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Abstract.—Calculation of in-season marine survival rate forecasts for coho salmon Oncorhynchus kisutch

can provide valuable support for in-season harvest management decisions because annual variability in marine

survival accounts for a large proportion of total recruitment variability. We present a new forecasting model

that utilizes coded wire tag (CWT) recovery information from early occurring fisheries to provide in-season

marine survival forecasts that are timely enough to inform harvest management decisions for subsequent

fisheries. We evaluate performance of the CWT model by using retrospective analyses on four coho salmon

indicator stocks from northern British Columbia, Canada. For each stock, model selection analysis was used

to identify which of three time-varying fishery catchability models used within the CWT model maximized

forecasting performance. A Bayesian approach to parameter estimation was then applied to the best CWT

model to generate probabilistic forecasts of marine survival rate for six consecutive weeks of in-season

forecasting in each year. Although forecasted posterior distributions were wide in some cases, the posterior

mode tracked marine survival relatively well in comparison with postseason marine survival estimates based

on recoveries from all fisheries and the spawning grounds. Average percent forecast biases based on posterior

modes were�1,�4, 19, and 57% for the four indicator stocks in the final week of forecasting. The lower tails

of the posterior distributions were well defined, which is most relevant to identifying years of conservation

concern due to extremely low marine survival. We conclude that timely in-season recovery and analysis of

CWT information could improve the level of information available to inform in-season harvest management

decisions.

Annual forecasts of smolt-to-adult survival in the

marine environment can provide valuable support for

Pacific salmon harvest management decisions because

high interannual variations in marine survival cause

large fluctuations in recruitment. For North Pacific

populations of coho salmon Oncorhynchus kisutch,

variability in marine survival accounts for 48–68% of

the total variability in recruitment, the remainder being

attributed to smolt production (Shaul et al. 2007). For

this reason, marine survival estimates, along with

estimates of freshwater productivity, are critical for

determining sustainable exploitation rates for coho

salmon (Bradford et al. 2000). A large amount of effort

has been invested in studying environmental variables

affecting coho salmon marine survival over the past

two decades (e.g., Nickelson 1986; Coronado and

Hilborn 1998; Hobday and Boehlert 2001). However,

retrospective analyses show that predictive abilities of

these relationships inevitably fail in some years

because of unexplained biological and physical factors

(Cole et al. 2001; Logerwell et al. 2003). Furthermore,

high local and regional variability in the response of

Pacific salmon marine survival to environmental

variables (Coronado and Hilborn 1998; Peterman et

al. 1998; Quinn et al. 2005) will require these types of

predictive relationships to be continually redefined for

different management areas, as well as through time.

We present a new forecasting model that utilizes

coded wire tag (CWT) recovery information from early

occurring fisheries to provide in-season forecasts of

marine survival that are timely enough to inform

harvest decisions about subsequent fisheries. In-season

management regimes attempt to achieve conservation

and harvest objectives by revising harvesting decisions

throughout the fishing season as new and presumably

more informative data become available. Preseason

recruitment forecasts based on factors such as spawn-

ing stock abundance, previous years’ recruitment

levels, environmental variables, and recruitment of

sibling age-classes (i.e., jacks that return to spawn after

only one summer at sea as opposed to two summers for

the normal adults) remain an important part of most
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salmon management procedures because they allow

harvesters and managers to plan for upcoming

fisheries. However, the generally poor performance of

preseason forecasting models in retrospective analyses

(Haeseker et al. 2008) has led to an increased reliance

on in-season forecasts to make decisions about when

and where to open fisheries (Claytor 1996; Su and

Adkison 2002; Hyun et al. 2005). Typically, in-season

forecasting methods have focused on estimating total

return abundance; however, in mixed-stock fisheries

where total abundance is difficult to define, estimates

of marine survival can play an important role in in-

season forecasting. For example, marine survival rates

can be combined with estimates of total smolt

production to predict the total abundance of fish from

a given stock recruiting to fisheries and spawning

grounds. Where estimates of smolt production are not

available, marine survival rate estimates will still

provide valuable insight into the potential for low

adult returns.

We evaluate performance of the CWT return

forecasting model using retrospective analyses on four

coho salmon indicator stocks from northern British

Columbia, Canada. These stocks are a good example of

the above challenges to preseason and in-season

forecasting for several reasons. First, preseason fore-

casts of return abundance for northern British Colum-

bia coho salmon have historically been generated using

time-series and sibling analyses; however, these

forecasting methods have performed poorly due to

high interannual variation in marine survival and low

proportions of fish returning to inland rivers as jacks

(Sawada et al. 2003). As a consequence, unreliable

forecasts for the 1997 return year led to an approxi-

mately 55% exploitation rate being applied to one of

the lowest recruitments on record. Second, coho

salmon are encountered as directed and incidental

catch in six mixed-stock fisheries in both Alaska and

northern British Columbia, which makes it difficult to

obtain reliable stock-specific recruitment information.

Although catch levels for southeast Alaska and

northern British Columbia stocks have been correlated

during the past few decades, they have also shown

periods of strong divergence (PSC 2002). The

feasibility of using catch indices from Alaskan and

Canadian mixed-stock fisheries to forecast total return

abundance has been examined; however, predictive

abilities are generally poor (Holtby 2000). Finally,

extremely low marine survival rates and escapement

levels throughout the 1990s have led to conservation

concerns for several northern British Columbia coho

salmon stocks (PSC 2002). In light of these challenges,

early identification of years in which stocks will

experience undesirably low marine survival rates

before the opening of Canadian commercial fisheries

has been identified as a key management requirement

(Holtby 2000). Because Canadian commercial fisheries

are managed using effort control, triggering of the early

warning signal for any one indicator stock would result

in Canadian commercial fisheries remaining closed for

the year.

The coordinated, coastwide CWT program has been

maintained between Canadian and U. S. fisheries

management agencies since the late 1970s (Johnson

2004). This program allows the fate of specific groups

of Pacific salmon to be tracked from the time of

tagging as juveniles to tag recovery in fisheries or

terminal spawning areas. A standardized sampling and

reporting protocol has been established, and informa-

tion is shared among agencies in both countries via an

online database. The primary purpose of the CWT

program is to monitor stock composition of catch and

to estimate stock-specific exploitation and marine

survival rates in the postseason. The CWT information

is not commonly used for forecasting purposes;

however, the interception of British Columbia-bound

fish by Alaska fisheries several weeks before the

opening of the Canadian fishery, as well as the

relatively quick turnaround time for tag processing

and data entry (approximately 2 weeks), provides an

ideal opportunity to apply this information to in-season

harvest decisions.

Methods

We used a Bayesian approach to parameter estima-

tion to generate posterior probability distributions that

describe uncertainty in forecasts of marine survival

rates. The calculation of a probabilistic forecast is

beneficial because it provides decision makers with a

simple, visual representation of uncertainty in estimat-

ed rates. In the case of northern British Columbia coho

salmon, we are interested in providing in-season

management support in the form of a statement about

the probability that marine survival is below a

threshold level that has historically been associated

with poor return abundance. This type of information

will help Canadian fishery managers make informed

decisions about whether or not to open Canadian

commercial fisheries.

