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Abstract: Canada’s Wild Salmon Policy requires that biological status of conservation units of Pacific salmon
(Oncorhynchus spp.) be assessed regularly in relation to abundance-based benchmarks. Visual survey methods, in which
periodic counts of spawning fish are made throughout a season, will likely be used for this purpose because they pro-
vide a cost-effective means of monitoring interannual trends in escapement. Trend detection performance for visual
survey methods depends mainly upon consistency in (i) the ability of observers to detect fish and (ii) the annual timing
of fish presence in the survey area. We developed a Monte Carlo simulation procedure to evaluate the ability of four
visual survey methods (peak count, mean count, trapezoidal area-under-the-curve (AUC), and likelihood AUC) to detect
30% declines in coho salmon (Oncorhynchus kisutch) escapement over 10 years (i.e., the magnitude of trend that
would warrant listing a coho population as threatened using the listing criteria of the Committee on the Status of
Endangered Wildlife in Canada (COSEWIC)) given realistic levels of variability in these two factors. The mean count
outperformed all other approaches across a wide range of scenarios about true population dynamics and survey designs,
suggesting that a simple mean count method is suitable for monitoring coho escapements in relation to COSEWIC
guidelines.

Résumé : La politique canadienne concernant le saumon sauvage exige que le statut des unités de conservation des
saumons du Pacifique (Oncorhynchus spp.) soit évalué à intervalles réguliers par rapport à des niveaux d’abondance de
référence. Pour réaliser cet objectif, on utilisera vraisemblablement des méthodes visuelles d’inventaire (dénombrements
périodiques des poissons en fraie au cours d’une saison) parce qu’elles procurent un moyen avec un rapport rende-
ment/coût intéressant pour suivre les tendances de l’échappement d’une année à l’autre. L’efficacité de la détection des
tendances dans les méthodes visuelles d’inventaire dépend surtout de l’uniformité (i) de la capacité des observateurs à
détecter les poissons et (ii) du calendrier de la présence des poissons dans la zone d’inventaire. Nous avons mis au
point une procédure de simulation de Monte Carlo pour évaluer la capacité de quatre méthodes visuelles d’inventaire
(dénombrement maximal, dénombrement moyen, surface trapézoïdale sous la courbe (AUC) et vraisemblance de AUC)
à détecter des déclins de 30 % dans l’échappement de saumons coho (Oncorhynchus kisutch) sur 10 ans (soit une ten-
dance suffisamment importante pour considérer la population de saumons coho comme menacée selon les critères du
Comité sur la situation des espèces en péril au Canada (COSEPAC – COSEWIC)) avec des niveaux de variabilité réa-
listes de ces deux facteurs. Le dénombrement moyen fonctionne mieux que toutes les autres méthodes dans une gamme
étendue de scénarios concernant la dynamique réelle de la population et les plans d’inventaire; cela indique qu’une
méthodologie de dénombrement moyen est adéquate pour suivre les échappements de saumons coho selon les directives
du COSEWIC.
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Introduction

Visual survey methods, in which observers periodically
count fish throughout the spawning season, provide a cost-
effective means of assessing interannual trends in Pacific
salmon (Oncorhynchus spp.) escapement. Extensive survey
programs that utilize visual survey methods allow a wide
range of populations to be monitored; however, annual es-

capement estimates are generally assumed to be less certain
than those obtained using more effort-intensive methods,
such as enumeration fences or mark–recapture programs.
Under Canada’s new Wild Salmon Policy (WSP), geneti-
cally and geographically similar spawning aggregations of
Pacific salmon will be grouped into conservation units
(CUs), and for each CU, a monitoring plan will be devel-
oped to assess interannual trends in spawning escapement
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and the distribution of fish within the CU (DFO 2005). Ex-
tensive survey programs will likely be an important compo-
nent of WSP monitoring plans.

Visual surveys have been used since the 1950s; however,
the estimation methods applied to visual survey data have
become increasingly complex. The peak count method, in
which the highest count value observed in a spawning sea-
son is used to index escapement, was one of the earliest indi-
ces used (Bevan 1961) and is still widely used among
management agencies (e.g., Geiger and McPherson 2004).
Development of the trapezoidal area-under-the-curve (T-
AUC) method (Ames and Phinney 1977; English et al. 1992)
provided a means to estimate absolute escapement by incor-
porating information on survey life (the length of time fish
remain alive in the survey area) and observer efficiency (the
proportion of fish seen by observers) into the estimation pro-
cedure. Evaluations of the T-AUC method have shown that
the accuracy of escapement estimates is highly dependent on
year- and stream-specific estimates of survey life and ob-
server efficiency (English et al. 1992; Irvine et al. 1992; Bue
et al. 1998), which in themselves can be costly to obtain.
More recently, a likelihood approach to AUC escapement es-
timation (L-AUC) has been proposed that allows uncertainty
in survey life, observer efficiency, and the arrival timing of
fish into the survey area to be incorporated into escapement
estimates (Hilborn et al. 1999; Su et al. 2001; Korman et al.
2002).

Sources of uncertainty in escapement estimates vary with
estimation method; however, all methods require that as-
sumptions be made about (i) observer efficiency and (ii) the
shape of the curve describing daily fish abundance in the
survey area, which is itself dependent on arrival timing and
survey life (English et al. 1992; Irvine et al. 1992; Bue et al.
1998). Unfortunately, observer efficiency, arrival timing, and
survey life can be highly variable both among years and
among streams within a given year. Factors influencing ob-
server efficiency include observer experience, weather con-
ditions, fish behaviour, and physical stream characteristics
(Bevan 1961; Shardlow et al. 1987; Jones et al. 1998), while
factors influencing survey life include individual body size,
spawning density, arrival timing, and physical stream charac-
teristics (Neilson and Geen 1981; Van den Berghe and Gross
1986; Fukushima and Smoker 1997). Arrival timing has a
strong heritable genetic component (Smoker et al. 1998;
Hodgson and Quinn 2002; Stewart et al. 2002); however, it
can also vary among years and streams because of environ-
mental conditions during migration, such as flow and tem-
perature (Hodgson and Quinn 2002; Keefer et al. 2004).

Although the above uncertainties are relevant to escape-
ment monitoring of all Pacific salmon species, we have cho-
sen to focus on coho salmon (Oncorhynchus kisutch)
populations in our study. Visual surveys of coho salmon
populations are especially problematic because of high vari-
ability in both observer efficiency and daily abundance pat-
terns. Coho salmon can be difficult to detect because of their
colouration and their naturally low spawning abundances,
and observer efficiency can be highly variable among sur-
veys (e.g., Hetrick and Nemeth 2003). In addition, several
observational studies suggest that the influence of environ-
mental factors on arrival timing is particularly important for

coho salmon populations, which frequently display pulsed
and bimodal abundance curves and often enter spawning
streams during periods of increased flow (Fraser et al. 1983;
Holtby et al. 1984; Sandercock 1991).

We developed a Monte Carlo simulation procedure to
evaluate the ability of four estimation methods (peak count,
T-AUC, L-AUC with a beta-distributed arrival timing model,
and an alternative mean count method) to detect 30% de-
clines in coho salmon escapement over 10 years, which is
one of several quantitative benchmarks that would warrant
listing a coho population as threatened under the listing cri-
teria used by the Committee on the Status of Endangered
Wildlife in Canada (COSEWIC). The specific objectives of
our study were threefold: (i) to compare the ability of the al-
ternative estimation methods to correctly detect declines in
coho salmon escapement, (ii) to examine the effect of survey
frequency (i.e., the number of surveys per year) on the abil-
ity to detect trends, and (iii) to test the sensitivity of our
results to a wide range of scenarios about “true” population
parameters and survey designs.

The usefulness of employing a simulation modelling ap-
proach to evaluate visual survey designs and estimation
methods has been demonstrated for monitoring programs for
migratory birds (Thomas 1996) and marine mammals
(Adkison et al. 2003). To the best of our knowledge, how-
ever, our study of coho salmon visual programs is the first to
use simulation modelling to examine how survey design and
interannual variability in daily abundance patterns affect the
accuracy and precision of trend detection for alternative
escapement estimation methods.

