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ate bioaccumulation in aquatic food
webs.

• Model parameters having the greatest
influence on bioaccumulation were
evaluated.
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system.

• Spatial concentration differences may
bias interpretation of bioaccumulation.

• Model is useful for a priori design and a
posteriori evaluation of field studies.
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Trophic magnification factors (TMFs) are field-based measurements of the bioaccumulation behavior of
chemicals in food-webs. TMFs can provide valuable insights into the bioaccumulation behavior of chemicals.
However, bioaccumulation metrics such as TMF may be subject to considerable uncertainty as a consequence
of systematic bias and the influence of confounding variables. This study seeks to investigate the role of system-
atic bias resulting from spatially-variable concentrations in water and sediments and biotransformation rates on
the determination of TMF. For this purpose, a multibox food-web bioaccumulation model was developed to ac-
count for spatial concentration differences and movement of organisms on chemical concentrations in aquatic
biota and TMFs.Model calculated and reportedfield TMFs showedgood agreement for persistent polychlorinated
biphenyl (PCB) congeners and biotransformable phthalate esters (PEs) in amarine aquatic food-web.Model test-
ing showedno systematic bias and goodprecision in the estimation of the TMF for PCB congeners but an apparent
underestimation of model calculated TMFs, relative to reported field TMFs, for PEs. A model sensitivity analysis
showed that sampling designs that ignore the presence of concentration gradients may cause systematically bi-
ased and misleading TMF values. The model demonstrates that field TMFs are most sensitive to concentration
gradients and species migration patterns for substances that are subject to a low degree of biomagnification or
trophic dilution. The model is useful in anticipating the effect of spatial concentration gradients on the determi-
nation of the TMF; guiding species collection strategies in TMF studies; and interpretation of the results of field
bioaccumulation studies in study locations where spatial differences in chemical concentration exist.

© 2016 The Authors. Published by Elsevier B.V. This is an open access article under the CC BY-NC-ND license
(http://creativecommons.org/licenses/by-nc-nd/4.0/).
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1. Introduction

Globally, chemicals are routinely evaluated for their bioaccumula-
tion potential (European Chemicals Agency, 2008; European Parliament
and the Council of the European Union, 2006; Government of Canada,
1999; Government of Canada, 2000; UNEP, 2001). Several metrics for
assessment of chemical bioaccumulation in aquatic organisms and
food webs can be considered, including the octanol-water partition co-
efficient (KOW), bioconcentration factor (BCF), bioaccumulation factor
(BAF), biomagnification factor (BMF), and trophic magnification factor
(TMF) (Burkhard et al., 2012; Gobas et al., 2009; Weisbrod et al.,
2009). The BCF is often preferred over KOW (considered a surrogate for
lipid-water partitioning in aquatic biota) because the BCF considers ab-
sorption and biotransformation processes in addition to simple
organism-water partitioning. However, the BCF is determined under
laboratory conditions and does not include dietary exposures and
hence excludes the potential for biomagnification (Connolly and
Pedersen, 1988; Gobas et al., 1999). In the environment, the diet is
often the dominant exposure pathway for very hydrophobic chemicals
(Connolly and Pedersen, 1988; Qiao et al., 2000), and the need to con-
sider bioaccumulationmetrics that includedietary exposures is general-
ly well recognized (Abelkop et al., 2013; Gottardo et al., 2014;
Moermond et al., 2012). Field-derived BAFs, BMFs and TMFs are envi-
ronmentally relevant because they include all routes of chemical expo-
sure and ecosystem processes. It is notable that TMF and BMF, which
were proposed as the most relevant metrics for the identification and
categorization of bioaccumulative chemicals, based on a threshold
TMF or BMF N 1.0 (Gobas et al., 2009), are explicitly included in
weight-of-evidence assessments of bioaccumulation under REACH
(ECHA, 2011; ECHA, 2014). Similarly, it has been proposed that the
greatestweight-of-evidence ought to be given to high qualityfield stud-
ies when assessing the potential for bioaccumulation and
biomagnification (Bridges and Solomon, unpublished manuscript).
However, interpretation of field data is susceptible to systematic bias
because of uncertainty due to spatial heterogeneity and temporal vari-
ability in environmental concentrations (Burkhard, 2003), uncertainty
in trophic interactions, species migration and organism home range
(Borgå et al., 2012), limited statistical power (Conder et al., 2012), and
other ecosystem-specific factors such as sediment-water disequilibrium
conditions (Gobas and MacLean, 2003). In some cases, the between-
study and within-study variability in exposure conditions is so great
that the field data may be questionable and its usefulness severely lim-
ited unless experimental designs are implemented that control or ac-
count for such variation (Cressie, 1993; Gilbert, 1987). Starrfelt et al.
(2013) used Bayesian inference to reduce uncertainty and increase pre-
cision of field TMFs. However, this approach does not decrease variabil-
ity or systematic bias of the TMF thatmay occur, for example, as a result
of spatial differences in sediment-water concentration distributions.

Field TMFs ofwell-studied hydrophobic chemicals that are known to
biomagnify in aquatic foodwebs, such as several polychlorinated biphe-
nyl (PCB) congeners and other legacy contaminants, are regularly deter-
mined with relatively high precision for individual study areas and
hence are often used as reference chemicals (e.g., PCB-153 and PCB-
180) for trophic magnification studies. However, several studies have
reported that TMFs are highly variable when compared across study
areas, which has been attributed to uncertainty in the determination
of TMF, especially for legacy contaminants and emerging chemicals
that have been identified as being very bioaccumulative. For example,
Franklin (2015) highlighted the variability and uncertainty in field
BMFs and TMFs for per- and poly-fluoroalkyl substances (PFASs) from
various ecosystems. Published field TMFs for themost intensively stud-
ied PFASs ranged from 0.58 to 13 (n=10 studies) for perfluorooctanoic
acid (PFOA) and from 1.0 (TMF not statistically significant; p N 0.05) to
20 (n = 12 studies) for perfluorooctane sulfonic acid (PFOS). The vari-
ability and uncertainty were hypothetically attributed to such factors
as non-achievement of steady state, differences in feeding ecology,
biotransformation, seasonal and annual growth rates, gender, repro-
ductive off-loading, and failure to co-locate prey and predators,
among others. Franklin (2015) thus concluded that given the possi-
ble confounding factors in field studies, it was preferable to base reg-
ulatory decisions on tests conducted under strictly monitored
laboratory conditions with selected species and use field observa-
tions as only one component of a broader weight of evidence
evaluation.

Similar to that observed for PFAS, review of published field TMFs for
the most intensely studied polychlorinated biphenyls in aquatic poikilo-
thermic food webs ranged from 0.48 to 15 (n = 49 studies) for PCB-
153 and from 0.56 to 17 (n = 43 studies) for PCB-180 (D. E. Powell, un-
published results). Review of published and reported field TMFs for the
most intensely studied cyclic volatile methylsiloxanes (cVMS) ranged
from 0.54 to 1.5 (n = 20 studies) for octamethylcyclotetrasiloxane
(D4), from0.25 to 3.2 (n=21 studies) for decamethylcyclopentasiloxane
(D5) (Gobas et al., 2015), and from 0.32 to 2.7 (n = 20 studies) for
dodecamethylcyclohexasiloxane (D6); Table S1 of the of the Supplemen-
tal information, SI. For a subset of the cVMS (n= 11 study areas) and the
PCB congeners (n = 6 study areas), differences between field TMFs do
not appear to be explained by systematic differences between the study
areas—i.e., between environment (marine vs. freshwater), type of food
web (pelagic vs. demersal), length of the sampled food webs, or species
composition of the sampled food webs (Table S1 of the SI). Rather, the
TMF contradictions between study areas may be related to differences
in food web dynamics and variable conditions of exposure. Similarly,
Guildford et al. (2008) concluded that the variability associated with
field TMFs for PCBs in salmonid food webs was influenced by habitat
use and lake characteristics.

The contradictions in reported field TMFs between study areas em-
phasizes the importance of identifying the apparent causes of variabili-
ty, including whether the different findings are due to different
ecosystems investigated, sampled food web species, insufficient under-
standing of food web dynamics (i.e., predator prey relationships and
trophic level structure), or other differences in foodweb characteristics,
studymethodology, and experimental design. For example, it is typical-
ly assumedwhen calculating a field TMF that all individuals and species
in the sampled food web are exposed to the same conditions across the
study area such that the confounding factors of non-uniform patterns of
organismmovement and variable conditions of exposuremay therefore
be ignored (Borgå et al., 2012). Consequently, the location from where
samples are taken may not be considered important even for environ-
ments where spatial concentration differences are inevitably present.
Spatial concentration differences of a chemical in the water and sedi-
ment are expected to exist due to the presence of point source(s) of
the chemical, as may occur, for example, from a wastewater treatment
facility or a production facility. However, spatial concentration differ-
ences may also occur across thermoclines, pycnoclines, and other phys-
ical interfaces in areas that are remote from point sources, which is
wheremost TMF studies have thus far been conducted. Sediment focus-
ing and advective transport of sediment bound contaminants from high
energy erosional areas to low energy depositional areas may also cause
spatial concentration differences to exist in areas that do not receive
point source emissions. Also, sediment-water fugacity ratios can vary
among locations as a result of temporal changes of contamination levels
and differences in the degree of carbon utilization among locations
(Gobas and MacLean, 2003).

