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ABSTRACT

It is suggested that when assessing the environmental tate or toxicity of
organic chemicals, especially those of congeneric series, such as PCBs, it is
usetul to gatherand critically review their basic properties including solubility,
vapour pressure, octanol/water partition coefficientand Henry's law constant.
Thisapproach isillustrated for three series of chemicals, the chlorobenzenes,
the polychiorinated biphenyls and the chiorinated dibenzo-p-dioxins.
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INTRODUCTION

Accurate values of the physical-chemical properties of chemicals are essential
for estimating environmental behaviour and for assembling quantitative
structure-activity relationships (QSARs). Each chemical has a set of parti-
tioning, reaction and transport properties controlling partitioning and
migration between air, water, soils, sediments and biota, as well as within
organisms, and between biood and various tissues, including, it can be
presumed, the target tissue at which the toxic effect(s) are manifested. in view
ot the large number of organic chemicals released into the enviroment, it is
essential to build up a predictive capability in which the behaviourand effects
of one chemical can be deduced from those of structurally simiiar chemicals.
These deductions are the subject of the chapters in this text.
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Oneoftenneglected aspect of thisissue is the acquisition and treatment of the
basic physical-chemical data. In this chapter we review the retationships
between physical-chemical properties and suggest methods of treating data
of congeneric series using as examples the chlorobenzenes (CBs), polychlor-
inated biphenyis (PCBs) and polychlorinated dibenzo-p-dioxins (PCDDs).

It transpires that chemicals partition between five basic media, and it is the
relative extent of partitioning which controls environmental and pharma-
cokinetic fate. These media are as follows.

Air: Obviously, more volatile chemicals such as halo-methanes will partition
primarily into air because of their high vapour pressure. Indeed, vapour
pressure is really “solubility in air” in disguise. The common vapour pressure
PS (superscript S designating saturation or maximum value) being convertible
into a concentration by dividing P° by the gas constant temperature product
RT.

Water: Water soluble chemicals such as phenols or linear alcohols tend to
remain primarily in agueous solution. In many cases they may dissociate 1o
iontc forms thus further increasing their solubility.

Organic Media: Many hydrophobic, low vapour pressure chemicals (e.g.,
PCBs) partition primarily into organic media such as natural organic carbon of
ligneous origin, lipids or fat. Such chemicals often display iarge bioconcen-
tration factors andlongretention in fatty tissues. Octanol is the most common
surrogate phase for laboratory determinations cf partitioning tendency into
organic media. Rarely are solubilities in organic media measured; usually
concentration ratios such as octanol/water partition coefficients (K,,,) are
employed. There may not be a true solubility of, for example, benzene in
octanol because the liquids are miscible, but a “pseudo-solubility” can be
deduced ifitisassumed that K, is the ratio of the pseudo-solubility in octanol
Q to water solubility C°. Q is thus the product K, CS and shows remarkable
constancy at 200 to 3000 mol-m™ (Miller et al. 1985).

Mineral Surfaces: These surfaces tend to be relatively unimportant for
organic chemical sorption especially whencompeting organic media are also
present. Indeed it is suspected that in many situations natural mineral surfaces
become rapidly coated with organic matter. We ignore this medium.

Pure Phase: Some solid organic chemicals of very high motecular weight
including polymers, certain hydrocarbons and some dyes have negligible
solubilities in air, water and organic media and thus tend to remain in their
pure phases as shown in FIGURE 1. As the amount of chemical is increased,
the concentrations in each phase tend to increase linearly maintaining a
constant ratio or partition coefficient to each other. At saturation, or the
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solubility limit, any extra chemical added forms a new pure phase. It is
convenient to express these tendencies as solubilities inair, water and organic
media, from which the various partition coefficients can be deduced. In

principie “solubilities” can also be deduced for tissues such as muscle and
liver. A chemical’'s three key environmental solubilities are those in air, in water
and in octanol, i.e., the Ko, CS product.
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FIGURE 1: Generalized partitioning behaviour of chemicals in the environ-

ment.