Materials and methods

We developed a Monte Carlo simulation procedure con-
sisting of four major components: (i) a model of true coho
population dynamics, including annual escapement and daily
abundance dynamics in a hypothetical survey area, (ii) a
visual survey model to generate survey count data with ob-
servation error, (iii) calculation of alternative visual survey
indices from those simulated survey count data using four
different estimation methods, and (iv) evaluation of monitor-
ing performance for each visual survey estimation method.
To generate realistic count data for coho visual surveys, we
used existing data sets to estimate interannual variability in
daily abundance patterns and between-survey variability in
observer efficiency. In the first half of our Methods section,
we describe the data sets and analyses used to parameterize
daily abundance dynamics and observer efficiency, while in
the second half of the section we describe the simulation
procedure. Model parameters are denoted using italicized
lowercase letters (e.g., m), state variables are denoted using
italicized uppercase letters (e.g., A), and functions are de-
noted using bold uppercase letters (e.g., F).

Data analysis

Daily abundance patterns
We used 33 existing coho salmon visual foot survey data

sets provided by Fisheries and Oceans Canada (DFO) stock
assessment personnel to select an appropriate model to de-
scribe daily abundance patterns (referred to as daily abun-
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dance model) and estimate interannual variability in model
parameter values (e.g., Fig. 1, Appendix A). Data sets were
collected from 11 streams over a period of 3 years. Nine of
the streams were tributaries to the North Thompson River in
the Fraser River system, British Columbia (BC; data pro-
vided by R. Bailey, DFO, BC Interior Region Stock Assess-
ment, 985 McGill Place, Kamloops, BC V2C 6X6, personal
communication), and the other two streams were located on
the east coast of Vancouver Island, BC (data provided by K.
Simpson, DFO, BC South Coast Stock Assessment, 3225
Stephenson Point Road, Nanaimo, BC V9T 1K3, personal
communication). All data sets had a minimum of five survey
counts per year. Based on the results of model selection
analysis, we selected a mixture model that was able to gen-
erate both unimodal and bimodal abundance curves (Appen-
dix A). The selected mixture model required four parameters
to be estimated from visual survey data sets (m, k, σ′1, and
σ′2 in Table 1 and Appendix A). While the use of the mix-
ture model may seem unwarranted given the small number
of data points and the possibility of over-fitting, its use is
justified by the high interannual variability in coho abun-
dance curves arising from infrequent precipitation events
(Fig. 1). It is apparent that coho salmon are more likely to
enter streams during or immediately after several days of
high-intensity precipitation and that bimodal abundance
curves are common in years when dry periods are inter-

spersed with periods of high precipitation. This level of vari-
ability cannot be produced using simpler models that restrict
daily abundance dynamics to a single mode.

Among-year variation for each of the four mixture model
parameters was calculated assuming that each stream i had a
set of stream-specific mean parameter values from which
daily abundance patterns deviated each year. For a given
mixture model parameter θ, the actual parameter value ob-
served for stream i in year t was a function of the stream-
specific mean θi and a stock- and year-specific deviation εi t, ,
e.g.,

(1) θ θ εi t i i t, ,= +

Mean parameter values reflect effects of stream-specific fac-
tors influencing arrival timing, such as local adaptation and
migration distance (e.g., Smoker et al. 1998; Hodgson and
Quinn 2002; Keefer et al. 2004). The methods used to esti-
mate εi t, for each of the four mixture model parameters are
described in Appendix A.

Observer efficiency
Data on observer efficiency for adult coho salmon foot

surveys were obtained from previous studies conducted on
Black Creek, Vancouver Island, BC (J. Irvine, DFO, 3190
Hammond Bay Road, Nanaimo, BC V9T 6N7, unpublished
data). The study design, in which observers visually inspected
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Fig. 1. Daily precipitation levels (broken lines) plus observed (solid circles) and predicted (solid lines) spawner abundances from visual
survey counts for coho salmon (Oncorhynchus kisutch) visual survey data sets from (a) Blue River and (b) Cook Creek in the North
Thompson Watershed, British Columbia, and from (c) Bonnell Creek on Vancouver Island, British Columbia.



fenced off segments of stream prior to electrofishing, was
repeated for 50 surveys occurring over 7 years. A more de-
tailed description of the study design and an analysis of the
first 3 years of data are available in Irvine et al. (1992).
Analysis of the Black Creek observer efficiency data
showed that the relationship between true abundance esti-
mated from electrofishing, N, and survey counts, C, was lin-
ear, and that the intercept of the linear best-fit line did not
differ significantly from zero (C = a + bN; null hypothesis
(H0): a = 0; p = 0.412, R2 = 0.92). There was no significant
difference in the slope of the regression among years (analy-
sis of covariance; F = 2.09, p = 0.155). We therefore esti-
mated the average observer efficiency over all surveys as the
slope of the zero-intercept linear regression between N and
C. The estimated slope was 0.865 (R2 = 0.95; standard error
= 0.03), indicating that on average, 86.5% of fish were de-
tected.

Simulation procedure
We first created a baseline scenario to be used in the sim-

ulation procedure, which, based on our analyses, provided
the most realistic representation of population and survey
dynamics. Parameter values used in the baseline scenario
were the maximum likelihood estimates obtained from fit-
ting the daily abundance and observation models described
in the previous two sections to empirical data (a summary of
parameter values used in the baseline scenario is provided in
Table 1). We then used sensitivity analyses to examine how

deviations from parameter values used in the baseline sce-
nario affected the performance of each estimation method.
The basic steps in the simulation procedure are as follows:
(i) Generate a true 10-year escapement time series with a
rate of decline (40% decline) greater than the critical rate of
decline that would result in a population being assessed as
threatened under COSEWIC listing criteria (30% decline).
(ii) Generate true daily abundances with random variation
for each year t in the escapement time series. (iii) Generate
count data with observation error for each survey frequency
considered (fmax = 1,2,…,8 surveys per year) within year t.
(iv) Calculate an estimated index of escapement for year t
for each of the four estimation methods using the count data
from fmax surveys. (v) Using the 10 years of observed index
values, calculate probability associated with H0: stock is not
threatened. (vi) If the probability of H0 is less than a pre-
specified confidence level (20%), reject H0 and designate
stock as threatened. (vii) Repeat steps (i) to (vi) for 1000
simulation trials. (viii) Calculate the probability of detecting
a threatened population as the proportion of trials that cor-
rectly assess stock status as threatened for each combination
of estimation method and survey frequency considered.

Annual escapement trends
We used an exponential growth model to generate a de-

clining time series of true escapement values

(2) E Et
rt= 0 e
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Parameter Value Description

True population parameters
E0 500 Initial escapement in year 0

Decline 40%++ Percent decline in escapement over 10 years

r –0.057++ Annual rate of population growth associated with decline

m 301.8 Stream-specific mean date of arrival (annual days)

k 12.4 Stream-specific distance parameter

σ′1 4.7 Stream-specific standard deviation of arrival timing for first curve in mixture model

σ′2 5.7 Stream-specific standard deviation of arrival timing for second curve in mixture model

τm 7.1++ Standard deviation of year-specific random effect for m

τk 8.1++ Standard deviation of year-specific random effect for k

τσ1
2.3++ Standard deviation of year-specific random effect for σ′1

τσ2
3.0++ Standard deviation of year-specific random effect for σ′2

s 12.8 Survey life for fish arriving on the median arrival date

z 0.3 Proportion parameter for the mixture run timing model

v 0.865++ Average true observer efficiency

Survey parameters
fmax (1, 2, 3,…,8)++ Number of surveys per year
�v 0.865 Estimated observer efficiency

CV( �s) 0.2++ Coefficient of variation of survey life estimate

µ s 12.8 Mean of prior distribution on s

Trend detection parameters
Decline* 30% Critical percent decline in escapement over 10 years

r* –0.04 Critical annual rate of population growth associated with decline*

Note: The symbol ++ indicates that sensitivity analyses were conducted on the parameter value (see Table 2). A detailed description of
the mixture model used to describe daily abundance dynamics is given in Appendix A.

Table 1. Simulation parameters for the baseline scenario.



where E is true escapement, t is time in years, and r is the in-
trinsic rate of population growth (i.e., for a declining popula-
tion, r < 0). For the baseline scenario, in which the true
percent decline in escapement was 40% over 10 years, the
value of r was –0.057. In comparison, the critical COSEWIC
rate of decline used to designate a population as threatened is
a 30% decline over 10 years (r* = –0.04).