It is recognized that, while the use of environmentally-relevant bio-
accumulation metrics is highly desirable, the current variability in data
generated from field studiesmay hinderwidespread use of field derived
bioaccumulation data for regulatory assessment. Improved quality and
scientific understanding of field bioaccumulation metrics, such as the
TMF, and the factors that affect thesemetrics are thus needed to reduce
variability and foster confidence in using this type of data for decision-
making (Burkhard et al., 2013). A better recognition of the factors con-
trolling field derived bioaccumulation metrics may also provide



Fig. 1. Configuration of the new 2D Multibox-AQUAWEB model showing 9 water
compartments and 3 sediment compartments used to define the False Creek ecosystem.
The number pairs (i,j) in each compartment are the unique identifiers used in the model.
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guidance and/or protocols for conducting field bioaccumulation studies
that reduce uncertainty associated with these confounding factors.

Differences in the biotransformation rates of a chemical among or-
ganisms have the potential to dominate the bioaccumulation process.
However, BMFs and TMFs for some compounds can also be low due to
a low dietary assimilation efficiency, caused by intestinal biotransfor-
mation (Lo et al., 2015b) and/or a reduced gastro-intestinal absorption
rate (Gobas et al., 1988). For hydrophobic compounds, toxicokinetics
(i.e., the culmination of the combined effects of absorption, distribution,
metabolism, and excretion or ADME) are often important contributors
to the primary determinant of observed differences in the concentration
of chemicals (i.e., bioaccumulation) among various wildlife species
(Nichols et al., 2007). The toxicokinetic parameters required for effec-
tive bioaccumulation modeling include uptake rate constants from
water and food, biotransformation/metabolism rate coefficients, and
elimination rate constants from the animal. For aquatic organisms ex-
posed to hydrophobic compounds, the role of dietary uptake to total
chemical exposure becomes increasingly pronounced with increasing
chemical hydrophobicity and often becomes dominant when KOW ex-
ceeds a value of approximately 106 due to more efficient mass transfer
(Barber, 2008; Connolly and Pedersen, 1988; Gobas et al., 1989; Qiao
et al., 2000; Thomann, 1989). A critical parameter in understanding
chemical transfer and food web accumulation via the diet is the assim-
ilation efficiency (ED) from ingested food/prey (Landrum et al., 1992;
Liu et al., 2010; Thomann, 1981; Wang and Fisher, 1999). In addition,
the rate of metabolism or biotransformation (kM) can vary greatly
among chemicals and this parameter has the potential to dominate
the bioaccumulation process and markedly influence cumulative eco-
logical toxicity (Arnot et al., 2008b; Brown et al., 2012; Lech and Bend,
1980; Nichols et al., 2006). The rate of chemical elimination from aquat-
ic species is sufficiently important that Goss et al. (2013) have proposed
use of the overall elimination rate as an alternative bioaccumulation
metric for chemical assessment. Thus further evaluation of these factors
(i.e., ED and kM) via in vivo testing is important for quantifying
biomagnification in fish and higher trophic level organisms (Mackay
et al., 2013; Nichols et al., 2015).

Mass balance food web bioaccumulation models have been devel-
oped and applied to calculate chemical concentrations and BAFs in var-
ious species (Barber et al., 1991; Campfens andMackay, 1997;Morrison
et al., 1997; Morrison et al., 1999; Thomann and Connolly, 1984;
Thomann et al., 1992). Models are often required to interpret environ-
mental data and they provide mechanistic insights by integrating
knowledge on chemical, biological, and ecosystem properties. Model
sensitivity and uncertainty analyses can identify key processes underly-
ing the model calculations and measured information (Gobas and
Arnot, 2010; MacLeod et al., 2002; McLeod et al., 2015; Morgan and
Small, 1992; Morrison et al., 1996) and can also be used to illustrate
the roles of various chemical properties and processes (Moermond
et al., 2007; Thomann, 1989) that influence bioaccumulation metrics,
such as KOW and the biotransformation rate constant, kM (Arnot et al.,
2008a; Burkhard, 2003; McLeod et al., 2015). The AQUAWEB model
and variations of this model have been applied and evaluated in several
diverse ecosystems (Arnot and Gobas, 2004; Gewurtz et al., 2009;
Gewurtz et al., 2006; Gobas and Arnot, 2010), and the model has been
used to calculate TMFs (McLeod et al., 2015; Walters et al., 2011). Re-
cently, McLeod et al. (2015) used the AQUAWEBmodel to demonstrate
uncertainty in the TMFs of PCBs in the Detroit River due to fish migra-
tion and spatial concentration gradients.

The objective of the present study was to investigate the role of se-
lected factors on derivation of field based bioaccumulation metrics. A
new Multibox-AQUAWEB (MBAW) model was developed in which or-
ganisms could migrate through two-dimensional chemical concentra-
tion gradients (vertically and horizontally). The model was applied
and tested against a marine ecosystem for whichmeasurements of spa-
tially varying chemical concentrations in water, sediments and biota
were available (Mackintosh et al., 2004). Reported field TMFs and
model calculated TMFs for two classes of hydrophobic organic
chemicals, i.e., persistent PCBs and the more labile phthalate esters
(PEs), were compared. The model was also used to explore the implica-
tions of non-uniform exposure as a consequence of chemical concentra-
tion gradients, ratios of fugacities in sediment and water, species
migration patterns, organism home range, and spatial sampling design.
Themodel provides guidance on both the conduct and interpretation of
field bioaccumulation studies and highlights the need for development
of detailed protocols for field bioaccumulation studies in aquatic food
webs. Recommendations for further model revisions and evaluations
are also discussed.

2. Theory

2.1. Spatial model description

For most “one-box” environmental multimedia models such as the
Equilibrium Criterion (EQC) model (Hughes et al., 2012) and the Quan-
titative Water Air Sediment Interaction (QWASI) model (Mackay et al.,
2014), each environmental compartment (water, sediment and individ-
ual organisms) is defined by a single (mean or median) concentration.
In reality, however, concentrations of chemicals in environmental com-
partments can vary significantly in space and time necessitating the use
of multiple boxes or “plume” models. The MBAW model, therefore, di-
vides the water column of an evaluative aquatic environment into mul-
tiple sub-compartments. For reasons of simplicity we have limited the
current model to a total of nine water column sub-compartments with
three horizontal (i = 1,2,3) sections and three vertical (j = 1,2,3) sec-
tions, with three sediment compartments at the bottom of each vertical
section (Fig. 1).

The model requires users to define species composition, structure,
and trophic dynamics of the aquatic food web to be evaluated. The
model was developed to allow habitat ecology and utilization, migra-
tion patterns, home range, trophic level position, feeding ecology, die-
tary preferences, and guild structures of each species to be specified
and considered by the model. The structure of the evaluative food web
may include a variety of different feeding guilds; e.g., primary pro-
ducers, detritivores, planktivores, invertivores, and piscivores. Biological
properties required for each species include wet body weight mass and
lipid content. Habitat utilization by each species across the model envi-
ronment may be defined by the user or estimated using an allometric
home range based on body size to represent the areal distribution
over which an organism lived and regularly traveled.

The model assumes that each species resides in a defined zone in
water or sediment (i.e., a home range). The users can define the fraction
of the time that a species s is found in a particular compartment (i,j) by
entering a home range factor Hs,i,j (fraction between 0 and 1). This
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provides a method to limit the distribution of a species to a certain area
and to specify the degree to which a speciesmay be present acrossmul-
tiple compartments. For example, the diurnal vertical migration of
mysids from bottom sediments to the surface may be represented by
selecting the home range factors to define the fraction of time that
mysids are present in each vertical compartment. Similarly, the foraging
of higher trophic level species overmultiple compartmentsmay be rep-
resented by selecting appropriate home range factors that represent the
fraction of the time that the predator is present in each compartment,
which can vary both horizontally and vertically.

The model also provides the user with the option to specify the
“sampling” location of each species by identifying the
compartment(s) from which the species will be collected. This model
feature provides a method for investigating the effect of sample collec-
tion location on the TMF in situations where spatial differences in con-
centrations exist.