THERMODYNAMIC BASIS

Solid and Liquid Solubilities: As has been discussed by several workers,
including us in the previous text in this series (Mackay and Shiu 1984), it is
essential to convert ali solubilities and vapor pressures to the values for
subcooled liquids, i.e., those solubilities which the solid chemical would have
if it could exist at the desired temperature in the liquid state. The ratio of the
solid to subcooied liquid solubility can be estimated by the approximate

relationship (Prausnitz 1879)
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F = CSy/CS. = exp(-6.97(Ty/T-1)) (1)

where F is the fugacity ratio, T,, is the melting point and T is the system
temperature, both in °K. The number 6.97 derives from Walden's rule and is the
entropy of fusion at the melting pointdivided by the gas constant. Preferably it
should be measured catorimetrically and a correctionincluded for solid-liquid
heat capacity differences, but forinitial assessment purposes this expression
is adequate.

Similarly, the ratio of the sotid to subcooled liquid vapour pressure is
pSS = FPSL (2)

The partitioning of organic chemical between air and water can be expressed
by the Henry's law constant, H, [Pasm3-mol™"

H = PS,C5 = PS/CS, (3)
and the dimensionless air/water partition coefficient is

H = H/RT (4)
The octanol/water partition coefficient is defined as

Kow = Cow/Cwo (3)

where C,, is the concentration of solute in octanol saturated with water and
Cwo is the concentration of solute in water saturated with octanol.

The relation between aqueous solubility and octanol/water partition coeffi-
cient has been studied extensively. Mackay et al. (1980) and Banerjee et al.
{1980) found their product Q to be relatively constant. However, recently,
Miller et al. (1985) have analysed more accurate data for larger motecules
(Miller et al. 1984) and shown that Q varies with molar volume or chiorine
number in @ homologous series,

logQ=A-BV=A"-8BN (6)

where A, A’ B, B' are constants, V and N are molar volume and chlorine
number, respectively. SinceQis CSLKOW,itcan be considered asanapproximate
“pseudo-solubility” of the chemical in octanol saturated with water.

We suggest that when considering the development of QSARs, some effort
should bedevoted to ensuring that the physical-chemical properties which are
used to describe and correlate biological phenomena are consistent and
sufficiently accurate. We illustrate this by considering three series of
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chemicals; the well characterized chlorobenzenes, the polychlorinated
biphenyls which are less well characterized and much greater in number, and
the polychlorinated dibenzo-p-dioxins, which are still poorly characterized.

RESULTS AND DISCUSSION

TABLE 1 gives the reported values or ranges of the physical-chemical
properties of chlorobenzenes (CBs), polychlorinated biphenyts (PCBs) and
polychiorinated dibenzo-p-dioxins (PCDDs). Fugacity ratios were obtained
from a single estimated entropy of fusion of 56 Jemol+°K (Yalkowsky 1979),
molar volumes were calculated by the Le Bas method, an additive group
contribution method (Reid et al. 1877). Total surface area {TSA) values were
obtained from Yalkowsky et al. (1979 a.b). Solubilities, vapour pressures and
octanol/water partition coefficients (Andren et al. 1986; Shiu and Mackay
1986; Bobra et al. 1385) are also tabulated. Henry's law constants were
calculated as PS /CS_and the octanol solubility Q as CS Ky

Atwo-stage processis suggested for the analysisand correlation of the above
environmentally relevant properties: CS, Kow- PS and H. In the first stage,
simple correlation equations can be derived by plotting the experimental data
against chlorine number and molar volume. Isomer differences are thus
ignored. A more rigorous second stage involves consideration of the
difference between isomers using a more refined molecular descriptor. such
as TSA.
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FIGURE 2 shows the linear relationships between chiorine number N and
molar volume V [cm3-mot~']. The corresponding regressions are given in
equations 7 to 9:

CBs: V = 96+209N (7)
o= 1

PCBs: V = 1846-+209N (8)
o= 1

PCDDs:V = 182+209N (9)
o= 1

where r? is the correlation coefficient which is unity for all three congeneric
series because the Le Bas method (Reid et al. 1977) assumes an incremental
molar volume increase of 20.9 cm3-mo!~' for each chlorine atom.
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FIGURE 3: Pilot of aqueous subcooled liquid solubility (C_) versus chiorine
number (N}.