Daily abundance dynamics
The mixture model used to estimate among-year variabil-

ity in daily abundance patterns was used to simulate true
daily abundances for each year t in the escapement time
series (Appendix A). The total duration of simulated fish
presence in the survey area ranged from 17 to 91 days
(mean = 51.5 days, n = 1000), which was realistic compared
with the range of 19 to 82 days (mean = 47.3 days, n = 33)
observed for the visual survey data sets used to parameterize
daily abundance models. Interannual variability in daily
abundance patterns was incorporated into simulated true data
using the following variation of eq. 1 to describe a given
abundance model parameter θ:

(3) θ θi t i t, = + Y

where Yt is a year-specific random effect. For each parame-
ter θ, Y was assumed to be a normally distributed random
variable with a mean of zero and standard deviation of τ,

(4) Y 0= N( , )τ

where the value of τ was specific to each parameter (denoted
as τm, τk, τσ1

, and τσ2
in Table 1). In the baseline scenario,

values of τ were set equal to the mean values estimated from
visual survey data sets (see Appendix A for description).

Visual survey model
The mean count, T-AUC, and L-AUC methods required a

minimum of two, three, and five surveys per year, respec-
tively. Survey dates were selected based on the assumption
that observers would have some knowledge of historic daily
abundance curves within a study stream. On average, survey
dates were centred on the historic peak day of spawning
abundance for the stream, dPK. We developed a simple algo-
rithm in which survey events were clustered near dPK when
survey frequency was low. The single survey for the one-
survey case of the peak count method was conducted on dPK,
while the surveys for the two-survey case were conducted
1 week before and 1 week after dPK. For the three- to eight-
survey cases, the total number of days over which counts
were conducted (l) was dependent on survey frequency (fmax)
as follows:

(5) l

f

f

f

f

=

=
=
=
≥

42 days 3

56 days 4

70 days 5

84 days 6

max

max

max

max











The first survey date was randomly selected from a 7-day
period that occurred 0.5l days before dPK using a uniform
distribution, and subsequent surveys were evenly spaced
over the next l days. Simulated survey counts were generated
randomly from a Poisson distribution with a rate parameter

λ = vNd, where v is the average observer efficiency estimated
from Black Creek observer efficiency studies (above).

Alternative escapement index methods
The maximum count value over surveys conducted in a

given year was used as an index of annual escapement for
the peak count method:

(6) I C C C fPK 1 2 max
= max( , , ..., )

while the mean of count values was used as an index of an-
nual escapement for the mean count method:

(7) I
f

Cd
d

d f

MN
max

1 max

=
=

=

∑
1

The T-AUC method employs a simple trapezoidal approx-
imation to calculate the area under the observed abundance
curve for each year:

(8) AUC
2

1
2

+1max

= − +
−

=

−∑ ( )
( )

u u
C C

d d
d

f
d d 1

where ud is the day on which the dth survey was conducted.
We used Bue et al.’s (1998) approximation:

(9) AUC
2

first
1= C st�

(10) AUC
2

last
last= C st�

where �st is an estimate of survey life for year t. When year-
and stream-specific estimates of survey life are not available,
as would be expected for extensive survey programs, survey
life estimates must be extrapolated between years and (or)
streams. In the baseline scenario, we model a monitoring
program in which a year-specific survey life value is esti-
mated for a single stream and then applied to multiple
streams within that year. An escapement estimate is derived
from eq. 8 as

(11) �

� �
E

s vt
= AUC

where �v is an estimate of average observer efficiency. The
selection of �v and �st values for each simulation trial was
based on the assumption that stock assessment analysts had
some knowledge of the true underlying parameter distribu-
tions, which is reasonable given the numerous studies that
have been conducted on these parameters. The value of �v
was held constant at 0.865, which was the average observer
efficiency value used to generate true count data. Observa-
tion error in �st was incorporated into the simulation proce-
dure by assuming that �st was a random normal variable with
a mean, µ s , equal to s and a coefficient of variation, CV(�s),
of 0.2. While the selection of CV(�s) = 0.2 for survey life
estimates in the baseline scenario was somewhat arbitrary,
studies of the length of time coho salmon spend on their
redds (redd residence time) in two coastal streams suggest
that this value is reasonable for monitoring programs that
estimate survey life for a single stream each year and then
extrapolate that value to other streams. Over a period of
4 years, the redd residence time estimates for French Creek
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and Black Creek on eastern Vancouver Island, BC, differed
from each other by an average of 4.5 days (range of
difference = 0.5–8.7 days; English et al. 1992; Irvine et al.
1992).

The L-AUC method (Hilborn et al. 1999) estimates es-
capement by treating it as an unknown parameter in a maxi-
mum likelihood estimation (MLE) procedure. The L-AUC
method consists of three components. First, a daily abun-
dance model is used to predict daily fish abundance in the
survey area, �Nd . We used a beta distribution model to de-
scribe daily abundance dynamics in the L-AUC method (Ap-
pendix A). Second, an observation model is used to predict
the number of fish counted, �Cd , as a function of �Nd and an
estimate of observer efficiency �v

(12) � � �C v Nd d=

Third, a statistical model with a goodness of fit criterion
measures the agreement between predicted and observed
count values. For this last component, MLE was used to fit
predicted counts from eq. 12 to observed counts by estimat-
ing total escapement ( �E), survey life (�s), and the two shape
parameters of the beta distribution ( �α and �β). These four pa-
rameters were estimated using a penalized likelihood func-
tion that assumed a Poisson error distribution for the count
data (eq. A3 in Appendix A) and a normal prior distribution
on the parameter s, with a mean of µ s and a standard devia-
tion of σs . The total negative log-likelihood was thus

(13) � ( , , ..., | , , , )
( )

C C C v s
s

f
s

s
1 2

2

2max 2
α β µ

σ
= −

+ −
=

=

∑ � ( , , , ) log[ � ( , , , )]C v s C C v sd
d

d f

d d
1

max

α β α β

where Cd and �Cd are the observed and predicted count val-
ues, respectively, for day d. The L-AUC method was only
applicable to survey frequencies of five per year or greater to
prevent model overparameterization. The value of µ s was set
equal to the true value of s used to generate the data, and the
value of �v was held constant at 0.865. Including a prior dis-
tribution on s was necessary to ensure parameter stability in
the estimation procedure. In some cases, v can be treated as
a free parameter in the MLE procedure (Hilborn et al. 1999);
however, parameter estimates of α, β, and s were highly cor-
related at all survey frequencies examined when v was esti-
mated rather than assumed.

Evaluation of monitoring performance
An observed escapement index, It (t = 1,2,…,10), was

generated for each combination of estimation method and
survey frequency considered (hereafter referred to as moni-
toring designs). We used a simple linear regression of log-
transformed index data on year, i.e.,

(14) log ( ) log ( � ) �e e 0I I rtt = +

to estimate the rate of population growth �r. A one-tailed
t test was used to designate population status as threatened
using the COSEWIC assessment criteria of r ≤ –0.04 over
10 years (H0 (decline < 30%): r > –0.04; H1 (decline ≥30%):
r ≤ –0.04). We placed equal weight on the type I and type II
error probabilities for detecting significant declines in es-

capement (α = β = 0.2). Thus, H0 was rejected and the popu-
lation was assessed as threatened when p ≤ 0.2 for the t test.
Because the true r value used to generate annual escapement
followed H1, trend detection was considered successful
when this null hypothesis was rejected. The entire simula-
tion procedure was repeated for 1000 Monte Carlo trials,
and monitoring performance was measured by the following
three criteria: (i) the proportion of trials in which a threat-
ened population was correctly detected; (ii) the minimum
number of years required to correctly detect a threatened
population in at least 80% of Monte Carlo trials, and
(iii) how the probability of detecting a threatened population
changed in response to different levels of true population de-
cline. For this final criterion, we examined a range of alter-
native rates of decline (0%, 2%, 4%,…,60%) over 10 years
by changing the true value of r in eq. 2.