2.1.1. Chemical properties
As in the original AQUAWEB model (Arnot and Gobas, 2004), the

lipid-water partition coefficient (KLW) was equal to the octanol-water
partition coefficient (KOW), based on the assumption that the fugacity
capacity of octanol (ZO) was equal to that of lipid (ZL). The model also
provides the option of allowing the user to enter an empirical organic
carbon–water partition coefficient (KOC in L/kg organic carbon) directly
without the need to estimate this property from KOW. Because, KOW

and KOC are a function of temperature, and the model allows temper-
ature to vary across compartments, KOW and KOC are referred to as
KOW,i,j and KOC,i,j in the model derivation.

2.1.2. Site specific concentrations and environmental parameters
Total chemical concentrations in water (CWT,i,j in g/L) and the corre-

sponding bottom-sediment/bottom-water compartment fugacity ratios
(fS/W,i,j unitless) are typically specified by the user. Chemical concentra-
tions and fugacity ratios may be obtained from empirical data or from
environmental multimedia models such as EQC (Hughes et al., 2012)
or QWASI (Mackay et al., 2014). Subscripts i and j denote the horizontal
and vertical locations, respectively, of each box or compartment in the
defined ecosystem. Total concentrations in bottom sediment (CS,i in
g/kg dry weight sediment) were calculated for each compound in
each compartment as:

CS;i ¼ f S=W;i; j � KOC;i; j � ϕS;i � CWD;i; j ð1Þ

where KOC,i,j (L/kgOC) is the chemical's temperature-corrected partition
coefficient between organic carbon and water at the temperature of
compartment (i,j); ϕS,i is the fraction of organic carbon in sediment
compartment i (kg organic carbon/kg dry sediment); and CWD,i,j (g/L)
is the freely dissolved chemical concentration in water compartment
(i,j), which is calculated from CWT,i,j as:

CWD;i; j ¼
CWT ;i; j

1þ XPOC;i; j � KOC;i; j þ OCW;i; j � 0:08 � KOW ;i; j
� � ð2Þ

where XPOC,i,j (kg OC/L) is the concentration of particulate organic car-
bon in water compartment (i,j); OCWi,j (kg OC/L) is dissolved organic
carbon content in water compartment (i,j); 0.08 is a proportionality
constant (units of L/kg OC) that expresses the sorptive capacity of dis-
solved organic carbon for a chemical relative to that of octanol
(Burkhard et al., 2008); and KOW,i,j (unitless) is the chemical's
temperature-corrected partition coefficient between octanol and
water at the temperature of compartment (i,j).

Other compartment-specific environmental parameters that users
are to provide are water temperature, dissolved organic carbon content
inwater, organic carbon fraction of solids inwater and sediment, partic-
ulate concentration in water, water column dissolved oxygen
concentration, density of sediments and suspended solids and density
of sediment organic carbon.

2.1.3. Concentrations in biota and TMF
The MBAW model uses the steady-state uptake equations of the

AQUAWEB model (Arnot and Gobas, 2004) to calculate the chemical
concentration in species s (CB,s,i,j in g/kg wet weight) in compartment
(i,j) assuming that both the species and its diet occupy compartment
(i,j) according to:

CB;s;i; j ¼
k1;s;i; j m0;s;i; j � CWD;i; j þmP;s;i � CWP;i

� �þ kD;s;i; j
X

i

X
j
Pr � Rr;i; j � CB;r;i; j
� �

k2;s;i; j þ kE;s;i; j þ kG;s;i; j þ kM;s;i; j
ð3Þ

where CB,r,i,j (g/kg wet weight) is the chemical concentration in prey
species r in compartment (i,j); k1,s,i,j (L kg−1 d−1) is the chemical uptake
rate constant via respiration of species s in compartment (i,j); k2,s,i,j
(d−1) is the rate constant for chemical elimination via respiration of
species s in compartment (i,j); kD,s,i,j (d−1) is the rate constant for up-
take via ingestion of food by species s in compartment (i,j); kE,s,i,j
(d−1) is the rate constant for elimination via excretion of contaminated
feces by species s in compartment (i,j); kG,s,i,j (d−1) is the growth rate
constant of species s in compartment (i,j); kM,s,i,j (d−1) is the rate con-
stant for biotransformation by species s in compartment (i,j); m0,s,i,j

(unitless) is the fraction of respiratory ventilation of overlying water
in compartment (i,j) for species s; mP,s,i,j (unitless) is the fraction of
respiratory ventilation of sediment pore-water for sediment dwell-
ing organism species s in (horizontal) spatial compartment i; CWD,i,j

(in g/L) is the freely dissolved concentrations of the chemical in com-
partment (i,j) for species s; CWP,i (in g/L) is the freely dissolved con-
centrations of the chemical in pore water of sediment compartment i
for species s organisms; Pr (unitless) the fraction of diet containing
prey r; Rr,i,j (unitless) is the presence factor for prey species r in com-
partment (i,j).

Rate constants for chemical biotransformation by species s (kM,s,i,j)
may be individually entered by the user or estimated for phytoplankton,
zooplankton, invertebrates and fish. A reference value (kM,N for a 10 g
fish at 15 °C) is used to determine model values as a function of the
weight of species s and water temperature in compartments i,j in
Eq. (4) (Arnot et al., 2008a; Arnot et al., 2008b).

kM;s;i; j ¼ kM;N � WB;s;i; j

WB;N

� �−0:25

� e0:01 Ti; j−T refð Þ ð4Þ

where WB,S,i,j is the wet weight of the organism in compartment (i,j);
WB,N is thewet weight of reference fishN (i.e., 10 g); T is the water tem-
perature in compartment (i,j); and Tref is the reference temperature
(15 °C).

2.1.4. Spatially averaged concentrations for sampling scenarios
To investigate the effect of sampling design on the calculation of

TMF, concentrations in species that occupy multiple compartments
were derived as a weighted average of the concentrations (CB ,s) in
each of the compartments that are accessed by the species. The
weighting is based on the relative amount of time of the species in
each of the compartments, as identified by the home range of the spe-
cies

CB;s ¼
X
i

X
j

CB;s;i; j � Hs;i; j
� � ð5Þ

where Hs,i,j is the home range factor for species s in compartment
(i,j).

The model requires the user to define wet body weight, lipid con-
tent, trophic interactions, and diet of each species s in the formof a feed-
ing matrix for the defined food web. The relative Trophic Position (TPs)
of each consumer species s is estimated from thediet composition of the



442 J. Kim et al. / Science of the Total Environment 551–552 (2016) 438–451
species using a trophic positionmodel (Vander Zanden and Rasmussen,
1996):

TPs ¼
XR
r¼1

TPr � Pr

 !
þ 1 ð6Þ

where TPs is the mean trophic position of the predator species s, TPr is
the trophic position of prey species r in the diet of species s, Pr is the frac-
tion of prey species r in the diet of species s, and the R is the number of
prey species in the diet of species s.

The model calculates whole body wet weight chemical concentra-
tions (CB,S in g/kg ww) and lipid-equivalent concentrations (CBL,s in
g/kg equivalent lipid) for each species. TMFs are calculated as the anti-
log of the linear regression slope of log-transformed lipid equivalent
concentrations regressed on trophic position:

log CBL;s

� �
¼ aþ b � TPs andTMF ¼ 10b ð7Þ

where b is the slope of the regression line. The lipid equivalent concen-
trations recognize the sorptive capacities of lipid (i.e., equal to that of
octanol), protein (i.e., equal to 5% of octanol (deBruyn and Gobas,
2007)), and water (i.e., equal to that of octanol divided by KOW) in
each organism. The TMF can be calculated for various sampling scenar-
ios. This provides the option to investigate the effect of sampling design
on the determination of the TMF in areas where significant spatial con-
centration differences exist.

2.2. Model implementation

The MBAW model was coded as a Microsoft Excel 2013 workbook.
Model outputs include chemical concentrations, species-specific bioac-
cumulation metrics, and TMFs for the defined food web used in the
model; only TMF values are reported for the present study. TMF values
were calculated based on lipid-equivalent concentrations using the
built-in array function LOGEST, which generates statistical information
such as slope, standard error, r2, p-value (based on F-distribution) and
95% confidence interval. When calculated using LOGEST the slope is
equal to the TMF value. TMF values may also be calculated based on
log-transformed lipid-equivalent concentrations using the built-in
array function LINEST, which generates identical statistical information
as LOGEST, except for slope and standard error. When based on LINEST,
TMF is equal to the antilog of the slope.