We present our methods in three sections: (1) the

context for our application of the CWT model to

northern British Columbia coho salmon; (2) descrip-

tions of the CWT model, a model selection analysis

conducted on time-varying fishery catchability models

used within the CWT forecasting procedure, and the

Markov Chain Monte Carlo (MCMC) method used to

generate probabilistic forecasts of marine survival rate;
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and (3) details of the retrospective analysis used to

evaluate forecasting performance.

Application to Northern British Columbia Coho
Salmon

Biological and fishery considerations.—Two of the

four northern British Columbia coho salmon indicator

stocks, the Babine River and Toboggan Creek stocks,

are located in the Skeena River watershed (Figure 1).

The third stock is located in Zolzap Creek within the

Nass River watershed, and the fourth stock is found in

the Lachmach River, a coastal system located between

the Skeena and Nass rivers. These four systems differ

from each other in several respects, including location

(coastal versus interior), average recruitment level, and

average marine survival rate (Table 1). The predom-

inant life cycle for northern British Columbia coho

salmon extends 3 years. Spawning occurs in October

and November, and fry emerge from the gravel the

following spring. Juveniles spend 1–3 years in

freshwater before migrating to sea as smolts between

April and June. Marine CWT recoveries of northern

British Columbia coho salmon are mostly from

fisheries in southeast Alaska and northern British

Columbia (including the Queen Charlotte Islands),

which suggests a northerly ocean distribution pattern

along the British Columbia coast and the Alaskan

panhandle (Weitkamp and Neely 2002). All females

and most males spend about 16 months at sea before

returning to their natal streams to spawn. A small

proportion of males from coastal streams, including the

Lachmach River indicator stock, return to spawn as

jacks after spending only 4 or 5 months in the ocean.

The Toboggan Creek, Zolzap Creek, and Babine River

indicator stocks have no jacks. Migrating adults pass

through Alaskan and northern British Columbia

fisheries en-route to their natal streams between late

June and September, and those heading to interior

streams migrate earlier than those destined for coastal

streams (PSC 2002).

During their migration back to spawning streams,

northern British Columbia coho salmon are encoun-

tered in up to six mixed-stock ocean fisheries and two

freshwater fisheries. Ocean fisheries include the

southeast Alaskan troll fishery that intercepts the fish

as they migrate from Alaska back to northern British

FIGURE 1.—Locations of four northern British Columbia streams (indicated with stars) containing coho salmon indicator

stocks, and the area fished by the southeast Alaska troll fishery, from which coded-wire-tagged fish were recovered.
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Columbia, three Canadian commercial fisheries (troll,

gill-net, and seine), a Canadian First Nations fishery,

and a Canadian sport fishery. Freshwater fisheries

include First Nations harvest and an in-river sport

fishery. Exploitation rates (Table 1) were generally

higher in the late 1980s and early to mid-1990s,

reaching as high as 74–87% of total recruitment. Poor

returns in the late 1990s, including one of the lowest

escapements on record (1997), caused management

actions in Canada that resulted in sharp reductions in

exploitation rates. Fishing opportunities and effort

levels in southeast Alaska have remained relatively

constant through time; however, there was a slight

decline in effort between 2001 and 2003 in response to

low fish prices (Shaul et al. 2007). For the Toboggan

Creek indicator stock, which has the most complete

time series, Alaskan troll fishery catches take, on

average, 25% of the total return run before the fish

enter Canadian waters. The Alaskan troll fishery

operates from mid-July (week 27) to September (week

39); northern British Columbia coho salmon account

for the largest portion of this Alaskan mixed-stock

catch in late July and early August. The remaining

catch is divided up among the seven Canadian

fisheries. Between 1988 and 1997, average Canadian

exploitation rates of Toboggan Creek coho salmon

were 13% in the troll fishery, 6% in the gill-net fishery,

and 6% in the seine fishery. Between 1997 and 2005,

exploitation rate averages for these gear types were 6,

0, and 1%, respectively, with Canadian fisheries

remaining closed in several years (J.S., unpublished

data). Openings for Canadian commercial fisheries

currently occur from July to September.

The CWT model described below makes three key

assumptions. First, we assumed that juveniles with

CWTs migrate to the ocean as smolts in the year of

tagging. In the two indicator streams with wild stocks,

Lachmach River and Zolzap Creek, this assumption is

valid because fish were captured and tagged using

methods that specifically target smolts during their

downstream migration. Hatchery-reared coho salmon

from Toboggan Creek and Babine River are tagged at

age 1 and released into freshwater. Although these

tagged juveniles may remain in freshwater habitats for

an additional 1 or 2 years after release, analysis of

CWT recovery information shows that this behavior is

rare. Approximately 99% of Toboggan Creek and

100% of Babine River CWT recoveries are from fish

that spent only 1 year in freshwater. Second, we

assumed that the proportion of jacks returning to

Lachmach River is constant among years, despite

observed among-year variability of 3–15% from 1988

to 2003. This assumption was necessary, however,

given a lack of preseason or in-season information on

jack return rates. The third and final assumption made

in the CWT model is that fish are not subject to natural

mortality during the fishery. This assumption is

common to most methods for in-season forecasting of

run strength because natural mortality information in

ocean environments is very rarely available on a

weekly basis.

Data.—The CWT model requires three types of

input data for each indicator stock: (1) the annual

number of coded-wire-tagged fish released, (2) esti-

mates of the number of tagged fish recaptured in

fisheries during each week before the timing of in-

season management decisions, and (3) weekly in-

season estimates of fishing effort for recapture

fisheries. We used data from the southeast Alaskan

commercial troll fishery between 1988 and 2005 as

input to the CWT model for our retrospective analysis

of northern British Columbia coho salmon. Numbers of

TABLE 1.—Comparison of coded wire tag (CWT) data and stock characteristics for northern British Columbia coho salmon

indicator stocks of Toboggan Creek, Lachmach River, Babine River, and Zolzap Creek. Single numerical values are averages,

and ranges are given in parentheses.