Sensitivity analysis
We used sensitivity analyses to examine how deviations

from assumptions about interannual variability in daily
abundance patterns and among-survey variability in observer
efficiency affected the probability of detecting a threatened
population for each monitoring design. For the first analysis,
three additional levels of variability in daily abundance pat-
terns were examined (none, low, and high) by changing the
values of τ in eq. 4. To cover the range of interannual vari-
ability observed among the 11 streams analyzed, the value of
τ in the low and high variability scenarios was set equal to
the highest and lowest τi values estimated from the 11
streams (Table 2). In the second sensitivity analysis, three al-
ternative levels of variability in observer efficiency were ex-
amined (none, low, and high; Table 2). Because the variance
of a Poisson distribution is equal to the mean, variability in
observer efficiency was altered by changing v. For a given
level of N, the variance of C was increased when v was in-
creased. In the no-variability scenario, the number of fish
observed was nonrandom (Cd = Nd for all surveys).

Survey design scenarios
To determine how the design of visual survey monitoring

programs could affect the probability of detecting a threat-
ened population, we examined a range of alternative scenar-
ios on (i) the level of error in estimates of survey life, CV(�s),
(ii) survey spacing, and (iii) variation in survey frequency
among years. In the first of these analyses, we examined the
sensitivity of T-AUC performance to three alternative sce-
narios for CV(�s) (none, low, high; Table 2). Only the T-AUC
method was considered in the analysis because it is the only
method that requires an annual estimate of survey life. In
comparison, the L-AUC method treats survey life as an un-
known parameter that is estimated annually from the count
data. We examined how the spacing of survey events within
a year affected monitoring performance by considering two
alternatives to the baseline scenario shown in eq. 5. In the
first of these, surveys were evenly spaced over l = 77 days.
The second was a random spacing scenario in which the sur-
vey period of l = 77 days was stratified into fmax intervals of
even size, and one survey date was randomly sampled from
a uniform distribution within each interval. To examine how
among-year variation in survey frequency affected monitor-
ing performance, we considered three alternative scenarios.
For each scenario, the survey frequency for a given year was
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selected from a random uniform distribution (Table 2). Be-
cause of the requirement for a minimum of five surveys per
year for the L-AUC method, only one of the three alterna-
tive scenarios (low variability) was applicable.

Results

Baseline scenario
In the baseline scenario, which, based on our analysis,

provided the closest representation of survey dynamics for a
population experiencing a 40% decline in escapement over
10 years, all of the monitoring designs we considered pro-
duced relatively unbiased estimates of r when averaged
across 1000 simulations (±3%). The probability of detecting
a threatened population increased with increasing survey fre-
quency for all four estimation methods; however, the mean
count and L-AUC methods were able to achieve greater
gains in the probability of detecting a threatened population
than other two methods (Fig. 2). The L-AUC method
achieved only slightly lower probability than the mean count
method at all survey frequencies examined. The rank order
of the four estimation methods remained the same as in
Fig. 2 when performance was measured by the minimum
number of years required to achieve an 80% probability of
detecting a threatened population (Table 3); however, only
the mean count and L-AUC methods met this criterion
within the required 10-year period.

The effect of survey frequency on the probability of
detecting a threatened population depended on the true
population decline relative to the null hypothesis (H0 (de-
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Probability of detecting a threatened population for
three/six surveys per year

Variable (baseline values) Scenario Values Peak Mean T-AUC L-AUC

Baseline 0.36 / 0.41 0.44 / 0.84 0.39 / 0.45 NA / 0.79

True population parameters

Variability in daily abundances None τ = (0, 0, 0, 0) 0.87 / 0.75 0.85 / 0.92 0.44 / 0.44 NA / 0.94

τ = {τm , τk , τσ1
, τσ2

} Low τ = (2.5, 1.4, 2.6, 2.9) 0.41 / 0.47 0.55 / 0.91 0.39 / 0.43 NA / 0.92

= (6.7, 5.6, 2.9, 2.4) High τ = (9.4, 8.9, 4.0, 1.0) 0.30 / 0.34 0.28 / 0.55 0.27 / 0.38 NA / 0.38

Variability in observer efficiency None See text 0.35 / 0.41 0.48 / 0.95 0.38 / 0.44 NA / 0.89

(v = 0.86) Low v = 0.76 0.35 / 0.41 0.46 / 0.81 0.39 / 0.46 NA / 0.78

High v = 0.96 0.36 / 0.41 0.44 / 0.74 0.37 / 0.42 NA / 0.71

Survey designs

Error in survey life estimate None CV( �s) = 0 NA NA 0.65 / 0.96 NA

(CV( �s) = 0.2) Low CV( �s) = 0.1 NA NA 0.54 / 0.66 NA

High CV( �s) = 0.3 NA NA 0.33 / 0.33 NA

Survey spacing Even See text 0.28 / 0.39 0.26 / 0.83 0.28 / 0.43 NA / 0.80

Random See text 0.27 / 0.36 0.28 / 0.51 0.28 / 0.40 NA / 0.55

Variation in survey frequency High fmax = U(3, 8) 0.38 0.55 0.42 NA

Medium fmax = U(4, 7) 0.39 0.59 0.42 NA

Low fmax = U(5, 6) 0.39 0.73 0.43 0.68

Note: The function U(g, h) denotes a uniform random number with lower bound g and upper bound h. T-AUC, trapezoidal area-under-the-curve
method; L-AUC, likelihood approach to area-under-the-curve escapement estimation.

Table 2. Alternative scenarios about true population dynamics and survey design tested in sensitivity analyses and a subset of results
for designs with three and six surveys per year.

Fig. 2. Probability of detecting a threatened population (>30%
decline in escapement over 10 years) as a function of survey fre-
quency for mean count (triangles), likelihood approach to area-
under-the-curve (L-AUC, diamonds), trapezoidal area-under-the-
curve (T-AUC, squares), and peak count (circles) estimation
methods in the baseline scenario, in which the actual rate of de-
cline is 40% over 10 years. The mean count, T-AUC, and L-
AUC methods require minimum survey frequencies of two, three,
and five surveys per year, respectively.



cline ≤ 30%): r ≥ –0.04) used in trend detection analysis
(Fig. 3). When H0 was actually wrong and population de-
clines were large (i.e., decline > 30%; r ≤ –0.04), the prob-
ability of detecting a threatened population increased with
increasing survey frequency for all four estimation meth-
ods. Conversely, when H0 was true and population declines
were small or nonexistent (i.e., decline ≤ 30%; r > –0.04),
the probability of detecting a threatened population de-
creased with increasing survey frequency. We use the term
responsive to describe a monitoring program in which the
probability of detecting a threatened population changes
quickly in response to changes in the actual percent de-
cline. The mean count and L-AUC methods became in-
creasingly responsive to changes in the true percent decline
as survey frequency increased (as shown by the narrowing
of contour lines in Fig. 3). The high responsiveness of the
mean count and L-AUC methods increased the probability
of correctly assessing a population as threatened when it
really was threatened and reduced the probability of incor-
rectly assessing a population as threatened when it was not.
As an example of the latter case, when the true percent de-
cline was only 20% over 10 years (i.e., not threatened), the
mean count method had a less than 10% probability of in-
correctly assessing the population as threatened at five or
more survey counts per year, while the peak count and T-
AUC method had greater than 10% probability.

Sensitivity analysis
The probability of detecting a threatened population was

dependent on the level of interannual variability in daily
abundance curves (τ in eq. 4 and Table 2) for all four moni-
toring methods; however, the mean count method maintained
the highest level of performance at all levels of variability
examined (Table 2). The peak count method required per-
fectly consistent daily abundance patterns over all years (τ =
0) to achieve levels of performance comparable with those
achieved by the mean count method in the baseline scenario.
In contrast, the T-AUC method was unable to achieve greater
than a 55% probability of detecting a threatened population,
even when daily abundance patterns were held perfectly con-
stant.

The range of among-survey variability in observer effi-
ciency examined, from v known exactly to v = 0.96, had a
relatively small effect on the probability of detecting a
threatened population for all estimation methods (Table 2).
Losses in performance associated with increased variability

above the baseline scenario and gains in performance associ-
ated with decreased variability below the baseline scenario
were greater for the mean count and L-AUC methods; how-
ever, the deviations remained less than 10% in probability.
The mean count method still achieved higher levels of per-
formance than the other three methods at all levels of
among-survey variability examined.