3. Methodology

3.1. Model performance analysis

To evaluate the MBAW model for assessing the TMF of both persis-
tent and readily biotransformed substances, the model was parameter-
ized for the aquatic marine food web of False Creek (Table S2 of the SI)
in British Columbia, Canada (Mackintosh et al., 2004). The False Creek
ecosystem was selected for model performance analysis because the
Mackintosh et al. (2004) study (1) provided detailed information on
chemical concentrations in water (total and operationally defined as
dissolved) and in sediments at three different locations in the sampled
study area, thus providing information used to characterize spatial con-
centration differences and sediment-water fugacity ratios; (2) included
a well-defined food web that was characterized by feeding surveys and
14N/15N and 12C/13C stable isotope ratios; (3) provided contaminant
concentrations in 24 selected species, representing trophic positions
ranging from 1 to 4.5; (4) was conducted with attention to QA/QC dur-
ing contaminant analyses; (5) included both persistent and readily
biotransformed substances (Arnot et al., 2009; Brown et al., 2012; U.S.
Environmental Protection Agency, 2014); and (6) reported substantial
differences in aqueous and sedimentary concentrations among the
three locations investigated.

The PCBs and PEs were selected for model performance analysis be-
cause most of the relevant information required for the analyses was
available. The physical-chemical properties of the PCBs and PEs applica-
ble to the marine environment (Table 1), the biological and environ-
mental parameters used to parameterize the MBAW model (Table 2),
and the feeding matrix used to parameterize the food web component
of the MBAW model (Table S2 of the SI) were taken from Mackintosh
et al. (2004, 2006). All sampled species were used in the MBAW
model except for a marine bird (i.e., surf scoters). The species included
three phytoplankton/algae, one zooplankton, 10 invertebrates, and 10
fish. For all test substances, measured concentrations (n = 3 or 4) in
the sediments of three sub-areas of the False Creek system, i.e., North
Basin (Area 1), South Basin (Area 2) and East Basin (Area 3) were avail-
able and used in the model performance analysis. Measured aqueous
concentrations were available for all PEs and for PCB-18 in all three
sub-areas. Aqueous concentrations of PCB-99, PCB-180 and PCB-194,
were only available for one sub-area. Aqueous concentrations in the
subareas for which PCB concentrations were below the method detec-
tion limit were estimated from the area specific sediment concentra-
tions using sediment-water partition coefficients that were
determined in the one sub area where both aqueous and sedimentary
concentrationswere detected. For PCBs−118 and−209, no detectable
concentrations inwater were reported for any area. Hence, PCB concen-
trationswere estimated from the concentrations in the sediments using
the sediment-water partition coefficient reported by Mackintosh et al.
(2006).

Model performance was evaluated by comparing model TMFs,
whichwere derived from themodel calculated chemical concentrations
in the biota (Table S4 of the SI), to the field TMFs (based on trophic po-
sition) reported byMackintosh et al. (2004). Themeanmodel bias (MB)
was calculated to quantitatively express the model's performance
across the combined results for n = 1 to N chemicals, as shown in
Eq. (8)):

MB ¼ 10

XN
n¼1

logðTM FC;n=TM FO;n½ �
N

 !
ð8Þ

where TMFC,n is the model calculated TMF for chemical n, TMFO,n is the
reported field TMF for chemical n, and N is the total number of
chemicals included in the model performance evaluation. In essence,
MB is the geometric mean of the ratio of modeled and reported TMFs
for all chemicals in the evaluated food web for which empirical data
were available. As it is used here, MB is a measure of the systematic
bias (i.e., MB N 1 or MB b 1) of the model relative to the systematic
bias of the field data. For example, MB = 2 indicates that the model in
general overestimates the reported field TMF by a factor of 2. A MB =
0.5 indicates that the model underestimates the reported field TMF by
a factor of 2. The 95% confidence intervals of theMB represent the accu-
racy of themodel, relative to the field data, expressed as a factor (rather
than a term) of the geometricmean. The inherent assumption is that the
False Creek field data and results were not systematically biased and
that the residuals of reported and modeled TMFs followed a log normal
distribution rather than a normal distribution. This method has the ad-
vantage that it prevents the calculation of uncertainty bounds that may
include implausible TMF values b 0. The MB and its 95% confidence in-
tervals include all possible sources of error inherent to the performance
analysis includingmodel parameterization errors, errors inmodel struc-
ture, analytical errors in the empirical data (e.g., chemical concentra-
tions in water, sediment and biota), and uncertainty in the empirical
data used for the performance analysis. However, without having a
benchmark TMF value it is not possible to identify if systematic model
bias or systematic field bias was the greater source of error. Model



Table 1
Major physico-chemical properties of 13 phthalate esters (PEs) and 6 polychlorinated biphenyls (PCBs) for the False Creek ecosystem, as reported by Mackintosh et al. (2004).

CAS Chemical name Abbr. Log KOW
a Log KOC fS/W

b kM,N
c (d−1) TMF

84-66-2 Diethyl phthalate ester DEP 2.77 2.31 0.037 0.31 1.0
84-69-5 Di-isobutyl phthalate ester DiBP 4.58 4.12 0.048 0.31 0.81
84-74-2 Di-n-butyl phthalate ester DBP 4.58 4.12 0.066 0.31 0.70
85-68-7 Butylbenzyl phthalate ester BBP 5.03 4.57 0.174 0.31 0.77
117-81-7 Di(2-ethylhexyl) phthalate ester DEHP 8.20 7.74 0.936 0.31 0.34
117-84-0 Di-n-octyl phthalate ester DnOP 8.20 7.74 0.191 0.31 0.29
68515-51-5 Di-n-nonyl phthalate ester DNP 8.50 8.04 0.045 0.31 0.28
37680-65-2 2,2′,5-Trichlorobiphenyl PCB-18 5.46 5.00 0.058 0.0004 2.0
38380-01-7 2,2′,4,4′,5-Pentachlorobiphenyl PCB-99 6.65 6.19 4.000 0.0004 4.9
31508-00-6 2,3′,4,4′,5-Pentachlorobiphenyl PCB-118 7.00 6.54 4.000 0.0004 7.0
35065-29-3 2,2′,3,4,4′,5,5′-Heptachlorobiphenyl PCB-180 7.66 7.20 3.950 0.0004 6.5
35694-08-7 2,2′,3,3′,4,4′,5,5′-Octachlorobiphenyl PCB-194 8.12 7.66 2.129 0.0004 3.5
2051-24-3 Decachlorobiphenyl PCB-209 8.53 8.07 2.000 0.0004 2.2

a Salinity-corrected log KOW value.
b fS/W is the sediment-water fugacity ratio.
c kM,N is the biotransformation rate constant normalized for a 10-g fish; kM,N for phthalates was selected using a read across approach from 9 in vivo based estimates for DEHP

(Arnot et al., 2008a,b); a slow, negligible kM,N of 0.0004 d−1 was assumed for the PCB congeners.
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calibration (i.e., the adjustment of model parameters to improve model
performance) was not applied.

3.2. Model sensitivity analysis

3.2.1. Spatial concentration gradients
Various model calculation scenarios were used to explore the sensi-

tivity of themodel calculated TMF to (i) spatial concentration gradients;
(ii) differences in sediment-water concentration distributions (as
expressed by the fugacity ratio); and (iii) spatial sampling design
choices. Model TMFs were calculated for six PCB congeners and seven
PE congeners (Table 1) in each of the three areas depicted in Fig. 1.
Each defined area represented a water column with a bottom sediment
layer and assumed that (i) all species remained within their designated
area (i.e., no migration); (ii) the total concentration of test chemical in
the water of each compartment within each area was calculated from
the total concentration in sediment and the sediment-water fugacity
ratio defined for each area (i.e., no vertical concentration gradients),
and (iii) probability sampling (n = 10,000 independent Monte Carlo
simulations) was used following systematic random designs where
(a) all species were randomly collected from within a single area or
(b) where each species was randomly collected from across the 3 areas.

Systematic random sampling designs are recommended when
trends or patterns of exposure over space are not present or they are
known to exist a priori orwhen strictly randommethods are impractical
(Gilbert, 1987). However, judgment sampling must often be imple-
mented in thefield because organismsmay only be collected fromwith-
in their home range (i.e., the area in which an organism normally lives
and travels), which may overlap for some but not all organisms in the
sampled food web. Field studies based on judgment sampling thus
have a systematic sample selection bias because the target population
is not clearly defined, is not homogeneous, and is not completely
Table 2
Environmental properties used to parameterize the MBAWmodel for the aquatic marine
ecosystem of False Creek (Table S2 of the SI) in British Columbia, Canada (Mackintosh
et al., 2004).

Input False creek

Dissolved organic carbon content in water (mg/L) 0.26
Organic carbon content in suspended solids 40%
Organic carbon content in sediment 2.8%
Particulate organic carbon (mg/L) 1.5
O2 saturation (%) 80%
Density of solids (kg/L) 1.5
Density of organic carbon (kg/L) 0.9
Sediment:water fugacity ratio 2
Temperature 15
assessable for sample collection. Therefore, biased or judgment sam-
pling was also explored in addition to systematic random sampling
designs.