Variable

Indicator stock

Toboggan Lachmach Babine Zolzap

CWT time series 1988–2005 1988–2003 1994–2001 2003–2004 1993–2004
Stock type Hatchery Wild Hatchery Wild
Recruitment 6,167 (848–11,853) 2,823 (1,173–5,973) 15,849 (1,002–33,050) 3,453 (1,025–9,552)
Marine survival 0.040 (0.005–0.104) 0.106 (0.030–0.188) 0.025 (0.006–0.051) 0.063 (0.020–0.115)
Exploitation rate (%) 47 (15–74) 56 (22–76) 56 (33–87) 53 (24–75)
Number tagged 33,219 (30,354–40,351) 10,255 (1,169–24,408) 36,930 (26,014–59,965) 19,721 (10,166–33,923)
Number recovered 67 (6–160) 66 (1–206) 79 (8–244) 67 (36–164)
Proportion sampleda 0.40 (0.28–0.57) 0.38 (0.28–0.54) 0.37 (0.26–0.45) 0.38 (0.30–0.47)

a Both observed and expanded estimates of tag returns were extracted from the Regional Salmon Mark Recovery database maintained by the

Pacific States Marine Fisheries Commission, Portland, Oregon (http://www.rmpc.org/contacts.html). The proportion of catch sampled was

calculated based on extractions from the database by dividing the number of tags observed from the fishery by the expanded estimate of total tags

caught in the fishery.
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tagged coho salmon released from each indicator stock

and estimates of the corresponding numbers of tagged

fish recovered weekly in Alaskan troll fisheries were

obtained from the Regional Salmon Mark Recovery

Program (MRP) database (Table 1). The number of

CWTs recovered from Alaskan fisheries is estimated

based on the proportion of the total catch that is

inspected for tags each week and the number of tags

observed in the inspected samples (see Johnson 2004

for details on sampling and estimation methods). The

number of years for which CWT data are available

differs among stocks and ranges from 10 to 18 years;

only the Toboggan Creek indicator has operated

consistently over the study period (1988–2005). In-

season decisions about whether to open Canadian

fisheries are made within 6 weeks after opening of the

Alaskan troll fishery, so we only used the first 6 weeks

of in-season catch data each year in the retrospective

analysis. Data on troll fishing effort (boat-days) for

these 6 weeks were obtained from the Alaska

Department of Fish and Game (ADFG; L. Shaul,

Commercial Fisheries Division, Douglas, personal

communication). Troll fishery effort was collected in-

season using aerial overflights.

Annual postseason estimates of marine survival,

which we used in the retrospective analysis, are

calculated for northern British Columbia coho salmon

at the end of the spawning season using tag recovery

information from the spawning grounds as well as from

all Canadian and U.S. commercial, sport, and First

Nations fisheries. These estimates were derived from

the MRP database.

Coded Wire Tag Catch Model

Likelihood.—A sampling distribution for CWT

recoveries was constructed by assuming that the

probability of observing a CWT catch of C
t,w

in week

w of year t follows a Poisson distribution of the form

Ct;w ; Poisson N̂t;wð1� e�qt;wÊt;w Þ
h i

; ð1Þ

where q
t,w

is week-specific troll fishery catchability,

Ê
t,w

is an in-season estimate of fishing effort for week

w of year t, and N̂
t,w

is the expected number of tagged

coho salmon available to the fishery at the start of week

w of year t. The state variable N̂
t,w

is calculated using

the marine survival-depletion model:

N̂t;w ¼
stRt�1ð1� rÞ w ¼ 1

stRt�1ð1� rÞ �
Xj¼ðw�1Þ

j¼1

Ct;j 2 � w � 6;

8><
>:

ð2Þ

where s
t
is the marine survival rate for fish returning in

year t, R
t�1

is the number of coded-wire-tagged smolts

released in year t � 1, r is the stock-specific average

jack rate that applies only to the Lachmach River stock,

and j is an index used to denote all weeks before the

current week w. We define jack rate as the proportion

of fish from a release cohort in year t that return to

spawn in that same year after only 4–5 months at sea.

The jack rate is applied to R
t�1

to account for the

proportion of fish from release abundance R
t�1

that are

not available to the fishery in year t because they have

already spawned as jacks. Coho salmon jacks are not

taken in troll fisheries; thus, the presence of jacks that

entered the ocean in year t does not affect fishery catch

rates. The value of r for the Lachmach River stock was

set to the average jack rate observed between 1989 and

2002, which was 0.08 (SD ¼ 0.036; J.S., unpublished

data). The value of r was set to zero for the other three

indicator stocks.

In each year of forecasting, the CWT model is fit to

catch data from the current year as well as all previous

years, which means that a time series of annual marine

survival rates is estimated for each year and for six

weekly catchability coefficients. Specifically, marine

survival rate forecasts are based on a weighted

combination of CWT catch and fishing effort informa-

tion for (1) all years and weeks up to T � 1 and (2)

week 1 to the forecasting week W in year T. Therefore,

the Poisson distribution for the complete CWT data set

is of the form (note that we suppress notation for

dependence on fishing effort, CWT releases, and the

assumed jack rate):

pðC j s; qÞ ¼
YT�1

t¼4

Yw¼6

w¼1

1

Ct;w!
Ĉt;w

Ct;w e�Ĉt;w

3
YW
w¼1

1

CT;w!
ĈT;w

CT;w e�ĈT;w ; ð3Þ

where the matrix C of observed CWT catches has T
rows and six columns. Note that in the forecasting year,

row T represents the in-season CWT catch component,

and thus it only contains observations for week 1 to

week W. Parameter s ¼ (s
4
, s

5
, . . . s

T
) is a vector of

estimated marine survival rates for year 4 to year T; q¼
(q

1
, q

2
, . . . q

6
) is a vector of estimated weekly

catchability coefficients (or matrix, depending on the

catchability model used); and Ĉ
t,w

is the expected catch

in each week w of year t, which is the Poisson

expectation in square brackets in equation (1). Al-

though the two components of the likelihood equation

can be combined, we chose to partition equation (3)

into prior years (first term) and the forecasting year

(second term) to highlight the in-season component. As
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each in-season CWT catch observation is added to the

final row of C, all model parameters, including those in

prior years, are updated. As is evident from equation

(3), however, most of the weight in this refitting will be

given to the prior years of data.

Prior distributions.—Generating an in-season ma-

rine survival forecast for any year T and week W
requires estimating year-specific marine survival rates

(s
t
) and potentially time-varying weekly catchability

coefficients (q
t,w

). These parameters will be partially

confounded because changes in the mean catchability

cannot be distinguished from changes in marine

survival rates, especially during the first few years of

the time series when there is little contrast in fishing

effort. Specifying an informative prior distribution for

marine survival rates allows joint estimation of all

model parameters. We assumed that annual changes in

marine survival followed a random-walk process:

pðs0t j s0t�1;r
2
s Þ ¼

1ffiffiffiffiffiffiffiffiffiffiffi
2pr2

s

p exp �ðs
0
t � s0t�1Þ

2

2r2
s

" #
; ð4Þ

where s
0

t is the logit transformation of the marine

survival rate: logit(s
t
) ¼ log[s

t
/(1 � s

t
)]. Marine

survival rate parameters were estimated on the logit

scale to constrain values between 0 and 1. We used a

random-walk model because this form of variation has

been shown to perform well for tracking temporal

trends in salmon life history variables that covary with

changes in ocean conditions (Peterman et al. 2000) and

several previous studies have shown relationships

between coho salmon marine survival and ocean

conditions (e.g., Nickelson 1986; Hobday and Boeh-

lert 2001; Logerwell et al. 2003). The prior variance

r2
s is not estimable from the CWT data alone (without

an informative prior); therefore, we fixed r2
s to the

mean of among-year variances in logit marine survival

rates from southeast Alaska indicator coho salmon

stocks. We calculated r2
s ¼ 0.26 on the logit scale

using published estimates from Shaul et al. (2004).