Survey design scenarios
The performance of the T-AUC method was highly sensi-

tive to the level of error in estimates of survey life (Table 2).
Perfect information about survey life, CV(�s) = 0, was needed
to obtain the level of performance achieved by the mean
count method in the baseline scenario. The probability of de-
tecting a threatened population for all four monitoring meth-
ods was dependent on the spacing of survey events within a
year, although this was particularly true for the mean count
and L-AUC methods (Table 2). For most monitoring designs
considered, performance was greatest when surveys were
spaced according to the baseline algorithm that increasingly
clustered surveys around the historic peak date of spawning
abundance when survey frequency was low (eq. 5). The ran-
dom spacing scenario resulted in the lowest performance for
all methods; however, the loss of probability of detecting a
threatened population under the random spacing scenario
was especially large for the mean count and L-AUC methods.

Examination of alternative scenarios regarding among-year
variability in survey frequency revealed that when survey fre-
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Survey frequency

1 2 3 4 5 6 7 8

Peak >20 >20 >20 >20 >20 >20 20 20
Mean — >20 19 15 13 10 8 8
T-AUC — — >20 >20 >20 19 19 19
L-AUC — — — — 15 10 9 8

Note: T-AUC, trapezoidal area-under-the-curve method; L-AUC, likeli-
hood approach to area-under-the-curve escapement estimation.

Table 3. Minimum number of years required to achieve 80%
probability of detecting a threatened population (decline > 30%
over 10 years) in the baseline scenario in which the actual rate
of decline is 40% over 10 years.

Fig. 3. Sensitivity of the probability (contour lines) of detecting
the rate of decline associated with a threatened population
(>30% decline in escapement over 10 years) to the true percent
decline in escapement and survey frequency for (a) peak count,
(b) mean count, (c) trapezoidal area-under-the-curve (T-AUC),
and (d) likelihood approach to area-under-the-curve (L-AUC)
methods. Note that x axes have different scales for each estima-
tion method.



quency varied between years, monitoring performance tended
to be limited by the lowest survey frequency in the time series
(Table 2). While this effect was observed for all estimation
methods, it was particularly notable for the mean count and
L-AUC methods, which achieved the greatest gains in perfor-
mance with increased survey frequency. For example, when
survey frequency varied between three and five counts per
year, the probability of detecting a threatened population for
each method was similar to that achieved with a constant sur-
vey frequency of three. Additionally, when survey frequency
varied between three and eight, the level of probability was
similar to that achieved with a constant survey frequency of
four.

Discussion

The results of our simulation analysis suggest that a simple
mean count method is more suitable than commonly used vi-
sual survey estimation methods for monitoring salmon es-
capement for several reasons (Table 4). While all four
methods that we examined estimated the “true” rate of popu-
lation decline with relatively low bias, the mean count and
L-AUC methods consistently achieved higher levels of preci-
sion (as reflected by greater probability of detecting a threat-
ened population) than peak count and T-AUC methods over
a wide range of scenarios about true population parameters
and survey design. High precision is a desirable property for
monitoring programs because it increases the probability of
correctly estimating the true status of a population. In addi-
tion to higher levels of precision, the mean count and T-
AUC methods required fewer years to detect the rate of de-
cline associated with a threatened population, which is a
desirable property for a monitoring program because it pro-
vides an early warning that recovery actions are likely nec-
essary. While escapement monitoring programs should be
able to reliably detect situations of concern, such as a rate of
population decline that would result in a stock being as-
sessed as threatened under COSEWIC, they should also
minimize the probability of falsely detecting these situations.
By examining the response of monitoring performance to
varying levels of actual population decline, we have shown
that the mean count and L-AUC methods perform better than
the other two methods using both of these criteria.

The performance of the L-AUC method was comparable
with that of the mean count method, which may lead one to
conclude that the L-AUC method is more useful for escape-
ment monitoring given that it provides an absolute estimate
of escapement instead of only a relative index. The perfor-
mance of the L-AUC method in our study is likely optimis-
tic, however, because of our treatment of the observer
efficiency parameter estimate in the MLE procedure. By
treating observer efficiency as a fixed parameter and assum-
ing that the underlying mean parameter value was known
without error, we allowed the estimation procedure to under-
estimate the level of uncertainty in L-AUC escapement esti-
mates. As discussed in the Alternative escapement index
methods section of the Materials and methods, this assump-
tion was necessary to prevent model overparameterization.
Three additional disadvantages of the L-AUC method are
that its estimation procedure is more complicated than that
of the mean count method, it requires prior knowledge of

stream-specific survey life, and it is limited to survey de-
signs with five or more survey counts per year, which is not
always possible for extensive survey programs (D. Peacock,
DFO, 202-417 Second Avenue West, Prince Rupert, BC
V8J 1G8, personal communication). We therefore conclude
that the mean count method is better suited than the L-AUC
method for extensive monitoring of coho salmon escape-
ments.

The success of the mean count method can be attributed
to its simple, data-based estimation procedure that requires
no assumptions to be made about the shape of the daily
abundance curve or the length of time fish remain in the sur-
vey area. In contrast, both the peak count and T-AUC meth-
ods require strong assumptions about at least one of these
factors, which limits the monitoring performance of these
two methods. For example, the peak count method relies on
the assumption that the ratio of the peak count to total es-
capement is constant among years. Our results show that this
assumption is weakly supported for coho salmon stocks. Vi-
sual survey data used to parameterize daily abundances
showed high interannual variability in both the timing of fish
presence and the shape of the observed abundance pattern.
In utilizing information from only one survey event each
year (i.e., the survey in which the highest count value was
obtained), the peak count method fails to incorporate infor-
mation about the shape of the abundance curve into annual
escapement indices. In contrast, the mean count method in-
corporates all available information on the shape of the
abundance curve into the escapement index by using data
from all surveys conducted in a year and is thus able to
achieve large gains in monitoring performance with in-
creased survey frequency.

The T-AUC method also uses information from all survey
events conducted in a year; however, error in survey life esti-
mates limited the gains in monitoring performance associ-
ated with increased survey frequency that were observed for
the mean count method. Only when error in survey life esti-
mates was low (CV(�s) = 0.10) or absent (CV(�s) = 0) was the
performance of the T-AUC method comparable with that of
the mean count method in the baseline scenario. Hill (1997)
also found that when errors in survey life were relatively low
(i.e., survey life treated as a random normal variable with
mean = 10 days, standard error = 0.5 days, and CV(�s) =
0.13), the reliability of annual escapement estimates derived
using the T-AUC method increased with increasing survey
frequency. The lower level of error assumed by Hill (1997),
compared with our baseline scenario, was because he simu-
lated a monitoring program that obtained year- and stream-
specific estimates of survey life.

The requirement for highly precise estimates of survey
life in order for the T-AUC method to achieve high probabil-
ity of detecting a threatened population is consistent with
other research showing that the accuracy of annual T-AUC
escapement estimates is highly dependent on both year- and
stream-specific estimates of survey life (English et al. 1992;
Irvine et al. 1992; Bue et al. 1998). Unfortunately, the cost
and effort required to estimate this parameter can be high.
Such intensive methods for estimating survey life for Pacific
salmon include tagging programs and enumeration fences
(English et al. 1992; Bue et al. 1998), capture–recapture
studies (Manske and Schwarz 2000), and daily observations
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(Van den Berghe and Gross 1986). There are two ways in
which survey life estimates can be extrapolated between
years and streams when year- and stream-specific estimates
of survey life are not available (Perrin and Irvine 1990). The
first approach is the one assumed in the baseline scenario, in
which a year-specific survey life value is estimated for a sin-
gle stream and then applied to multiple streams within that
year. The second approach is to apply a constant survey life
estimate to all years in a time series. While the second ap-
proach of a constant survey life would reduce the accuracy
of annual escapement estimates by ignoring interannual vari-
ability in survey life, the high levels of monitoring perfor-
mance achieved by the T-AUC method when survey life was
held constant shows that this approach provides a more reli-
able index of escapement than the first approach. In this
case, however, the T-AUC method would serve as only a
relative index of escapement, providing the same level of in-
formation as the mean count method.