The model calculation scenarios for exploring the sensitivity of the
TMF to differences in spatial concentrations, sediment-water fugacity
ratios, and biased sampling designs are described below (additional de-
tails provided in Table 3 and Table S3 of the SI):

• Scenario 1: This is the “control” or “reference” scenario with concen-
trations in sediment defined as 1 μg/kg-dw and the sediment-water
fugacity ratio defined as 1 for all three areas. Hence, the concentra-
tions of chemical in water and sediment were constant and propor-
tional across the defined ecosystem. Scenario 1 explored the effect
of sampling design on determination of TMFwhen concentration gra-
dients in water or sediment were not present. Results from other sce-
narios are compared to results from Scenario 1.

• Scenario 2: This simulationwas the same as that used in Scenario 1 ex-
cept that concentrations in sediment were defined as 1 μg/kg dw in
Area-1, 10 μg/kg dw in Area-2, and 100 μg/kg dw in Area-3. Hence,
concentrations of the chemical in sediments and in water were differ-
ent but proportional across the defined study area. Scenario 2 ex-
plored the effect of sampling design on determination of TMF when
spatial concentration gradients in water and sediment were both
present.

• Scenario 3: This simulation was the same as Scenario 1 except that
sediment-water fugacity ratios were defined as 0.1 in Area-1, 1 in
Area-2, and 10 in Area-3. Hence, concentrations of the chemical in
the sediments were the same in all areas, but concentrations of the
chemical in the water differed. Scenario 3 explored the effect of sam-
pling design on determination of TMFwhen spatial concentration gra-
dients were present in water but not in sediment.

• Scenario 4: Concentrations in sediment were defined as 1 μg/kg dw in
Area-1, 10 μg/kg dw in Area-2, and 100 μg/kg dw in Area-3 (the same
as Scenario 2). Sediment-water fugacity ratios were defined as 0.1 in
Area-1, 1 in Area-2, and 10 in Area-3 (the same as Scenario 3).
Hence, concentrations of the chemical in water were the same in all
areas, but concentrations of the chemical in sediment differed. Scenar-
io 4 explored the effect of sampling design on the determination of the
TMF when spatial concentration gradients were present in sediment
but not water.

• Scenario 5: This simulation was the same as Scenario 2 (i.e., spatial
concentration gradients present in both water and sediment) except
that biased or judgment sampling (Gilbert, 1987) was used rather
than systematic random sampling. Biased samplingwas implemented
here using a simple random samplingdesign to collect species that oc-
cupied trophic positions between 1 and 2 from Area-1 (where the
lowest exposure concentrations existed), to collect species that



Table 3
Modeling scenarios used to explore the sensitivity of the calculated TMF to (i) spatial concentration gradients; (ii) differences in sediment-water concentration distributions (as expressed
by the fugacity ratio); and (iii) spatial sampling design choices. Additional details provided in Table S2 of the Supporting information.

Modeling
scenario

Spatial gradient Fugacity
ratio
(fS/W)

Sampling design Comments

Water Sediment

1 No No Fixed Systematic random sampling Used to evaluate bias when spatial concentration gradients in water and sediment were not present.
This scenario served as the reference scenario.

2 Yes Yes Fixed Systematic random sampling Used to evaluate bias when spatial concentration gradients were present in both water and sediment.
3 Yes No Varied Systematic random sampling Used to evaluate bias when spatial concentration gradients were present in water but not in sediment.
4 No Yes Varied Systematic random sampling Used to evaluate bias when spatial concentration gradients were present in sediment but not in water.
5 Yes Yes Fixed Biased or judgment sampling Used to evaluate bias when judgment sampling was used across spatial concentration gradients in

water and sediment. Concentration gradient: (Area-1 b Area-2 b Area-3)
6 Yes Yes Fixed Biased or judgment sampling Used to evaluate bias when judgment sampling was used across spatial concentration gradients in

water and sediment. Concentration gradient: (Area-1 N Area-2 N Area-3)

Fig. 2. Comparison of modeled calculated TMFs (blue bars) and reported field TMFS (red
bars) of 7 phthalate esters (PEs) and 6 polychlorinated biphenyls (PCBs) in the False
Creek food web. Error bars are the 95% confidence intervals of the mean TMF. Values of
log KOW are shown in parenthesis next to the compound names.
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occupied trophic positions between 2 and 3 from Area-2, and to col-
lect species that occupied trophic positions N 3 from Area-3 (where
the highest exposure concentrations existed). Scenario 5 explored
the effect of biased sampling on the determination of the TMF when
spatial concentration gradients were present in both water and sedi-
ment.

• Scenario 6: This simulation was the same as Scenario 5 except that
spatial concentration gradients across the three areas were reversed.
A simple random sampling design was used to collect species that oc-
cupied trophic positions between 1 and 2 from Area-1 (where the
highest exposure concentrations existed), to collect species that occu-
pied trophic positions between 2 and 3 from Area-2, and to collect
species that occupied trophic positions N 3 from Area-3 (where the
lowest exposure concentrations existed).

Scenarios 5 and 6 illustrate the sensitivity of TMF to spatial concen-
tration differences and demonstrated the potential effect of sampling
design on determination of TMF in study locations where spatial con-
centration gradients were present in both water and sediment.

Each Monte Carlo simulation represented a single TMF study of the
food web (24 species in total; Table S1 of the SI) that was sampled
from within or across the three defined areas of the defined False
Creek ecosystem (Fig. 1). The TMF was calculated for each simulation
as the antilog of the slope obtained from ordinary least-squares (OLS)
regression models. Log-transformed lipid equivalent chemical concen-
trations in the sampled species were regressed on trophic position of
each species to obtain the slope, the correlation coefficient (r2), and
the p-value that the slopewas statistically different from zero. The com-
bined distribution of 10,000 individual TMF studies, was then investi-
gated for the probability that spatial differences in conditions caused
the TMF to be misidentified, i.e., a TMF ≥ 1.0 when the TMF in the ab-
sence of concentration gradients was b1.0 or conversely, a TMF b 1.0
when the TMF in the absence of concentration gradients was ≥1.0.

3.2.2. Biotransformation rate
To explore the sensitivity of TMF to the biotransformation rate con-

stant, chemical space diagrams for the TMF were constructed as a func-
tion of KOW (i.e., log KOW range from 4 to 10) and the biotransformation
rate constant normalized for a 10 g fish (i.e., kM,N, range from 0.0001 to
0.1 d−1), and used to evaluate TMFs in the False Creek food web. Bio-
transformation rate constants kM,s,i,j for the various species in compart-
ments i,j were calculated as a function of the body weight and kM,N

according to Eq. (4). TMFs were calculated in the absence of concentra-
tion gradients (Scenario 1) and under various conditionswhere concen-
tration gradients existed (Scenarios 2–4). The model calculations
simulated a systematic random sampling design where each species
was sampled from one of the 3 areas. In total, 10,000 independent
Monte Carlo simulations were conducted, each mimicking a single
TMF study involving random sampling of each species (24 in total)
from the 3 subareas of the defined False Creek ecosystem. Each
simulation involved the calculation of the TMF and the probability
(p) that the TMF was statistically different from a value of 1. The distri-
bution of the 10,000 individual TMF studies was used to estimate the
probability that chemicalswith a givenKOW and kM,s,i,j could be expected
to exhibit a TMF ≥ 1.0 or conversely, a TMF b 1.0.
4. Results and discussion

4.1. Model performance analysis

Model calculated TMFs for the PCB congeners in the defined False
Creek food web varied from 1.9 to 6.3, indicating the occurrence of tro-
phic magnification commonly observed for these PCB congeners (Fig.
2). In general, the model calculated TMFs increased with increasing
log KOW for the lower chlorinated congeners, followed by a decrease in
the TMF for the higher chlorinated PCB congeners. Themodel calculated
TMFs were in good agreement with the reported field TMFs for the PCB
congeners in False Creek (Fig. 2) where spatial concentration differ-
ences in water and sediments and varying sediment-water fugacity ra-
tios were observed (Mackintosh et al., 2004; Mackintosh et al., 2006).
Themeanmodel bias (MB) for the six PCB congeners was 1.02, suggest-
ing little or no systematic bias existed between the model calculated
TMFs and the reported field TMFs. This finding was in good agreement
with performance analyses of the AQUAWEB model for PCB congeners
in food webs from several Great Lakes (Arnot and Gobas, 2004), San
Francisco Bay (Gobas and Arnot, 2010) and the British Columbia Coast
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(Alava et al., 2012). The 95% confidence intervals of the MB for the 6
PCBs was a factor of 1.25, indicating that model TMFs were within 25%
of the reported field TMFs. This high level of agreement between
modeled and reported values is uncharacteristic for a bioaccumulation
metric. Apparently, errors in the model's ability to assess bioaccumula-
tion of PCBs in individual species across the food web appear to cancel
out to a considerable degree in the calculation of the TMF, producing
reasonable estimates of TMF that exhibit a low level of systematic
bias. In general, model calculations for of the individual PCB congeners
appeared to capture the over-all bioaccumulation behavior of PCBs in
the False Creek ecosystem.