The first prior value (s
0

t ) was parameterized using the

stock-specific postseason marine survival rate esti-

mates from year t¼ 1. We examined the effects of r2
s

on retrospective forecasting performance by setting r2
s

equal to 0.13 and 0.39, representing a 50% increase

and decrease, respectively, in r2
s . We assumed

uniform prior distributions for all catchability param-

eters.

Selection of CWT catchability model.—There is a

wide range of potential mechanisms that could lead to

changes in fishery catchability over time. For example,

changes in fishing gear efficiency, altered behavior and

migration patterns of fish through space and time, and

the search and capture behavior of harvesters can

potentially give rise to temporal trends in catchability

(e.g., Peterman and Steer 1981; Winters and Wheeler

1985; Robins et al. 1998). We therefore used a model

selection analysis of three different time-varying

catchability models proposed by Wilberg and Bence

(2006) to describe how catchability might change

through time. Relative performance of the alternative

catchability models was measured based on retrospec-

tive analyses of the precision and bias of in-season

marine survival forecasts (see next section).

In the first model (constant catchability), weekly

catchability coefficients were assumed constant across

all years for each week up to and including the current

forecast year T. Six catchability coefficients were

estimated for each stock (q � ,w¼1
, q � ,w¼2

,... q � ,w¼6
, where

the bullet symbol indicates that the parameter applies to

all years t). In the second model (abrupt shift),

catchability was allowed to shift from one long-term

average to another at a single point in time. Alaskan

troll fishery catchability is believed to have increased

sharply between 1995 and 1996 when economic

pressures raised the minimum catch per unit effort

(CPUE) that fishers were willing to tolerate to continue

fishing a given location (L. Shaul, personal communi-

cation). Total fishing effort decreased during this

period; however, catchability is believed to have

increased because the remaining effort was concentrat-

ed on high CPUE fishing times and areas. To mimic

this behavior, we allowed catchability to shift as

follows,

qt;w ¼
q1

w if t , 1996

q2
w if t � 1996:

�
ð5Þ

There is reason to suspect that a subsequent

downward shift in coho salmon catchability for the

Alaskan troll fishery may have occurred in 2002 and

2003 because fishers targeted highly abundant Chinook

salmon O. tshawytscha instead of coho salmon during

these years. In an initial examination, abrupt shift

models for these years performed poorly and were not

considered further. In the third model (density-

dependent), the following power function was used to

describe catchability as a function of coho salmon

abundance:

qt;w ¼ awN̂
bw

t;w; bw , 0; aw . 0; ð6Þ

where N̂
t,w

is the abundance of tagged coho salmon

available to the fishery in week w of year t, as predicted

by equation (2). Note that the negative constraint on b
means that we only allow for an inverse relationship

between catchability and coho salmon abundance.

Bayesian posterior simulation.—Combining the

likelihood and prior gives the posterior distribution
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for marine survival rates using only data up to and

including year T and week W, where T and W represent

the year and week in which forecasts are being made

(note that lowercase t and w index all years and weeks

prior to T and W). For each year t, we computed the

joint posterior distribution for all marine survival rates,

including the forecast, and all catchability coefficients.

The posterior distribution can be written as follows:

pðs; q jC;r2
s Þ}pðC j s; qÞ3

Yt¼T

t¼4

pðs0t j s0t�1;r
2
s Þ: ð7Þ

An approximation to the joint posterior distribution

of all model parameters was generated using a

Metropolis-Hastings algorithm (see Appendix).

Retrospective Evaluation of Forecasting Performance

Year t ¼ 4 was the first year evaluated in the

retrospective analysis. The first 3 years of CWT data

were used to define the prior distribution for year 4. For

each forecasting week W and year T, we generated

model parameter estimates by using only data that

would have been available to managers at that time.

Such retrospective information consists of complete

catch and effort data for weeks 1–6 in all years up to

and including T� 1 and catch and effort data for week

1 to week W in the forecasting year T. Forecasting

performance was quantified based on how close the in-

season CWT model forecasts were to postseason

estimates, which we assume are more accurate than

in-season forecasts because they incorporate tag

recovery information from multiple fisheries and the

spawning grounds.

Retrospective performance for catchability model

selection was based on maximum posterior density

estimates of marine survival s
t

produced by the CWT

model. The Bayesian estimation procedure was not

used for this analysis because we were only interested

in using a single point estimate (i.e., the most likely

value) to evaluate forecasting performance under

alternative assumptions about catchability and r2
s .

We used mean percent error (MPE) and root mean

square error (RMSE) to quantify forecasting perfor-

mance in each week over T � 3 years. The MPE and

RMSE values were calculated individually for each

indicator stock in each of the six forecasting weeks.

The MPE characterizes the average marine survival

forecast bias in each week W over T � 3 years as a

percentage of the observed postseason estimate:

MPEW ¼
1

T � 3

Xt¼T

t¼4

s̃t;W � ŝPost;t

ŝPost;t

� �
3 100; ð8Þ

where ŝ
Post,t

is the postseason estimate and s̃
t,W

is the

posterior mode of the marine survival rate in week W of

year t. The RMSE characterizes the accuracy and

precision of annual forecasts in week W over T � 3

years,

RMSEW ¼

ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
1

T � 3

Xt¼T

t¼4

ðs̃t;W � ŝPost;tÞ2
vuut : ð9Þ

We selected the best catchability model for each stock

as the one that provided the lowest RMSE and lowest

absolute MPE values for the greatest number of weeks.

We used the stock-specific best catchability model

within the fully Bayesian CWT model to generate

probabilistic forecasts of s
t
in each week W. Forecasted

posterior distributions were used to evaluate retrospec-

tive performance in two ways. First, for each week of

in-season forecasting, we examined the number of

years in which the 95% highest posterior density

(HPD) region of the posterior distribution included the

postseason estimate of marine survival and how well

the posterior mode tracked postseason estimates. This

included an examination of how the bias and precision

of forecasted posterior distributions changed over

weeks as more information became available. Second,

we calculated the forecasted probability that marine

survival in a given year t would be lower than a critical

value, s
crit

, and compared the probability statement

with the observed postseason value. Values of s
crit

were

set equal to 50% of average postseason marine survival

rate estimates (s
crit
¼ 0.02 for Toboggan Creek, s

crit
¼

0.05 for Lachmach River, s
crit
¼ 0.03 for Zolzap Creek,

and s
crit
¼ 0.01 for Babine River). This level was

selected because it results in s
crit

values that are slightly

greater than those experienced in the 1992, 1995, 1997,

and 1998 return years for most stocks (i.e., the 4 years

that Holtby 2000 identified as having undesirably low

marine survival rates) and smaller than the rates

experienced in all other years. In general, our

evaluation of retrospective performance of the Bayes-

ian procedure has the benefit of hindsight because we

selected the best catchability model based on the full

data sets.