The low sensitivity of monitoring performance for all esti-
mation methods to among-survey variability in observer effi-
ciency is likely a result of the small differences in variability
among the four scenarios. For each scenario, we assumed
that observation error followed a Poisson distribution with a
constant rate parameter set at the mean observer efficiency
value estimated from Black Creek observer efficiency stud-
ies (Irvine et al. 1992). While varying the mean observer ef-
ficiency between different scenarios allowed us to affect the
variance of the Poisson distribution, the overall change in
the coefficient of variation decreased as daily abundances in-
creased. The assumption of a Poisson error distribution for
generating count data is highly uncertain. Unfortunately, the
limited data available on among-survey variability for coho
salmon and the challenge of separating observation errors
from process errors when calculating observer efficiency
made it necessary for us to assume an error structure. A
Poisson distribution was used because it is commonly asso-
ciated with count data (Hilborn and Mangel 1997). Korman
et al. (2002) also assumed Poisson-distributed observation
errors for visual surveys of steelhead (sea-run rainbow trout,
Oncorhynchus mykiss).

It should be noted that while we did not find a significant
difference in mean observer efficiency values among the
7 years of data available for Black Creek coho, this will not
necessarily be the case for all species and all streams. In
some cases, observer efficiency can vary substantially
among years within a single stream (e.g., Bue et al. 1998 for
pink salmon, Oncorhynchus gorbuscha). The presence of
jacks (males that return to spawn after only one summer at
sea) in some coho populations could also affect among-
survey variability in observer efficiency if the ratio of jack to
adult salmon in a stream varies among years, which is com-
mon for some coho populations (Sandercock 1991), and if
jack salmon are harder to observe, as noted by Irvine et al.
(1992). We included only counts of adult salmon in our
analysis of observer efficiency. For the above reasons, we
recommend that observer efficiency studies be conducted in-
dependently on all streams where visual survey methods are
used to gain a better understanding of among-survey vari-
ability for each stream.

Our evaluation of alternative survey design scenarios re-
garding the spacing of surveys within a year and variability

in survey frequency across years demonstrates the impor-
tance of establishing a standardized sampling protocol that
can be applied consistently over multiple years. In order for
the mean count method to achieve the high levels of moni-
toring performance seen in the baseline scenario, both the
spacing of surveys and the frequency of surveys should re-
main constant among years. The simple algorithm for spac-
ing surveys used in the baseline scenario (eq. 5), in which
survey dates were increasingly clustered around the histori-
cal peak date of spawning abundance at low survey frequen-
cies (three–five surveys per year), tended to produce higher
levels of monitoring performance at these frequencies than
when surveys were spaced evenly over the historic spawning
period. While the particular spacing design that maximizes
the probability of detecting a threatened population would
likely differ between streams because of varying lengths of
fish presence, the advantage of clustering surveys near the
historic peak date of spawning abundance is expected to
apply to all streams. The decreased levels of monitoring per-
formance for the mean count method when survey dates
were spaced randomly shows that in order for this method to
maximize performance, the number of days between surveys
should be held constant among years. These results have im-
plications not only for the design of visual survey programs,
but also for the application of these methods to historic time
series of count data that have not followed a consistent sam-
pling protocol. When inconsistencies in survey spacing and
frequency exist within a time series, the gains in monitoring
performance achieved by the mean count method compared
with the other methods will be reduced.

The levels of monitoring performance achieved in our sim-
ulation study are higher than would be expected in the field
because our true population model did not allow for temporal
variability in annual escapement trends. Escapement declined
deterministically over 10 years for our true population with a
constant rate of decline each year. In reality, however, annual
trends in salmon escapement can vary greatly among years
because of variable fishing mortality and survival rates. While
incorporating temporal variability into the escapement model
would be expected to decrease the probability of detecting a
threatened population, the performance of the four methods
relative to each other would remain unchanged.

Although our evaluation of visual survey methods focussed
on coho salmon populations, our findings are relevant to the
design of extensive survey programs for many salmonid spe-
cies including pink salmon (Bue et al. 1998), Chinook
salmon (Oncorhynchus tshawytscha; Parken et al. 2003), and
steelhead (Korman et al. 2002). Additional research is
needed to determine whether the mean count method is suit-
able for these species. The simulation modelling approach
we used could be easily adapted for other species by re-
parameterizing the models used to generate daily abundance
and survey dynamics. We suggest, however, that the mean
count method has the potential to outperform peak count and
AUC methods for other salmon species based on the supe-
rior performance of the mean count method across a wide
range of sensitivity analyses.

In this study, we focused on the ability of visual survey
methods to detect changes in escapement within a single
spawning stream. However, given that the primary purpose of
extensive visual survey programs, as identified in the WSP, is
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to examine distribution and consistency in escapement trends,
a useful extension of our simulation framework would be to
expand the current single-stock model to a multistock model.
The development of a multistock model, in which a subset of
populations with co-varying escapement and daily abundance
dynamics are randomly selected for monitoring, would allow
for explicit consideration of the effects of different spatial and
temporal allocations of survey effort on the strength of trend
detection within a CU. For example, the question of “what is
the optimal allocation of effort between the number of
streams monitored and the frequency applied to each stream?”
could be examined for individual CUs. This type of informa-
tion would be useful for the development of WSP monitoring
plans aimed at maximizing the strength of trend detection
while minimizing survey costs. Future research is needed to
develop a means of combining data from several streams into
a single performance measure.

While the level of effort afforded to visual survey pro-
grams will depend on trade-offs made between program costs
and the level of detail required to assess status of fish popu-
lations relative to management and conservation goals, ap-
plying a mean count method and maintaining constant
survey dates among years will maximize the strength of
trend detection for a given level of effort. Despite high inter-
annual variability in coho daily abundance dynamics and
variable observer efficiency, the mean count method pro-
vides higher confidence in trend detection than peak count
and T-AUC methods across a wide range of scenarios about
true population dynamics and survey design. The peak count
method required consistent daily escapement patterns among
years to achieve the level of monitoring performance seen
for the mean count method in the baseline scenario, while
the T-AUC method required almost perfect information about
annual survey life values to achieve this level. Both of these
conditions are unlikely to be met for extensive monitoring
programs. The L-AUC method achieved high levels of moni-
toring performance in our study; however, large data require-
ments limit the usefulness of this method for coho salmon.
The success of the mean count method can be attributed to its
simple, data-based estimation procedure that requires no as-
sumptions about the shape of the daily abundance curve or
the length of time fish remain in the survey area.

Acknowledgements

We thank Joel Sawada, Dave Peacock, Richard Bailey,
Mike Chamberlain, Jim Irvine, Ian Matthews, Kent
Simpson, and Joe Tadey from Fisheries and Oceans Canada
for assistance in providing data and insight into visual sur-
vey methods. We also thank Randall Peterman, Mike Brad-
ford, Jim Irvine, and two anonymous reviewers for providing
helpful comments on earlier drafts. Financial support was
provided by Fisheries and Oceans Canada, North Coast
Stock Assessment Division, Prince Rupert, BC, as well as a
Natural Sciences and Engineering Research Council of Can-
ada Discovery Grant to S.P.C.

References

Adkison, M.D., Quinn, T.J., II, and Small, R.J. 2003. Evaluation of
the Alaskan harbour seal (Phoca vitulina) population survey: a
simulation study. Mar. Mamm. Sci. 19: 764–790.

Ames, J., and Phinney, D.E. 1977. Puget Sound summer–fall Chi-
nook methodology: escapement goals, run size forecasts, and in-
season run size updates. Wash. Dep. Fish. Tech. Rep. 29.

Bevan, D.E. 1961. Variability in aerial counts of spawning salmon.
J. Fish. Res. Board Can. 18: 337–348.

Bue, B.G., Fried, M., Sharr, S., Sharp, D.G., Wilcock, J.A., and
Geiger, H.G. 1998. Estimating salmon escapement using area-
under-the-curve, aerial observer efficiency, and stream-life esti-
mates: the Prince William Sound pink salmon example. North
Pac. Anadromous Fish Comm. Bull. 1: 240–250.

DFO (Fisheries and Oceans Canada). 2005. Canada’s policy for con-
servation of wild Pacific salmon. Available from www-comm.
pac.dfo-mpo.gc.ca/publications/wsp/default_e.htm [accessed May
2006; updated 22 November 2007].