Model calculated TMFs of the PE congeners ranged from 0.11 for
DnOP and DEHP to 0.95 for DEP and showed a general decline in the
TMF with increasing KOW (Fig. 2). Field TMFs, reported by Mackintosh
et al. (2004), ranged from 0.28 for DNP to 1.0 for DEP and also showed
a general decline in the TMF with increasing KOW (Fig. 2). Both the
model calculations and the field observations indicated a lack of trophic
magnification for all of the evaluated PEs. This behavior is consistent
with a high degree of biotransformation commonly observed for PEs
in aquatic biota (Stalling et al., 1973). The model calculated TMFs and
reported field TMFs were in reasonable agreement when considering
the possible uncertainty that may be associated with the field results.
However, the mean MB for the 7 PE congeners was 0.49, suggesting
an approximately 2-fold systematic underestimation of the reported
field TMFs by the model. Moreover, the 95% confidence intervals of
the mean MB was a factor of 2.0, which was considerably greater than
the factor of 1.25 obtained for the PCB congeners. The MBwas the low-
est for DEP, for which the median model calculated TMF was 0.95 and
the reported field TMF was 1.0. The MB was the highest for DEHP, for
which the model calculated TMF was 0.11 and the reported field TMF
was 0.34.

The reason for the apparent underestimation of the reported field
TMFs for the PE congeners is not clear and will be the subject of further
investigations. Nonetheless, comparison of the reported field TMFs to
the model calculated TMFs (Fig. 3) suggested that ecosystem parame-
ters (e.g., spatial concentration differences)may have been confounding
factors for PEs in False Creek, where uncertainty in the water and sedi-
ment data was observed. Other possibilities include an overestimation
of the biotransformation rate constant kM,s; as characterizing a single
biotransformation rate constant kM,N value across a wide variety of spe-
cies present in aquatic food websmay be difficult. Another possibility is
that trophic dilution of phthalate estersmay be, to a large extent, due to
biotransformation in the gastrointestinal tract, which may not be ade-
quately represented by the estimates of somatic biotransformation
rates used in this study (Lo et al., 2015b).

McLachlan et al. (2011) concluded that the biotransformation rate
kM was the chemical property having the strongest influence on bioac-
cumulation. Nichols et al. (2015) proposed that the kM represented
the principal source of uncertainty in the bioaccumulation assessment
of most chemicals with high bioaccumulation potential. In vivo kM data-
bases (Arnot et al., 2008b) and in silico models for predicting kM from
chemical structure have been proposed (Arnot et al., 2009; Long and
Walker, 2003; Papa et al., 2014). Nichols et al. (2013) and Fay et al.
(2014) have examined the in vitro-in vivo extrapolation methods for
estimating kM values for fish and the impact on chemical bioaccumula-
tion assessment. A database of whole body fish biotransformation rates
has been compiled by Arnot et al. (2008b) and the authors noted that,
chemical structure aside, variability in kM valueswas likely due to differ-
ences in body size, water temperature, exposure route, interspecies dif-
ferences, gender, life stage, and enzyme competition, inhibition, and
induction. Lastly, as discussed below, errors in sediment-water distribu-
tion (fugacity ratios)may result in errors in the TMF for benthic-coupled
food webs.

Experimental uncertainty regarding determination of the assimila-
tion efficiency ledXiao et al. (2013) to employ a chemical benchmarking
approach tomeasure dietary assimilation efficiency of chemicals by fish,
with 2,2′,5,6′-tetrachlorobiphenyl (PCB-53) and decabromodiphenyl
ethane (DBDPE) selected as absorbable and non-absorbable bench-
marks, respectively. Benchmarking did not improve overall precision
of the measurements, however, after benchmarking, the median recov-
ery for 15 chemicals was ~100%, and variability of recoveries was re-
duced, suggesting that benchmarking could account for incomplete
extraction of chemical in fish and incomplete collection of feces.

4.2. Model sensitivity analysis

4.2.1. Spatial concentration gradients
Scenario 1 (“the control”) showed thatmodel calculated TMFs of the

test PCBs and PEs ranged between 0.11 and 4.9 (Fig. S1 of the SI). The
correlation coefficients (r2) of the regression models used to derive
the TMFs ranged from 0.23 for PCB-209 to 0.79 for DEP. Because of the
large sample size (i.e., n = 10,000), all regression models exhibited a
slope that was statistically different (p b 0.05) from 0 and hence a
TMF that was statistically different from 1. The TMFs in all areas were
identical (thus no uncertainty) because the chemical concentration in
water and sediments, as well as other chemical, biological and environ-
mental parameters were the same. Systematic random sampling of spe-
cies from the three areas had no effect on the TMF, the goodness of fit of
the regression model (r2), or the significance of the slope (p-value) be-
cause chemical concentrations in any given species were not different
across the three areas of the defined False Creek ecosystem.

In Scenario 2, where spatial concentration gradients were present in
water and sediment, model calculated TMFs within each area
(i.e., sampling within each area only), as well as the corresponding r2

and p-value for the regression models, were the same across the three
areas and were identical to those for Scenario 1, despite the fact that
concentrations in Area-2 and Area-3 were, respectively, 10 and 100
times greater than in Area-1 (Fig. S1 of the SI). This illustrated that the
model was linear in concentration, reflecting the model's assumption
of first order kinetics where chemical uptake and elimination rates fol-
low a linear function with chemical concentration in water, sediment,
and prey. In other words, the model demonstrated that TMF was inde-
pendent of exposure concentrations when the conditions of exposure
were the same. Powell et al. (2010) reported that field TMFs for cyclic
volatile methylsiloxanes (D4, D5, and D6) were not related to exposure
and were essentially the same for sampled food webs in the inner and
outer Oslofjord, Norway (summarized in Table S3 of the SI). Levels of
exposure in the more polluted inner Oslofjord, relative to the less pol-
luted outer Oslofjord, were estimated to be about 4× higher for D4,
38× higher for D5, and 7× higher for D6.

First order kinetics of PCB and PE transport processes is a reasonable
assumption for animals exposed to relatively low concentrations in
most field situations. Biotransformation processes, however, may be
subject to Michaelis–Menten kinetics, which recognize the possibility
of enzyme saturation. Little is known about the concentration depen-
dence of in-vivo biotransformation rates in fish but some information
is available indicating a high degree of concentration dependence of bio-
transformation rates in in-vitro systems (Lo et al., 2015a).

Systematic random sampling across the three areas of the defined
False Creek ecosystem generated median model calculated TMF values
that were essentially identical to median values that were obtained
when sampling within an individual area (Fig. 3 and Fig. S1 of the SI).
This means that for a study area where spatial differences in chemical
concentrations exist, repeated TMF studies (i.e., 10,000 in the simula-
tion) based on systematic random sampling across the study area can
produce a median TMF that approaches the TMF that would have
been obtained from a single TMF study if spatial concentration differ-
ences were not present. However, the 95% confidence limits for the
mean TMFs were large (i.e., approximately a factor of 4 of the mean
value) when spatial concentration gradients existed (Fig. 2, Scenario
2). Consequently, large differencesmay exist between results of individ-
ual TMF studies if spatial concentration differences are present across



Fig. 3. Model calculated mean TMFs of 7 phthalate esters (PEs) and 6 polychlorinated biphenyls (PCBs) in the defined False Creek ecosystem. Systematic random sampling (n = 10,000
Monte Carlo simulations)wasused to sample each species in the foodweb for thedefined Scenarios 1–4. Error bars indicate 95% confidence intervals of themean TMF for the 10,000model
simulations. Scenario 1 is the control or reference scenariowhich contains no concentration gradients. Scenario 2 depicts modeled TMFswhen gradients are present in both sediment and
thewater column. Scenarios 3 and 4 depict modeled TMFs when gradients are present in thewater column or the sediment, respectively. Modeled TMFs from the two biased (judgment)
sampling designs (Scenario 5, blue bars; Scenario 6, red bars) are also shown.
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the study area, even if systematic random sampling is followed for spe-
cies collection. In other words, field TMFs may be systematically biased
in study locations where spatial concentration differences exist. For ex-
ample, DiBP exhibited a medianmodeled TMF= 0.45 with a 95% confi-
dence interval that ranged from 0.11 to 1.8, indicating that individual
TMF studies may produce statistically significant TMFs that are either
less than or greater than a value of 1 (i.e., TMF b 1.0 or TMF N 1.0).