Overall model fit, in terms of how well predicted

CWT catches from the Bayesian estimation procedure

replicated observed catches, was assessed by compar-

ing the modes of posterior predictive distributions for

CWT catch with observed catch levels. The posterior

predictive distribution is defined as the distribution of

model-simulated data that could have been observed

conditional on the observed data (Gelman et al. 2004).

In other words, it is the distribution of CWT catches

obtained when we use the posterior samples of s
t

and

q
t,w

to calculate expected values for C
t,w

.
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Results
Catchability Models

Measures of MPE and RMSE varied with catch-

ability model and among weeks for all indicator stocks

(Tables 2, 3). For Lachmach and Babine River stocks,

weekly estimates of marine survival rate tended to be

positively biased for all catchability models, whereas

for Zolzap and Toboggan Creek stocks the direction of

bias was dependent on the catchability model and

forecast week. The catchability model that produced

the least biased estimates (closest to zero) did not

necessarily produce estimates with the lowest variance

(Tables 2, 3). To simplify in-season application of the

CWT model, we selected a single model for each stock

to be used in our retrospective Bayesian forecasting

procedure. This choice required us to make tradeoffs

among the amount of bias, the direction of bias

(positive, negative), and the amount of variance in our

forecast error that we were willing to accept in each

week. We chose to weight all weeks equally in our

selection because in-season decisions about when to

open the fishery were made in each week. The best

catchability model for each stock was selected as the

one that provided the lowest MPE and RMSE values

for the greatest number of combined weeks. As an

example, the constant catchability model was selected

over the abrupt shift model for the Babine River stock

because it ranked first for 3 weeks using MPE and for 4

weeks using RMSE. In this case, the constant model

was ranked first for a combined 7 weeks, whereas the

abrupt shift model was only first for a combined 5

weeks. The selection of a catchability model was more

straightforward for the Toboggan Creek, Lachmach

River, and Zolzap Creek stocks than for Babine River

fish. For Toboggan Creek and Babine River stocks, the

constant catchability model was the best of the three

models considered, whereas for Lachmach River and

Zolzap Creek stocks the abrupt shift model was best

(Tables 2, 3) .

With the exception of the Toboggan Creek stock, the

density-dependent catchability model performed con-

siderably worse than the other two models, with MPE

and RMSE values being 10–40 times those of the

density-independent models. Compared with the con-

stant catchability model, which would most likely be

used in initial years when data are sparse, the percent

reduction in MPE and RMSE achieved by using the

abrupt shift model for Lachmach River and Zolzap

Creek stocks shows that forecasting performance

averaged over all weeks was improved by 1–22% for

RMSE and by 76–78% for MPE through our use of

hindsight in model selection.

Estimates of weekly catchability coefficients pro-

duced in each year of the retrospective analysis show a

general trend of low catchability during early weeks

and higher catchability for later weeks (Figure 2). The

two stocks for which the abrupt shift catchability model

was best (Lachmach River and Zolzap Creek) showed

high variability arising from occasional sharp spikes in

estimated coefficients, especially in weeks 5 and 6. The

effect of the abrupt shift model on annual trends in

estimated catchability coefficients was apparent for the

TABLE 2.—Mean percent error (MPE) of maximum likelihood estimates of coho salmon marine survival from the coded wire

tag model under alternative assumptions about time-varying catchability. Results for each of the six in-season forecasting weeks

are averaged over all years for each of the four northern British Columbia indicator stocks. The lowest absolute error values for

each stock are indicated in bold font.

Stock and model type

MPE for week:

1 2 3 4 5 6

Toboggan Creek stock

Constant �24.5 �2.6 12.5 18.3 14.9 28.8
Abrupt shift �35.2 �31.9 91.6 �22.8 �9.3 �7.5
Density dependent 4.2 59.7 110.5 156.4 167.9 181.2

Lachmach River stock

Constant 40.7 50. 9 47.0 43.3 28.7 40.1
Abrupt shift 7.1 8.1 15.1 11.7 6.9 10.4
Density dependent 74.2 124.5 243.1 313.1 326.7 370.3

Zolzap Creek stock

Constant 34.2 29.3 7.9 11.5 17.2 13
Abrupt shift -8.2 0.8 �8.1 �3.1 �2.6 �2.6
Density dependent 123.4 209.0 304.0 404.0 480.5 539.7

Babine River stock

Constant 130.0 84.3 69.4 54.4 33.9 80.2
Abrupt shift 106.4 76.9 74.9 74.7 48.8 45.3
Density dependent 183.5 297.3 369.3 459.1 452.1 511.3
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Lachmach River stock, which showed an abrupt

increase in catchability during 1996 for weeks 2, 4,

and 5. The effect of the abrupt shift model on estimated

catchability coefficients for the Zolzap Creek stock

could not be examined retrospectively because the year

of the hypothesized shift (1996) was also the first

forecasting year for this stock. Estimated coefficients

for Toboggan Creek and Babine River stocks (for

which the constant catchability model was used)

fluctuated less than those for the other two stocks,

with a gradual increase in catchability occurring in later

years.

Bayesian Forecasts

Posterior distributions for marine survival rate

forecasts were positively skewed, and the mass of the

probability distribution was concentrated on smaller

values (Figure 3). In most years, postseason estimates

occurred within the 95% HPD region of the forecasted

posterior distribution for several if not all of the 6

weeks of in-season forecasting. The long tails of

posterior forecasts often resulted in large 95% HPD

regions; however, the mode of the posterior distribu-

tion for week 6 tracked postseason estimates reason-

ably well (Figure 3). Average percent bias in posterior

modes for week 6 (average over all years calculated

using MPE, equation 8) was �1% for the Toboggan

Creek stock,�4% for the Lachmach River stock, 19%
for the Zolzap Creek stock, and 57% for the Babine

River stock. There was a subset of years for each stock,

however, in which posterior distributions did not cover

postseason estimates. For example, at the end of week

6, the 95% HPD region for the Babine River stock

overlapped the postseason estimate in only 5 out of 7

years (71% of years; Figure 3D). Forecasting perfor-

mance in week 6 was improved for Toboggan Creek

and Zolzap Creek stocks; postseason estimates oc-

curred within the 95% HPD region for 12 out of 15

years for the Toboggan Creek stock (80%; Figure 3A)

and 8 out of 9 years for the Zolzap Creek stock (89%;

Figure 3C). Forecasting performance was poorest for

the Lachmach River stock, with forecasted posterior

modes diverging substantially from postseason esti-

mates in later years (Figure 3B). Although the 95%
HPD region overlapped postseason estimates in all 13

years, this overlap was due to low precision in

forecasted posterior distributions rather than accurate

forecasts.

Precision of marine survival rate forecasts for a

given year generally increased with each additional

week of in-season CWT information. In years when the

CWT model performed well, bias in forecasted

posterior modes remained low throughout the season

and precision either improved with each additional

week of in-season information or remained constant

(Figure 4C, D). In years when the model performed

poorly, posterior distributions showed high bias but

were generally precise throughout the season, some-

times even showing increases in precision, leading to a

false confidence in apparently biased estimates (Figure

4A).