English, K.K., Bocking, R.C., and Irvine, J.R. 1992. A robust proce-
dure for estimating salmon escapement based on the area-under-
the-curve method. Can. J. Fish. Aquat. Sci. 49: 1982–1989.

Fraser, F.J., Perry, E.A., and Lightly, D.T. 1983. Big Qualicum
River salmon development project. Vol. 1. A biological assess-
ment of 1959–1972. Can. Tech. Rep. Fish. Aquat. Sci. 1189.

Fukushima, M., and Smoker, W.W. 1997. Determinants of stream
life, spawning efficiency, and spawning habitat in pink salmon
in the Auke Lake system, Alaska. Can. J. Fish. Aquat. Sci. 54:
96–104.

Geiger, H.J., and McPherson, S. (Editors). 2004. Stock status and
escapement goals for salmon stocks in Southeast Alaska. Alaska
Department of Fish and Game, Divisions of Sport Fishing and
Commercial Fisheries, Juneau, Alaska. Spec. Publ. 04-02.

Hetrick, N.J., and Nemeth, M.J. 2003. Survey of coho salmon runs on
the Pacific coast of the Alaska Peninsula and Becharof National
Wildlife Refuges, 1994 with estimates of escapement for two small
streams in 1995 and 1996. Alaska Fisheries Tech. Rep. 63.

Hilborn, R., and Mangel, M. 1997. The ecological detective: con-
fronting models with data. Princeton University Press, N.J.

Hilborn, R., Bue, B.G., and Sharr, S. 1999. Estimating spawning
escapements from periodic counts: a comparison of methods.
Can. J. Fish. Aquat. Sci. 56: 888–896.

Hill, R.A. 1997. Optimizing aerial count frequency for the area-
under-the-curve method of estimating escapement. N. Am. J.
Fish. Manag. 14: 461–466.

Hodgson, S., and Quinn, T.P. 2002. The timing of adult sockeye
salmon migration into freshwater: adaptations by populations to
prevailing thermal regimes. Can. J. Zool. 80: 542–555.

Holtby, L.B., Hartman, G.F., and Scrivener, J.C. 1984. Stream in-
dexing from the perspective of the Carnation Creek experience.
In Proceedings of the Workshop on Stream Indexing for Salmon
Escapement Estimation, West Vancouver, British Columbia, 2–
3 February 1984. Edited by P.E.K. Symons and M. Waldichuck.
Can. Tech. Rep. Fish. Aquat. Sci. 1326. pp. 87–111.

Irvine, J.R., Bocking, R.C., English, K.K., and Labelle, M. 1992.
Estimating coho salmon (Onchorhynchus kisutch) spawning es-
capements by conducting visual surveys in areas selected using
stratified index sampling designs. Can. J. Fish. Aquat. Sci. 49:
1972–1981.

Jones, E.L., III, Quinn, T.J., II, and Van Alen, B.W. 1998. Observer
accuracy and precision in aerial and foot survey counts of pink
salmon in a southeast Alaska stream. N. Am. J. Fish. Manag.
18: 832–846.

Keefer, M.L., Perry, C.A., Jepson, M.A., Tolotti, K.R., Bjornn, T.C.,
and Stuehrenberg, L.C. 2004. Stock-specific migration timing of
adult spring–summer chinook salmon in the Columbia River Ba-
sin. N. Am. J. Fish. Manag. 24: 1145–1162.

Korman, J., Ahrens, R.N.M., Higgins, P.S., and Walters, C.J. 2002.
Effects of observer efficiency, arrival timing, and survey life on



estimates of escapement for steelhead trout (Oncorhynchus
mykiss) derived from repeat mark–recapture experiments. Can.
J. Fish. Aquat. Sci. 59: 1116–1131.

Manske, M., and Schwarz, C.J. 2000. Estimates of stream resi-
dence time and escapement based on capture–recapture data.
Can. J. Fish. Aquat. Sci. 57: 241–246.

Neilson, J.D., and Geen, G.H. 1981. Enumeration of spawning
salmon from spawner residence time and aerial counts. Trans.
Am. Fish. Soc. 110: 554–556.

Parken, C.K., Bailey, R.E., and Irvine, J.R. 2003. Incorporating un-
certainty into area-under-the-curve and peak-count salmon es-
capement estimation. N. Am. J. Fish. Manag. 23: 78–90.

Perrin, C.J., and Irvine, J.R. 1990. A review of survey life esti-
mates as they apply to the area-under-the-curve method for esti-
mating the spawning escapement of Pacific salmon. Can. Tech.
Rep. Fish. Aquat. Sci. 1733.

Sandercock, F.K. 1991. Life history of coho salmon (Oncorhynchus
kisutch). In Pacific salmon life histories. Edited by C. Groot
and L. Margolis. University of British Columbia Press, Vancou-
ver, B.C. pp. 395–446.

Shardlow, T., Hilborn, R., and Lightly, D. 1987. Components analy-
sis of instream escapement methods for Pacific salmon (Oncho-
rhynchus spp.). Can. J. Fish. Aquat. Sci. 44: 1031–1037.

Smoker, W.W., Gharrett, A.J., and Stekoll, M.S. 1998. Genetic varia-
tion of return date in a population of pink salmon: a consequence
of fluctuating environment and dispersive selection? Alaskan Fish-
ery Research Bulletin, 5: 46–51.

Stewart, D.C., Smith, G.W., and Youngson, A.F. 2002. Tributary-
specific variation in timing of return of adult Atlantic salmon
(Salmo salar) to freshwater has a genetic component. Can. J.
Fish. Aquat. Sci. 59: 276–281.

Su, Z., Adkison, M.D., and Van Alen, B.W. 2001. A hierarchical
Bayesian model for estimating historical escapement and es-
capement timing. Can. J. Fish. Aquat. Sci. 58: 1648–1662.

Thomas, L. 1996. Monitoring long-term population change: why
are there so many analysis methods? Ecology, 77: 49–58.

Van den Berghe, E.P., and Gross, M.R. 1986. Length of breeding
life of coho salmon (Oncorhynchus kisutch). Can. J. Zool. 64:
1482–1486.

Appendix A

Selection of a daily abundance model
We considered five candidate models for describing daily

abundance of coho salmon in spawning streams (a normal
model, a beta model, and three mixture models). Equations
describing the five models are shown in Table A1, with
model notation defined in Table A2. The letter “M” placed
before an equation indicates that it is a component of one of
the daily abundance models in Table A1. When describing
the mixture models, we use a superscript to denote which of
the two component models a given parameter or state vari-
able refers to (e.g., σ′1 is the standard deviation of arrival for
the first model, and σ′2 is the standard deviation of arrival
for the second model). Two probability density functions are
used in the daily abundance models in Table A1. The first is
the normal cumulative distribution function

(A1) FN ( , , ) exp
( )

d m
i m

di
i

d

σ
σ π σ

= − −









=
∫ 1

2 2

2

2
0

and the second is the beta cumulative distribution function

(A2) FB( , , ) ( )x i i di
i

x

α β α β= −−

=

−∫ 1

0

11

Parameter vectors for each of the daily abundance models
are denoted �Θmodel .