The confounding effect of spatial concentration differences on the
calculation of field TMFs was further illustrated by results from the bi-
ased sampling scenarios (Fig. 3; Scenarios 5 and 6), which were used
to imitate judgment sampling designs that may occur in field studies.
The judgment sampling designs produced biased TMFs for the PCBs
and the PEs that were greater than or less than a value of 1, depending
upon the modeling scenario. For example, the biased sampling scenari-
os resulted in model calculated TMFs for PCB-180 of 0.87 and 38. Simi-
larly, the biased sampling scenarios resulted in model calculated TMFs
for DEP of 0.11 and 7.8. These results demonstrated thatwidely different
TMF values can be found in areas where spatial concentration differ-
ences are present and a biased sampling design is used. Thus sample
collection design and the location where samples are collected may
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have a large impact (by a factor of up to 100 in this example) on the de-
termination of the TMF when spatial concentration differences exist.
Comparison of Scenario 2 to Scenarios 3 and 4 (Fig. 3 and Fig. S1 of
the SI) indicated that model calculated TMFs in the defined False
Creek ecosystemweremost sensitive to spatial gradients inwater (Sce-
nario 3) relative to spatial gradients in sediment (Scenario 4).

Fig. 4, which illustrates the results ofMonte Carlo simulationswithin
the constraints of Scenario 2, where spatial concentrations in water and
sediments vary from 10 to 100 fold, shows that the influence of spatial
concentration differences on TMF bias was not the same across all sub-
stances. Fig. 4 shows that for substances which exhibited a greater de-
gree of trophic dilution or biomagnification, there was a greater
probability for a study to “correctly” determine the occurrence of tro-
phic dilution (i.e., TMF b 1.0) or biomagnification (i.e., TMF ≥ 1.0)
when spatial concentration differences were present. For example, for
PCB-180 with a reported field TMF of 6.5 or a median model calculated
TMF of 4.9 (based on Scenario 2), there was a N99% probability that a
TMF ≥ 1.0 would be determined at a site with 10–100 fold differences
in concentration across the study area. This may explain why field
TMFs of PCB-180 and PCB-153, which are often used as reference
chemicals for TMF studies, are determined to be N1 in almost all studies.
Likewise, for DEHPwith a reported field TMF of 0.34 or a median model
calculated TMF of 0.12, which are equivalent to trophic dilution factors
(1/TMF) of 2.9 and 8.3, respectively, there was N99% probability that a
TMF b 1.0 would be determined under the conditions of Scenario 2.
For DiBP with a median model calculated TMF of 0.45 there was a 14%
probability that a TMF ≥ 1.0 or an 86% probability that a TMF b 1.0
would be determined.

In study areas where spatial concentration differences are present,
the likelihood of a study finding a TMF b 1.0 for a material that has a
TMF ≥ 2.0 in the absence of spatial concentration differences, or con-
versely, a TMF N 1.0 for a material that has a TMF ≤ 0.5 in the absence
of spatial concentration differences, was b20% (Fig. 4). For example,
the likelihood of finding a TMF b 1.0 was small (b20% for PCB-18 and
PCB-209), very small (b5% for PCB-194), or negligible (b1% for PCB-
99, PCB-118, and PCB-180) for the False Creek ecosystem when spatial
gradients were present. Similarly, the likelihood of obtaining a TMF
N1.0 was very small (≤5% for BBP) or negligible (b1% for DEHP, DnOP,
andDNP)when spatial gradientswere present. However, for substances
like DEP, DiBP, and DBP, which exhibit a relatively low degree of trophic
dilution (median model TMF = 0.45 to 1.0), there was a substantial
probability ranging from 13% to 47% that a study would determine a
TMF ≥ 1.0. Once again, for substances that exhibit a greater degree of
trophic dilution or biomagnification, there is a greater probability that
studies conducted in systems where spatial concentration differences
Fig. 4. The probability that a model calculated TMF N 1 will be obtained for the defined
False Creek ecosystem when spatial concentration gradients exist (Scenario 2) as a
function of the model calculated TMF that was obtained when spatial concentration
gradients did not exist (Scenario 1).
exist will “correctly” identify the occurrence of trophic dilution
(i.e., TMF b 1.0) or magnification (i.e., TMF ≥ 1.0).

Reducing spatial differences in sediment and water concentrations
within a study area reduces the confounding influence of spatial con-
centrations on the TMF and thus increases the probability that a study
will correctly identify the inherent trophic magnification capacity of a
substance (i.e., the TMF in absence of spatial concentration differences).
Also, as demonstrated by the similarity between themedianmodel TMF
in the presence of spatial concentration gradients and the median
model TMF in absence of spatial concentration gradients, an increase
in the number of TMF studies considered in the determination of the
TMF may be expected to provide better estimates of the inherent TMF
of a chemical. Bayesian inference as applied here has been demonstrat-
ed to reduce the uncertainty of estimated trophic level assignments and
by extension increase the precision of field TMFs (McGoldrick et al.,
2014; Powell et al., 2010; Powell et al., 2009; Starrfelt et al., 2013).
Nonetheless, increased precision does not lead to decreased variability
or systematic bias of TMF that may result from spatial differences in
concentration.

In the absence of the confounding effects of spatial gradients (Sce-
nario 1), TMFs for chemicals that have a relatively low KOW (i.e., log
KOW b 5.5) appear to be insensitive to the existence of a sediment-
water non-equilibrium, as expressed by the sediment-water fugacity
ratio (i.e., fS/W ≠ 1), in the defined False Creek ecosystem (Fig. 5).
These substances, which include DEP, DiBP, DBP, BBP and PCB-18, are
predominantly absorbed from the water by many aquatic species such
that the diet contributes only a small fraction of the organisms' total
chemical intake. Thus fS/W and, by extension trophic transfer, does not
play a significant role or have an impact on the TMF for these sub-
stances. In contrast, chemicals with higher KOW (i.e., log KOW ≥ 5.5),
which are absorbed by organisms via the diet to a greater degree than
the lower KOW substances, exhibit increasing sensitivity of TMF to the
increasing magnitude of fS/W N 1 (Fig. 5), especially for substances
with slower rates of biotransformation (i.e., kM ≤ 0.01 d−1; equivalent
to a transformation rate of 1% per day or biotransformation half-life of
about 70 days). For example, an increase in fS/W from 1 to 100 increases
the TMF for a non-biotransforming substance such as PCB-180 (log
KOW = 7.7; kM = 0.0004 d−1) from TMF = 5 to TMF N 10. In contrast,
TMF ≤ 1 would result over the same 100-fold increase in fS/W for a
biotransforming substance such as DEHP (log KOW = 8.2; kM =
0.31 d−1). The sediment-water fugacity ratio exerts its effect on trophic
transfer through the dietary route. Thus an increase in fS/W elevates con-
centrations in sediments relative to those in water thereby increasing
concentrations in benthic invertebrates relative to organisms in the
water column. An increase in concentrations in benthic invertebrates
causes an increase in dietary uptake of animals feeding on benthic in-
vertebrates at the base of the food web and in turn increased uptake
in their predators. The increase in relative importance of the diet as a
route of uptake compared to respiratory uptake elevates both the tro-
phic magnification and trophic dilution effects. The net effect being
that TMFs for slowly biotransforming substances (e.g., PCBs) increase
as sediment-water fugacity ratios increase above a value of 1, whereas
the TMF of biotransforming substances (e.g., PEs) remains comparative-
ly unchanged (Fig. 5).

4.2.2. Biotransformation rate
Chemical space diagramswere developed for the False Creek ecosys-

tem to graphically represent median modeled TMFs for chemicals
across wide ranges in KOW and kM,N (Fig. 6 and Fig. S2 of the SI). These
figures illustrate the sensitivity of model calculated TMFs to KOW and
kM,N. For reference, PCBs occupy chemical space at the bottomof the fig-
ures (i.e., kM,N is very slow) where biotransformation is predicted to
have negligible impact on the relationship between KOW and TMF. In
contrast, PEs are expected to occupy chemical space at the top of the fig-
ure or beyond (i.e., kM,N is relatively fast) where biotransformation is
predicted to have significant impact on the relationship between KOW



Fig. 5. Sensitivity of the model calculated TMF to the sediment-water fugacity ratio (fS/W) in the absence of spatial concentration gradients (Scenario 1) for the defined False Creek
ecosystem. Each plot shows the impact of fS/W on TMF at a specified log KOW (range 5.5–9.5; shown as individual plots) for a specified range of biotransformation rate (kM = 0 to
0.1 d−1; shown as individual lines in each plot).
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and TMF. There aremany permutations forKOW and kM,N that potentially
occupy the presented chemical space, theoretically representing thou-
sands of chemicals. Substances with log KOW b 4 are not represented
in the diagrams because this area defines the chemical space where
dietary exposure and uptake from food is b15% of the respiratory expo-
sure and uptake from water.

