact of Sea-level 
Rise and Storm Surges on a Coastal Community, Nat.Hazards, 30(2), 187-207.  

National Research Council (2006), Completing the Forecast: Characterizing and 
Communicating Uncertainty for Better Decisions Using Weather and Climate 
Forecasts, 124 pp., The National Academies Press, Washington, D.C.  

NCEP (2006), Teleconnections: AAO, AO, NAO, PNA, Climate Prediction Center - 
National Centers for Environmental Prediction, 2010(01/25).  

PFEL Upwelling and Environmental Index Products, Pacific Fisheries Environmental 
Laboratory - National Oceanic and Atmospheric Administration, 2010(01/25).  

Pinheiro, J., and D. Bates (2000), Mixed-Effects Models in S and S-PLUS, 528 pp., 
Springer, New York, NY.  

Pinheiro, J., D. Bates, S. DebRoy, D. Sarkar, and R Development Core Team (2009), 
nlme: Linear and Nonlinear Mixed Effects Models, R package version 3.1-93 ed.  

Pryor, S. C., R. J. Barthelmie, D. T. Young, E. S. Takle, R. W. Arritt, D. Flory, W. J. 
Gutowski J., A. Nunes, and J. Roads (2009), Wind speed trends over the 
contiguous United States, J.Geophys.Res., 114, doi: 10.1029/2008JD011416.  

R Development Core Team (2009), R: A language and environment for statistical 
computing, R Foundation for Statistical Computing, Vienna, Austria.  

Rasmusson, E. M., and J. M. Wallace (1983), Meterological Aspects of the El 
Niño/Southern Oscillation, Science, 222(4629), 1195-1202.  

Reynolds, R. (2005), Guide to the Weather, 208 pp., Firefly Books Ltd., Richmond Hill, 
Ontario.  

Ropelewski, C. F., and M. S. Halpert (1986), North American Precipitation and 
Temperature Patterns Associated with the El Niño/Southern Oscillation (ENSO), 
Mon.Weather Rev., 114, 2352-2362.  

Schwing, F. B., T. Murphree, and P. M. Green (2002), The Northern Oscillation Index 
(NOI): a new climate index for the northeast Pacific, Prog.Oceanogr., 53(2-4), 
115-139, doi: DOI: 10.1016/S0079-6611(02)00027-7.  

Thompson, D. W. J., and J. M. Wallace (1998), The Arctic Oscillation Signature in the 
Wintertime Geopotential Height and Temperature Fields, Geophys.Res.Lett., 
25(9), 1297-1300, doi: 10.1029/98GL00950.  



 

 116

Tuller, S. E. (2004), Measured wind speed trends on the west coast of Canada, 
Int.J.Climatol., 24(11), 1359-1374, doi: 10.1002/joc.1073.  

Vancouver Board of Parks and Recreation (2007), Stanley Park Restoration, , Vancouver, 
BC.  

Venables, W. N., and B. D. Ripley (2002), Modern Applied Statistics with S., Fourth 
Edition ed., Springer, New York, NY.  

Vingarzan, R., and B. Thomson (2004), Temporal Variation in Daily Concentrations of 
Ozone and Acid-Related Substances at Saturna Island, British Columbia, J.Air 
Waste Manag.Assoc., 54(4), 459-472.  

Walker, I. J., and R. Sydneysmith (2008), British Columbia, in From Impacts to 
Adaptation: Canada in a Changing Climate 2007edited by D. S. Lemmen, F. J. 
Warren, J. Lacroix and E. Bush, pp. 329-386, Government of Canada, Ottawa, 
ON, .  

Wallace, J. M., and D. S. Gutzler (1981), Teleconnections in the Geopotential Height 
Field during the Northern Hemisphere Winter, Mon.Weather Rev., , 784-812.  

Ware, D. M., and G. A. McFarlane (1989), Fisheries Production Domains in the 
Northeast Pacific Ocean, Can. Spec. Publ. Fish. Aquat. Sci., 108, 359-379.  

Zuur, A. F., E. N. Ieno, and G. M. Smith (2007), Analysing Ecological Data, 683 pp., 
Springer, New York, NY.  

Zuur, A. F., E. N. Ieno, N. J. Walker, A. A. Saveliev, and G. M. Smith (2009), Mixed 
Effects Models and Extensions in Ecology with R, 580 pp., Springer, New York, 
NY.  

 