Daily abundance for the normal (eqs. M1–M4) and beta
models (eqs. M4–M7) is characterized using cumulative dis-
tributions of fish arrival and death (Hilborn et al. 1999) that
are scaled by the total number of fish observed over all sur-
veys, CT. Application of the beta model requires that start
and end dates for arrival are specified so that day can be
scaled between 0 and 1. We assumed that start and end dates
coincided with the first and last surveys each year, and n is
the number of days between these two dates. Daily abun-
dance for the mixture models (eqs. M8–M13) is character-
ized as two separate normal models. The standard deviations
for both component models (σ′1 and σ′2) were constrained
to be equal to or greater than 2 days during estimation. The
number of data points for most streams limited the number
of parameters that could be estimated for the mixture models
to four (eq. M8), making it necessary to fix the values of s
and z in eqs. M9–M12 to ensure parameter stability. The
value of s was held constant at the mean of coho survey life
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Normal model
Parameters

(M1) �ΘNormal = {m,σ,s}
Predicted states

(M2) �Ad = CTFN(d,m,σ) where C CT f
f

f

=
=

∑
1

max

(M3) �Dd = CTFN(d – s,m,σ)
(M4) � � �C A Dd d d= −

Beta model
Parameters

(M5) �ΘBeta = {α,β,s}
Predicted states

(M6) � , ,A C
d

n
d T= 
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(M4) � � �C A Dd d d= −

Mixture model

Parameters
(M8) � { , , , }ΘMixture

1 1 2= ′ ′ ′m kσ σ
Predicted states

(M9) � ( , , )A zC d md T′ = ′ ′ ′ ≥1 1 1 1 2FN σ σ
(M10) � ( , , )D zC d s md T′ = − ′ ′1 1 1FN σ
(M11) � ( ) ( , , )A z C d m kd T′ = − ′ + ′2 1 21 FN σ k ≥ 0, σ′2 ≥ 2
(M12) � ( ) ( , , )D z C d s m kd T′ = − − ′ + ′2 1 21 FN σ
(M13) � ( � � ) ( � � )C A A D Dd d d d d= ′ + ′ − ′ + ′1 2 1 2

Note: The functions FN and FB are defined in eqs. A1–A2. Symbols are
defined in Table A2.

Table A1. Alternative daily abundance models used in model se-
lection analysis.
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estimates obtained from empirical studies (12.8 days; Table
A3), while three values of z = {0.3, 0.5, 0.7} produced the
alternative mixture models. The mixture models differed
from the normal and beta models in that they could display
both unimodal and bimodal shapes through adjustment of
the k parameter. Small k values tended to create unimodal
curves, while large values tended to create bimodal curves.

Candidate models were fitted to count data sets using an
MLE procedure assuming the following Poisson negative
log-likelihood function for the observed counts

(A3) � ( , , ..., | � ) [ � log( �C C C C C Cf
i

i f

i i1 2 modelmax

max

Θ = −
=

=

∑
1

i)]

where the predicted counts �Ci are functions of the daily
abundance model parameters �Θmodel . The five candidate
models were ranked using the following small sample ver-
sion of Akaike’s information criterion (AIC) (Burnham and
Anderson 2002),

(A4) AIC 2 2
2 1

1max

= − + + +
− −

�*
( )

K
K K

f K

where �* is the maximum log-likelihood value, K is the
number of parameters to be estimated and fmax is the number
of count events. The best model for each data set given the
candidate models considered was the one that produced the
smallest AIC value.

The results of the AIC test showed that the mixture model
with z = 0.3 was the best of the five candidate models for the
largest number of data sets (mixture (z = 0.3) was best for
10 out of 33 data sets, compared with 8 out of 33 for mix-
ture (z = 0.7), 7 out of 33 for mixture (z = 0.5), 7 out of 33
for beta, and 1 out of 33 for normal). Based on these results,
we selected the mixture model (z = 0.3) to estimate inter-
annual variability in abundance model parameters for the
simulation procedure.

Estimation of interannual variability in daily
abundances

Recall from eq. 1 that for each of the each of the four

Symbol Definition

Index variables
f Survey index (f = 1, 2, …, fmax surveys)
fmax Total number of surveys conducted on a given stream within a year
d Day (from annual calendar; January 1 = day 1)
n Total number of days of fish presence in survey area

Observed data
Cd Number of fish counted within a single stream on day d
CT Total number of fish counted within a single stream over all surveys in a year

Predicted states
Normal and beta models

�Ad Cumulative number of fish arriving by survey day d
�Dd Cumulative number of fish departing by survey day d
�Cd Predicted number of fish counted on survey day d

Mixture models
�A d′

1 Cumulative number of fish from first component model arriving by d
�A d′2 Cumulative number of fish from second component model arriving by d
�D d′

1 Cumulative number of fish from first component model departing by d
�D d′2 Cumulative number of fish from second component model departing by d

Daily abundance model parameters
Normal model

m Mean date of arrival (from annual calendar)
σ Standard deviation of arrival date
s Survey life (days)

Beta model
α Beta shape parameter 1
β Beta shape parameter 2

Mixture models
m′1 Mean date of arrival for first component model
k Number of days that the mean date of arrival for second component model is offset from that of the first component model
σ′1 Standard deviation of arrival for first component model
σ′2 Standard deviation of arrival for second component model
z Proportion of counted fish belonging to first component model

Table A2. Definition of symbols used to describe daily abundance models in Table A1.



mixture model parameters, among-year variation was calcu-
lated assuming that each stream i had a set of stream-
specific mean parameter values (m′1, k, σ′1, and σ′2 in Table
A2) from which daily abundance patterns deviated each year

(eq. 1 repeated)

θ θ εi t i i t, ,= +

where θ is any one of the four model parameters, θi is the
stream-specific mean parameter value, t is year, and εi t, is a
stock- and year-specific deviation. For each of the 33 coho
salmon visual survey data sets (11 steams, each with 3 years
of data) used to estimate interannual variability in daily
abundance patterns, an estimate of εi t, was calculated by
subtracting θi from θi t, . The standard deviation of εi t, within
each stream, τi, was then calculated using the three estimates
of εi t, (t = 1, 2, 3). The 11 values of τi were used to develop
alternative scenarios for the simulation of interannual vari-
ability in daily abundance patterns.

Simulation of true daily abundances
To simulate daily abundances for year t, the mixture model

was modified slightly so that the cumulative normal distribu-
tions presented in eqs. M9–M12 were scaled by total escape-

ment for year t, Et, instead of total counts. This modification
allowed for predictions of the total number of arrivals and
deaths that actually occurred up to a given day d, as opposed
to the total number of arrivals and deaths counted up to d.
The difference between cumulative arrivals and cumulative
deaths on day d thus determines the total abundance of fish
that are alive and in the survey area on that day (Nd).

Application of daily abundance model to L-AUC method
The L-AUC method (Hilborn et al. 1999) estimates es-

capement by treating it as an estimated parameter in an MLE
procedure. Application of the beta arrival timing model to
the L-AUC method requires a slight modification from the
version presented in eqs. M4–M7. The scalar CT in eqs. M6–
M7 is replaced with a total escapement parameter for year t,
Et. This modification causes eq. M4 to predict the total num-
ber of fish alive in the survey area on day d, �Nd .
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Stream Location* Year Estimate Source

Spring Creek OR 1952 11.5 Perrin and Irvine 1990
Flynn Creek OR 1966 13.1 Perrin and Irvine 1990
Oregon streams OR 1980 11.0 Perrin and Irvine 1990
Harris Creek WA 1980–1983 10.0 Perrin and Irvine 1990
Deer Creek WA 1981 9.2 Perrin and Irvine 1990
Eagle River BC 1982 12.5 Perrin and Irvine 1990
Salmon River BC 1982 15.0 Perrin and Irvine 1990
Adams River BC 1982 10.0 Perrin and Irvine 1990
Coldwater River BC 1982 12.5 Perrin and Irvine 1990
Keogh River BC 1985 13.0 Perrin and Irvine 1990
Little Qualicum BC 1986 13.3 Perrin and Irvine 1990
French Creek BC 1987 13.3 Irvine et al. 1992
Black Creek BC 1987 16.6 Irvine et al. 1992; English et al. 1992
Trent River BC 1987 7.1 Perrin and Irvine 1990
French Creek BC 1988 16.7 Irvine et al. 1992
Black Creek BC 1988 8.0 Irvine et al. 1992; English et al. 1992
Trent River BC 1988 9.6 Perrin and Irvine 1990
French Creek BC 1989 15.5 Irvine et al. 1992; English et al. 1992
Black Creek BC 1989 15.0 Irvine et al. 1992; English et al. 1992
Chase River BC 1989 16.3 Manske and Schwarz 2000
French Creek BC 1990 20.3 English et al. 1992
Black Creek BC 1990 15.0 English et al. 1992
Chase River BC 1990 10.4 Manske and Schwarz 2000
All streams, OR OR — 11.3 Perrin and Irvine 1990
Clear Creek AK 1996 13.8 Hetrick and Nemeth 2003

Mean 12.8

*AK, Alaska; BC, British Columbia; OR, Oregon; WA, Washington State.

Table A3. Summary of survey life estimates collected from the literature.