Model calculations indicate (Fig. 6) that in the absence of concentra-
tion gradients (Scenario 1), TMFs for substances that are not subject to



Fig. 6. Chemical space of model calculated TMFs for the False Creek food web in the
absence of concentration gradients (Scenario 1). The biotransformation rate constant
(kM,N) was normalized for a 10 g fish. Colors in contours represent a scale of TMF
ranging from 0 to 7, as shown in the side bar.

Fig. 7. The probability that a model calculated TMF ≥ 1 will be obtained for the defined
False Creek ecosystem when spatial concentration gradients in water and sediment
were both present (Scenario 2). The biotransformation rate constant (kM,N) was
normalized for a 10 g fish. Colors in contours represent a scale of probability of TMF ≥ 1,
shown in the side bar. The solid red line represents the contour of TMF = 1 from the
chemical space diagram of Fig. 6 (i.e., probability of 1 that TMF ≥ 1 in the absence of con-
centration gradients, Scenario 1).

449J. Kim et al. / Science of the Total Environment 551–552 (2016) 438–451
significant rates of biotransformation (i.e., kM,N b 0.0001 d−1) may be
expected to increasewith increasingKOW fromapproximately 1, for sub-
stances with log KOW of about 4, to values of approximately 5 or greater
for substances with log KOW between 6.5 and 7.5 (maximum TMF =
5.8 at log KOW = 7.2). For substances with log KOW N 7.5, the TMF
drops with increasing KOW to values below 1 for substances with a log
KOW of about 8.8 or greater. Fig. 6 illustrates that an increase in kM,N re-
duces the TMF, and that even slow rates of kM,N ≤ 0.01 d−1

(i.e., transformation rate of 1% per day or biotransformation half-life of
70 days) may reduce the TMF substantially, especially for substances
of high KOW. A kM,N of approximately 0.025 d−1, representing a loss of
only 2.5% of the chemical in the organism per day through this process,
is sufficient to eliminate trophic magnification for all substances ex-
plored in this study. The model calculations suggest that the TMF is
very sensitive to the rate at which chemicals are biotransformed, partic-
ularly over the log KOW range from 5 to 8 (Fig. 6).

The chemical space diagrams also showed that median TMFs for the
defined False Creek ecosystem were essentially the same regardless if
spatial concentration gradients were present or not (Fig. S2 of the SI).
However, the 95% confidence intervals about the mean TMFs were
largewhen spatial concentration gradients were present (Fig. 3, Scenar-
io 2), indicating that individual field TMF values may be biased when
spatial gradients exist, especially inwater (Fig. 3, Scenario 3). In contrast
to that depicted when spatial gradients were absent (Fig. 6), the proba-
bility of observing a field TMF ≥ 1.0 (or conversely a field TMF b 1.0)was
substantially decreased when spatial gradients were present (Fig. 7).
For example, the probability of observing a field TMF ≥ 1.0 when spatial
gradients were present was N80% only for substances with slow to in-
termediate rates of biotransformation (i.e., kM,N b 0.01 d−1) and having
log KOW ranging from 5.4 to 8.8. Similarly, the probability of observing a
field TMF ≤ 1.0 when spatial gradients were present was N80% only
when rates of biotransformation were relatively fast (i.e.
kM,N N 0.04 d−1) or for substances having log KOW N 8.5.

5. Model application

The MBAW model calculations and evaluations show that rates of
biotransformationmay lower TMF. Themodel calculations also illustrat-
ed that spatial concentration gradientsmay confound and systematical-
ly bias the calculation of TMF. The impact of concentration gradients on
whether a TMF is determined to be either N1 or b1 appears to be
greatest for substances that are subject to a low degree of
biomagnification or trophic dilution (Fig. 4). Such chemicals have unbi-
ased TMFs (in the absence of concentration gradients) that are close to a
value of 1. High KOW chemicals, which biotransform relatively slowly,
belong in this class of chemicals. For substances that do not strongly
biomagnify or dilute in food webs, variability in exposure concentra-
tions can obscure the chemical's true bioaccumulation behavior. For
such substances, it can be expected that studies conducted in locations
where spatial concentration differences are present will produce
TMFs, including TMF values for the same chemical that may be substan-
tially N1 or substantially b1. Onemay perhaps view spatial variability in
concentrations as the noise that competes with the signal (i.e., the
chemical's bioaccumulation behavior). If there is more noise
(i.e., greater spatial concentration differences), then the
biomagnification or trophic dilution signal needs to be proportionally
greater to be correctly recognized.

Themodelmay be able to play a useful role in a priori design of stud-
ies that minimize the “noise” (i.e. spatial concentration differences) and
hence increase the probability that a TMF is correctly characterized. For
example, in study locationswhere spatial concentrations differences are
suspected or known to exist, the model can help to assess which sam-
pling design has the greatest likelihood of detecting a chemical's inher-
ent trophic distribution in the sampled food webs. The model may also
be useful in the a posteriori evaluation of measured TMFs in study areas
subject to spatial concentration differences. An example application of
the model to an a posteriori situation would be using the model to as-
sess the likelihood that reported field TMFs for substances in a defined
study area can be expected to represent the biomagnification or trophic
dilution capacities implied by the model calculated TMFs.

Because of the effect of spatial concentration differences on the de-
termination of the TMF and the frequent presence of concentration gra-
dients at study sites, the application of a spatial modeling approach
should be an important consideration in the planning of food-web bio-
accumulation studies. Spatial modeling should go hand in hand with a
detailed analysis of the chemical exposure conditions when conducting
field based TMF studies. If concentration gradients cannot be avoided,
then a characterization of the spatial concentration differences across
a field study site is essential to derive a TMF that can reveal a chemical's
trophic magnification behavior. The model illustrates how field data
may be evaluated retrospectively by accounting for concentration gradi-
ents in TMF evaluation, when water/sediment monitoring data are
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available. In addition, the model also has a potential application in de-
veloping sampling designs for field TMF studies to be conducted in
areas where spatial concentration differences are likely to be significant.
Finally, it can be recommended that the true trophic magnification prop-
erties of chemicals aremore likely to be revealed in study locationswhere
spatial chemical concentration differences are absent or small compared
to locations where spatial concentration differences are significant.
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List of symbols

CB;s : weighted average of chemical concentrations in species s [g/kg wet weight]
CB,r,i,j: chemical concentration in prey species r in compartment (i,j) [g/kg wet weight]
CB,s,i,j: chemical concentration in species s in compartment (i,j) [g/kg wet weight]
CS,i: total chemical concentrations in sediment in compartment (i,3) [g/kg dry weight]
CWD,i,j: dissolved chemical concentrations in water in compartment (i,j) [g/L]
CWT,i,j: total chemical concentrations in water in compartment (i,j) [g/L]
fS/W,i,j: sediment/bottom water compartment fugacity ratios [−]
Hs,i,j: home range factor in compartment (i,j) [−]
k1,s,i,j: chemical uptake rate constant via respiration of species s in compartment (i,j) [d−1]
k2,s,i,j: rate constant for chemical elimination via respiration of species s in compartment
(i,j) [d−1]
kD,s,i,j: rate constant for uptake via ingestion of food by species s in compartment (i,j) [d−1]
kE,s,i,j: rate constant for elimination via excretion of contaminated feces by species s in
compartment (i,j) [d−1]
kG,s,i,j: growth rate constant of species s in compartment (i,j) [d−1]
KLW: lipid-water partition coefficient [−]
kM,N: biotransformation rate normalized for a 10 g fish at 15 °C
kM,s: rate constant for biotransformation by species s [d−1]
KOC: organic carbon–water partition coefficient [L/kg organic carbon]
KOW: octanol–water partition coefficient [−]
m0,s,i,j: fraction of respiratory ventilation by species s of water from compartment (i,j) [−]
MB: mean model bias [−]
MP,s,i,j: fraction of respiratory ventilation of sediment pore-water in compartment (i,j) for
sediment dwelling species s [−]
OCWi,j: organic carbon content in water compartment (i,j) [−]
øS,i,j: volume fraction of solids in sediment [−]
øoc,i: fraction of organic carbon in bottom sediment solids (kg oc/kg sediment dw) [−]
Pr: fraction of diet containing prey r [−]
Rr,i,j: presence factor for prey species r in compartment (i,j) [−]
T: water temperature [°C]
TMF: trophic magnification factor [−]
TMFC,i: modeled TMF for chemical i [−]
TMFO,i: observed TMF for chemical i [−]
TPr: trophic position of prey species r in the diet of species s [−]
TPs: mean trophic position of the predator species s [−]
Tref: reference temperature = 15 °C
WB: wet weight of organism [g]
WB,N: reference wet weight of organism = 10 g
XPOC,i,j: concentration of particulate organic carbon in water compartment (i,j) [kg OC/L]
ZL: fugacity capacity of lipid [mol/Pa/m3]
ZO: fugacity capacity of octanol [mol/Pa/m3]
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