Despite wide 95% HPD regions in some cases, the

TABLE 3.—Root mean square error (RMSE) of maximum likelihood estimates of coho salmon marine survival from the coded

wire tag model under alternative assumptions about time-varying catchability. Results for each of the six in-season forecasting

weeks are averaged over all years for each of the four northern British Columbia indicator stocks. The lowest error values for

each stock (bold font) indicate the best model for each week.

Stock and model type

RMSE for week:

1 2 3 4 5 6

Toboggan Creek stock

Constant 0.048 0.021 0.023 0.032 0.017 0.025
Abrupt shift 0.053 0.021 0.243 0.019 0.022 0.018
Density dependent 0.060 0.062 0.082 0.089 0.097 0.103

Lachmach River stock

Constant 0.094 0.088 0.077 0.069 0.052 0.059
Abrupt shift 0.087 0.062 0.059 0.048 0.043 0.042
Density dependent 0.169 0.178 0.314 0.359 0.385 0.419

Zolzap Creek stock

Constant 0.081 0.044 0.026 0.021 0.026 0.041
Abrupt shift 0.069 0.041 0.030 0.029 0.031 0.038
Density dependent 0.137 0.171 0.241 0.305 0.347 0.389

Babine River stock

Constant 0.092 0.041 0.030 0.016 0.011 0.026
Abrupt shift 0.067 0.048 0.034 0.027 0.021 0.021
Density dependent 0.115 0.101 0.122 0.127 0.135 0.151
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lower ends of the regions were reasonably well defined

for most stocks, which is the area of the HPD region

most relevant to identifying conservation concerns. For

example, the Zolzap Creek stock forecasts for all weeks

in 1997, which was a critical marine survival year

(ŝ
Post,1997

¼ 0.023, s
crit
¼ 0.03), had relatively wide

95% HPD regions extending from 0.01 to 0.10 but

were able to predict a minimum 0.52 probability that s
would be less than s

crit
in all weeks (Figure 4C). In

general, the CWT model was successful at providing at

least some indication of critically low marine survival

for all years that had postseason estimates below the

threshold. False-safe signals did occur in which

postseason estimates were near or below the critical

threshold, but the majority of forecasted posterior

distributions, including the modes, fell above the

threshold (e.g., Toboggan Creek in 1996; Lachmach

River in 1997; Zolzap Creek in week 6 of 2000; Figure

3); the CWT model predicted a greater than 0.50

probability that s would be less than s
crit

in at least 1 of

the 6 weeks for all years with critically low postseason

estimates. Furthermore, during these years, there was

never a week in which the forecasted probability of s
being lower than s

crit
was zero. In each case, weekly

forecasted probabilities that s would be lower than s
crit

did not drop below 0.06 and more often ranged from

0.4 to 0.9. If CWT forecasts had been available during

these years, fisheries managers would have been given

at least some indication that marine survival could be

critically low.

False-alarm signals in the final forecasting week, in

which the majority of forecast posterior distributions

fell below the threshold but postseason estimates were

above the critical threshold, only occurred for the

Toboggan Creek stock. All three of these signals

occurred in the last 4 years. Despite triggering a false

alarm, the CWT model actually performed well at

forecasting Toboggan Creek marine survival rates in

these years (Figure 3A). Forecasted survival rates

based on posterior modes were within 1–2% of the

FIGURE 2.—Annual trends (1991–2005) in estimated coho salmon catchability coefficients for weeks 1–6 for four northern

British Columbia indicator stocks: Toboggan Creek (open circles), Lachmach River (black diamonds), Zolzap Creek (open

triangles), and Babine River (black circles). Estimates represent the median of posterior distributions obtained for each year of

retrospective forecasting. Note that two estimates for Zolzap Creek in week 6 (0.097 in 2003 and 0.115 in 2004) are not shown

so that the scale can remain consistent among panels.
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postseason estimates, which were also only slightly

above the threshold (i.e., forecasted and observed

survival rates differed by 0.01–0.02). Furthermore,

forecasts correctly indicated high confidence that

marine survival rates were near the critical threshold.

The ranges of forecasted posteriors for other stocks

occasionally overlapped the critical level in years with

above-critical postseason estimates; however, posterior

modes remained above the critical threshold in these

cases.

Comparison of the posterior predictive distribution

for CWT catch with observed catch values based on the

complete data set (all years and weeks) did not indicate

a consistent lack of fit for any stocks or weeks,

although there were some potential outliers (Figure 5).

Sensitivity to Prior Variance

The sensitivity of marine survival rate forecasts to

the assumed prior variance, r2
s , of the random-walk

distribution was considerable in some cases. For

example, a 50% increase in r2
s (high r2

s ) caused

posterior modes of marine survival rate forecasts to

shift by an average of 19% for the Toboggan Creek

stock (relative to mode for baseline r2
s ), 40% for the

Lachmach River stock, 16% for the Zolzap Creek

stock, and 48% for the Babine River stock. The effect

of a 50% decrease in r2
s (low r2

s ) had a lesser influence

on posterior modes for most stocks; average deviations

were 5% for the Toboggan Creek stock, 18% for the

Lachmach River stock, 65% for the Zolzap Creek

stock, and 8% for the Babine River stock. Such

deviations in posterior modes for marine survival rate

forecasts lead to changes in forecasting bias. Forecast-

ing bias for all stocks, measured in terms of MPE, was

highest in the high r2
s case. The average change in

MPE of marine survival rate forecasts over 6 weeks

was positive for all stocks: 4% for the Toboggan Creek

stock, 19% for the Lachmach River stock, 24% for the

Zolzap Creek stock, and 25% for the Babine River

stock. Forecasting bias for three of the stocks

(Toboggan Creek, Lachmach River, and Babine River)

decreased in the low r2
s case but increased for the

Zolzap Creek stock. Average changes in MPE were�5,

�8, and �22% for the Toboggan Creek, Lachmach

River, and Babine River stocks, respectively, whereas

the average change was 8% for the Zolzap Creek stock.