FIGURE 3 shows the new linear plots of log CL versus chlorine number and
FIGURE 4 the same data as a function of molar volume. The slopes of the three
group regressions are similar but not identical. It is possible to estimate
solubility from molar volume from these plots with a probable accuracy of plus
or minus a factor of 10 down to 1073 mol-m~? and a factor of 100 at 107°
mol-m™3. Frequently reported data contain considerable error. Plots such as
FIGURE 4 help to identify such data.
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FIGURE 5 and FIGURE 6 give the vapour pressure data in similar form, the
linear behaviour being again evident. Thereis agreater spread in properties at
a given molar volume than tor solubility.

FIGURES 7 and 8 give the K, data. There is a distinct trend for nonlinear
behaviour when log K, exceeds 6. thus extrapolation from low K, data
using a consistent increment per chlorine added is inaccurate. The lines
shown are quadratic regressions. Thisnonlinear progression is also illustrated
inFIGURES9and 10which give the plotforlog Q. Log Qis fairly constantand
intherange 2.5t0 3.5 formolar volumes up to 250cm™mol™" butittends to fall
at higher motar volumes and its behaviour is erratic. It is suspected that much
of the variation is attributable to errors in K. Few log Q values fali below 2.
i.e., Q fess than 100 mof-m™ FIGURES 11 and 12 give the Henry's law
constants as a function of N and V. it is remarkabie how constant the PCBs’
Henry’'s law values are.

Finally. FIGURE 13 gives a plot of iog K, versus fog C, showing the well
established linear refationship with a slope of approximately -0.8 (Miller et al.
1985).
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We suggestthatitisusefu! loprepare plotssuch as those presented here fora
seriesofcongeners. Itappears that there are broad similarities in dependence
of properties on N and V. Estimates can then be made of physical-chemical
properties and “reasonableness” can be assessed. Erroneous data can be
identified and discarded before they become too widely accepted.

These data enable assessments to be made of how chemicals in a series will
differ in their environmental behaviour as they partition between air, water and
organic phases. As is discussed by Gobas et al. (1987) elsewhere in this text.
extreme caution must be used when calculating partitioning coefficientsinto
organic media when log K., exceeds 5. It is suspected that octanol then
ceases to be a satisfactory surrogate for lipids and probably also for organic
matter sorption.

From these plotsan impressioncanalso be obtainzd of the relative partitioning
behaviour, expressed as solubilities. For example. if we consider three
hycdrophobic organic chemicals typical of these series, we can estimate
solubilities tc be in the order of values given in TABLE 2. as follows (arr
solubility being P/RT as discussed earlier)
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TABLE 2: Environmental media solubilities (molm™3)

Chemical A Chemical B Chemical C
Molar voiume, cm3+mol™" 150 250 350
Solubility in air : 4+1072 441078 4+107'0
Solubitity in water 0.3 0.001 0.000061
Solubility in octanol 2000 300 100
Typical log Ky 3.8 5.5 7.0
Typical K,y 0.1 0.004 0.00004

The picture which emerges is of a fairly constant organic medium solubility.
The result is a strong tendency to partition into biota and sediments. The low
air/water partition coefficients are potentially misleading. Environmental
volumes of air are larger than those of water by a factor of 10° to 10°, thus K,
values of 107310 107® must be regarded as appreciable and values exceeding
107 are very large. Therefore a substantial fraction of chemicais A and B will
tendtoenter orremain in the atmosphere. But those of high molar volume and
low vapour pressure will tend to partition on to atmospheric particulates and
become subject to wet and dry deposition.

CONCLUSION

In conclusion, we suggest that when a new chemical or series of chemicals,
such as the chiorinated dibenzofurans become the subject of environmental
assessments it is important to obtain, correlate and interpret'their physical-
chemical property data using the approach suggested here. As more reliable
experimental data become available, more refined property-structure rela-
tionships canbedevelopedinciuding isomerdifferences, buta necessary first
stage isto establish refiable initial estimates of three key “solubilities”. Much
usefulenvironmental fate information can bededuced from these data, indeed
it is difficult to conceive how reliable environmental fate information can be
obtained or interpreted without such data.
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