Discussion

Forecasts of coho salmon marine survival rates can

be used to improve in-season abundance estimates and

FIGURE 3.—Posterior modes (open circles) and 95% highest posterior density regions (vertical lines) of posterior predictive

distributions for marine survival rate in week 6 for four northern British Columbia coho salmon indicator stocks: (A) Toboggan

Creek, (B) Lachmach River, (C) Zolzap Creek, and (D) Babine River. Annual postseason estimates are shown with black circles,

and the critical marine survival rate threshold is represented by the dashed line.
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FIGURE 4.—Survival data examples for four northern British Columbia coho salmon indicator stocks: (A) Toboggan Creek in

2005, (B) Lachmach River in 2003, (C) Zolzap Creek in 1997, and (D) Babine River in 1997. Panels at left show weekly

cumulative probability (cum. prob.) profiles for a subset of marine survival rate forecasts for the first week (thin solid lines),

intermediate weeks (dashed lines), and the last week (thick solid lines); the critical survival rate level (s
crit

) is also indicated

(dashed vertical lines). Panels at right show weekly highest probability forecasts (posterior modes) of annual marine survival

(open circles), postseason estimates of marine survival (solid lines), s
crit

(dashed line); the 95% highest posterior density regions

of forecasted posterior distributions are indicated by the solid vertical lines.
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subsequent harvest decisions. Our results indicate that

in-season returns of coded-wire-tagged coho salmon

from commercial troll fisheries in southeast Alaska can

provide reasonably reliable and timely forecasts of

marine survival rates for some northern British

Columbia indicator stocks. Although coho salmon

CWT recoveries have been used in the past as an index

of marine survival (PSC 2002), our approach to

modeling in-season tag recoveries provides absolute

marine survival rate estimates that account for changes

in fishing effort, number of tags released, and potential

changes in fishery catchability. We developed a simple

application of the CWT model to assist harvest

management decisions regarding northern British

Columbia coho salmon. This forecasting procedure is

used as an early warning signal of years in which

marine survival is below a critical threshold level. We

defined this threshold as the level of marine survival

for each stock that has historically been associated with

abundances low enough to warrant closing the

Canadian commercial fishery. There were a few

instances in our retrospective evaluation in which the

CWT model provided false-safe results (forecast

indicates s � s
crit

, but postseason estimate ŝ
Post

,

s
crit

), which is undesirable from a conservation

standpoint because resulting fisheries are likely to

FIGURE 5.—Comparison of the modes of posterior predictive distributions for coded-wire-tag (CWT) catch (predicted CWT

catch) in weeks 1–6 with observed CWT catch in week 6 of the final year of retrospective analysis for each of four northern

British Columbia coho salmon indicator stocks: Toboggan Creek in 2005, Lachmach River in 2003, Zolzap Creek in 2004, and

Babine River in 2004. The solid line is the 1:1 line.
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cause overexploitation. Fortunately, however, all years

in which false-safe signals occurred had conflicting

signals throughout the season, which would have

provided at least some indication that marine survival

could be poor. Furthermore, forecasted posterior

distributions of marine survival were often well defined

at the lower limits, which is most relevant to

conservation concerns. On the other hand, strong

false-alarm signals were never observed in the final

week of forecasting. The potential for overexploitation

or, conversely, lost fishing opportunities will be

dependent on the quantile(s) of the marine survival

forecast posterior distribution used in decision making.

For example, managers weighing conservation more

heavily than lost fishing opportunities may choose a

lower quantile, whereas those who place equal weight

on catch and conservation outcomes may choose a

more central quantile.

Fishery catchability is often assumed constant in

stock assessments. Our retrospective performance

results based on fitting three types of catchability

models suggest that such an assumption is not

unreasonable for modeling CWT catches in coho

salmon troll fisheries in Alaska provided that catch-

ability assessments are updated annually. For example,

despite their name, constant catchability model param-

eters changed from year to year depending upon

information contained in the CWT catch and in-season

effort data. We initially expected that catchability

estimates would be less likely to make large jumps later

in the time series as estimates became increasingly

dependent on the data before year T. However, this

constraint did not appear to be a problem over the

timelines we examined. The constant catchability

models do a reasonably good job of predicting marine

survival rates and catches in later years, and catch-

ability was estimated to increase gradually over a 10-

year period, followed by a more rapid change over the

most recent years.

For the other two stocks, Lachmach River and

Zolzap Creek, an abrupt shift catchability model

provided slightly better retrospective performance than

the constant catchability model. The high among-year

variation in estimated catchability coefficients for these

two stocks in week 6, especially in later years, suggests

that the success of the abrupt shift model is at least

partially due to weaker constraints on catchability

estimates caused by lower numbers of tag releases. The

Lachmach River and Zolzap Creek stocks are both wild

stocks and have lower levels of recruitment and CWT

releases than the other two (hatchery) stocks. Alterna-

tively, large changes in catchability estimates may be

explained by unusually late run timing through the

fishery. The CPUE of fish with CWTs (CPUE
CWT

) for

the Lachmach River stock in both 2000 and 2003 was

highest in week 6, but in most other years it peaked in

weeks 3 or 4. The CWT model would be expected to

adjust to these high catch rates by either increasing

annual marine survival rates or increasing catchability.

Presumably, the random-walk model that we used to

constrain estimates of marine survival rates forced the

latter. Although the CWT model still did a good job of

predicting CWT catches in the final year of the

retrospective analysis, the high catchability estimate

caused the marine survival rate forecast to be

negatively biased. A shift to later run timing also

appears to have occurred for the Zolzap Creek stock

between 2002 and 2004. For instance, before 2002, the

CPUE
CWT

in week 6 accounted for an average of 20%
(range ¼ 18–33%) of the total weekly CPUE

CWT
over

all 6 weeks. For 2002, 2003, and 2004, CPUE
CWT

in

week 6 accounted for 48, 56, and 66%, respectively.

Similar to the Lachmach River stock, CWT model

forecasts of marine survival for the Zolzap Creek stock

were negatively biased in all of these years. Regardless

of the cause of changes in catchability, we suggest that

similar model selection analyses be used in applica-

tions of the CWT model to new stocks and that the

analysis be repeated on a regular basis to ensure

detection of changes in the best catchability model.

The observed sensitivity of marine survival rate

forecasts to r2
s demonstrates the importance of

carefully selecting an informative prior distribution.

We selected a random-walk model and parameterized

r2
s based on neighboring coho salmon stocks in

southeast Alaska. In hindsight, it appears that a

smaller r2
s value could have improved forecasting

performance for three of the northern British Columbia

stocks. However, we selected our prior distribution

based on a source for prior information that was, to our

knowledge, the best available for northern British

Columbia stocks. It is possible that our simple

averaging of marine survival rate variances did not

remove unrelated sources of variation, such as that

arising from observation errors or among-stock varia-

tion. A hierarchical Bayesian approach would poten-

tially allow for estimation of a pure process error

variance r2
s for each stock by borrowing information

from other stocks; however, the hierarchical approach

would not be particularly effective if based on only

four stocks. Future applications of the CWT model

could also incorporate environmental variables that are

known to influence local marine survival rates into the

estimation procedure to supplement prior information.

In addition, prior information on run timing may

improve estimation of catchability coefficients.

Our in-season estimates of marine survival rates

were similar to postseason estimates derived from both
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Alaskan and Canadian fishery recoveries and returns

from spawning grounds. In only a few cases did the in-

season estimates differ substantially from the postsea-

son estimates. In particular, differences were greatest

for the Lachmach River wild stock, for which forecasts

showed some large errors after 1996. Such differences

could arise for a number of reasons for this stock. First,

the number of fish tagged and released was lower for

the Lachmach River stock than for the other three

stocks. Bias and imprecision in in-season estimates

could therefore be due to the effects of small sample

size. Second, poor performance may be due to biases in

postseason estimates and from in-season estimation

errors. Smolt trapping and enumeration methods have

changed over time for the Lachmach River stock, and

such changes could potentially cause biases in

postseason marine survival rate estimates. Thus, we

do not necessarily place more weight on the postseason

estimates for the wild stocks. In-season estimates

agreed closely with postseason estimates for the

interior hatchery stocks, for which smolt counts are

known with much greater precision and in which jack

life history types are rare. Future attempts to apply the

CWT model to coastal coho salmon stocks with high

jack returns would benefit from investigating ways to

forecast jack rates. Several biological and physical

factors, including sea entry timing, smolt body size, sea

surface temperatures, and conditions during freshwater

rearing, have been linked to coho salmon jack rates and

may provide a basis for these types of forecasts (Bilton

et al. 1982; Briscoe et al. 2005; Koseki and Fleming

2007).

A key limitation with this study, as with all

retrospective analyses, is that the performance of the

CWT forecasting model can only be evaluated based

on conditions that occurred during the retrospective

time series. In our case, inferences about forecasting

performance are limited to the observed range of

variation in marine survival, return abundances, CWT

catches, catchability, and life history strategies. A

model that has performed well in the past may not

perform well in the future under different conditions,

such as higher levels of interannual variability in

marine survival or lower tagging rates. We attempted to

address this limitation by evaluating model perfor-

mance for four different indicator stocks over 10–18

years; however, an informative extension would be to

test the forecasting procedure under a wider range of

scenarios for population and fishery dynamics (e.g.,

Peterman et al. 2000; Wilberg and Bence 2006).

Previous evaluations of in-season assessment and

management models have shown simulation modeling

to be a useful tool for assessing the value of in-season

estimates of abundance (Link and Peterman 1998) and

for determining optimal harvest strategies using in-

season abundance data (Su and Adkison 2002).

Mass marking of hatchery-reared coho salmon is not

currently done in northern British Columbia or

southeast Alaska; however, the trend towards mass

marking of hatchery salmon and mark-selective

fisheries in some areas could affect future applications

of the CWT forecasting model. Historically, only

coded-wire-tagged fish had their adipose fins clipped

as an external mark, regardless of whether they were of

hatchery or wild origin (Johnson 2004). The heads of

all fish with adipose fin clips were retained during

catch inspections and sent to laboratories for tag

processing. Under mass-marking programs, all hatch-

ery-reared fish (with or without CWTs) receive adipose

fins clips, and mark-selective fisheries only retain

marked hatchery fish (Expert Panel on the Future of the

Coded Wire Tag Program 2005). Unmarked wild fish

are released as bycatch for conservation reasons. Mass

marking could affect the CWT forecasting model

because coded-wire-tagged fish no longer possess a

distinctive external marking. As a result, the entire

catch would need to be electronically scanned for

CWTs. This change in sampling methods could lead to

a change in the probability of tag detection. If the

magnitude of change is known, it could be incorporated

into the CWT model, but if it is unknown then the

performance of the CWT model could be compro-

mised. In addition, the CWT forecasting model cannot

be used for wild stocks in mark-selective fisheries

because wild fish do not receive adipose clips and are

therefore not retained as catch. However, unmarked

wild fish are expected to experience some catch-and-

release mortality from mark-selective fisheries, so

marine survival rates of wild stocks may still be of

interest when deciding whether or not to open fisheries.

In this case, information about marine survival rates for

wild stocks would have to be inferred from neighbor-

ing hatchery stocks.

Calculation of the Bayes posterior probability

distribution summarizes uncertainty about estimated

marine survival rates in a simple, visual way that is also

of practical use for precautionary fishery management

(Walters and Punt 1994; Wade 2000). For example, the

posterior distribution for marine survival could be used

in harvest decision rules that are compliant with

Canada’s commitment to the precautionary approach

to fishery management (Fisheries and Oceans Canada

2006). Such decision rules would take either output

control (e.g., harvest quotas) or input control (e.g.,

effort limitation) forms. Forecasts of total return

abundance that are required for output control rules

depend upon estimates of total smolt production and

marine survival rates. Unfortunately, reliable estimates
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of total smolt production are not currently available for

northern British Columbia coho salmon, which essen-

tially precludes the use of harvest quotas for fishery

management. Setting quotas without reliable forecasts

of total return abundance would not be precautionary

unless such quotas were set at extremely low levels.

Thus, fishery decisions for northern British Columbia

coho salmon will probably continue to be based on

input control measures that limit exploitation rates by

limiting the times and areas of fishery openings.

Sustainable exploitation rates for coho salmon depend

strongly on marine survival (Bradford et al. 2000), so

accounting for natural variation in marine survival rates

and uncertainty in forecasts is consistent with the

precautionary approach. Precautionary harvest rules for

mixed-stock salmon fisheries should also account for

among-stock variability in sustainable exploitation

rates because some stocks are at a higher risk of

overfishing than others. An investigation of the

performance of different weighting schemes for

combining run strength forecasts from multiple indi-

cator stocks into a single harvest rule would be a useful

extension of CWT forecasting methods.
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Appendix: Metropolis-Hastings Procedure

We used a Markov Chain Monte Carlo (MCMC)

procedure with a Metropolis-Hastings algorithm from

the MCMC package for R software (MCMC pack) to

construct the joint posterior distribution and the

marginal posterior distributions for marine survival

and catchability coefficients (Martin and Quinn 2006;

R Development Core Team 2007). Initial iterations of

the MCMC procedure showed that the acceptance rate

of simulations was low compared with the optimal

acceptance rate of 0.44 (Gelman et al. 2004). Reducing

the scale of the jumping distribution to 0.40 achieved

acceptance rates ranging from 0.38 to 0.55. Initial runs

produced high autocorrelations for all estimated

parameters; lag 1 autocorrelation coefficients ranged

from 0.80 to 0.95, where lag values are expressed

relative to thinning intervals. Evaluation of the

autocorrelation function at increasing levels of lag

showed that autocorrelation decreased slowly with

increasing lag values for all parameters and that a lag

value of 125 was generally necessary to achieve

autocorrelation near zero. Based on initial examina-

tions of the Markov chains and posterior distributions,

we ran 100,000 MCMC iterations and sampled every

125th value to avoid autocorrelation. The first 50,000

samples were discarded for burn-in, resulting in a total

of 400 posterior sample points that were used to make

inferences about parameter values.

We assessed convergence for each estimated param-

eter by visual inspection of three independent MCMC

chains and by computing a potential scale reduction
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factor, < (Gelman et al. 2004). An < statistic of 1.0 is

the target value used to indicate posterior convergence;

however, < values less than or equal to 1.1 are

generally considered acceptable (Gelman et al. 2004).

Chains were made independent by initiating each at a

different (overdispersed) starting point.

Visual inspections of simulated posterior distribu-

tions for marine survival rate and catchability

parameters did not indicate a lack of convergence of

MCMC chains on the target distribution. All posterior

distributions were unimodal, and the average param-

eter values within chains remained stable after the

burn-in period was removed. The < value for each

parameter also indicated approximate convergence

had been achieved for all posterior distributions (< ,

1.1).
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